中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (11): 23-31.DOI: 10.13304/j.nykjdb.2024.0609
收稿日期:
2024-07-30
接受日期:
2024-08-28
出版日期:
2024-11-15
发布日期:
2024-11-19
通讯作者:
王维轩
作者简介:
陈永孜 E-mail: yzchen@tmu.edu.cn;
基金资助:
Yongzi CHEN1,2(), Hua WANG1,3,4, Weixuan WANG5,6(
)
Received:
2024-07-30
Accepted:
2024-08-28
Online:
2024-11-15
Published:
2024-11-19
Contact:
Weixuan WANG
摘要:
空间转录组学是一项颠覆性的生物学技术,融合了分子生物学和空间成像技术,旨在揭示组织或细胞中基因表达的空间分布。其通过对转录组数据进行分析,可以全面理解基因在组织或细胞水平上的空间表达规律,从而深入揭示生物系统中基因调控的时空特征及其在生物学过程中的功能和意义。该技术为发育生物学、免疫学、医学以及农业等领域的研究提供了前所未有的帮助,为理解细胞分化、农作物发育等关键过程提供了支撑。详细介绍了空间转录组技术的发展进程、数据分析及其在医学以及农业领域中的主要应用,提出了该领域所存在的问题并对未来发展趋势进行展望。
中图分类号:
陈永孜, 王化, 王维轩. 空间转录组学的发展及其应用进展[J]. 中国农业科技导报, 2024, 26(11): 23-31.
Yongzi CHEN, Hua WANG, Weixuan WANG. Development of Spatial Transcriptomics and Its Applications[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 23-31.
技术 Technique | 原理 Principle | 特点 Characteristics | 局限性 Limitation |
---|---|---|---|
原位杂交 In situ hybridization (ISH) | 互补核酸探针结合检测RNA Complementary nucleic acid probes for RNA detection | 细胞水平的空间信息,适用于特定基因的定位 Spatial information at the cellular level, suitable for locating specific genes | 有限的多路复用能力,可能灵敏度较低 Limited multiplexing capability, which may result in lower sensitivity |
空间转录组技术 Spatial transcriptomics (ST) | 带有空间坐标的基质或芯片 Matrix or chip with spatial coordinates | 提供整个组织区域的转录组数据,揭示基因的空间分布模式 Provides transcriptomic data across entire tissue regions, revealing spatial distribution | 可能存在可伸缩性问题和潜在的空间分辨率限制 Potential scalability issues and possible limitations in spatial resolution |
原位测序 In situ sequencing (ISS) | 合成测序在组织中进行 Synthetic sequencing conducted within tissues | 具有单细胞分辨率和多路复用的能力,适用于复杂样本 Offers single-cell resolution and multiplexing capabilities, suitable for complex samples | 与测序错误和优化相关的技术难题 Technical challenges related to sequencing errors and optimization |
带有空间条形码的单细胞RNA测序 scRNA-seq with spatial barcoding | 单细胞RNA测序与带有空间条形码的技术相结合 Single-cell RNA sequencing combined with spatial barcoding technologies | 同时获得单细胞和空间信息,揭示细胞异质性的空间分布 Acquiring single-cell and spatial data to reveal cellular heterogeneity | 数据集成的复杂性和潜在的空间分辨率损失 Complexity in data integration and potential loss of spatial resolution |
带条形码的原位杂交 FISH with barcoding | FISH与条形码技术相结合 Combines FISH with barcoding technology | 提供直观的多目标RNA成像,适用于研究RNA在空间上的关系 Provides intuitive multi-target RNA imaging for studying spatial relationships of RNA | 可能存在可伸缩性问题和潜在的光漂白问题 May face scalability issues and potential photobleaching problems |
Slide-seq 技术 Slide-seq | RNA捕获的微滴和空间坐标标签 RNA capture with microdroplets and spatial coordinate labels | 对整个组织切片进行高通量的转录组学分析,提供细胞类型和空间信息 High-throughput transcriptomics of tissue sections, providing cell type and spatial data | 对数据分析和解释的计算需求较高 High computational demands for data analysis and interpretation |
Nanostring GeoMx 数字空间分析仪 Nanostring GeoMx digital spatial profiler | 基于芯片的数字化空间分析技术 Chip-based digital spatial analysis technology | 提供高度精准的定量信息,并允许在组织中进行多目标的高通量分析 Provides highly accurate quantitative information and enables multi-target high-throughput analysis in tissues | 有关芯片设计和性能的 限制 Constraints related to chip design and performance |
激光捕获微切片 (LCM) 结合 RNA 测序 Laser capture microdissection (LCM) combined with RNA sequencing | 激光捕获微切片中的特定细胞,然后进行RNA测序 Laser capture microdissection of specific cells followed by RNA sequencing | 可以选择性地获取特定细胞群体的转录组信息 Allows selective acquisition of transcriptomic information from specific cell populations | 样本处理可能导致RNA降解或污染 Sample handling may lead to RNA degradation or contamination |
表1 空间转录组学常用技术的特点及其局限性
Table 1 Characteristics and limitation of common technique in spatial transcriptomics
技术 Technique | 原理 Principle | 特点 Characteristics | 局限性 Limitation |
---|---|---|---|
原位杂交 In situ hybridization (ISH) | 互补核酸探针结合检测RNA Complementary nucleic acid probes for RNA detection | 细胞水平的空间信息,适用于特定基因的定位 Spatial information at the cellular level, suitable for locating specific genes | 有限的多路复用能力,可能灵敏度较低 Limited multiplexing capability, which may result in lower sensitivity |
空间转录组技术 Spatial transcriptomics (ST) | 带有空间坐标的基质或芯片 Matrix or chip with spatial coordinates | 提供整个组织区域的转录组数据,揭示基因的空间分布模式 Provides transcriptomic data across entire tissue regions, revealing spatial distribution | 可能存在可伸缩性问题和潜在的空间分辨率限制 Potential scalability issues and possible limitations in spatial resolution |
原位测序 In situ sequencing (ISS) | 合成测序在组织中进行 Synthetic sequencing conducted within tissues | 具有单细胞分辨率和多路复用的能力,适用于复杂样本 Offers single-cell resolution and multiplexing capabilities, suitable for complex samples | 与测序错误和优化相关的技术难题 Technical challenges related to sequencing errors and optimization |
带有空间条形码的单细胞RNA测序 scRNA-seq with spatial barcoding | 单细胞RNA测序与带有空间条形码的技术相结合 Single-cell RNA sequencing combined with spatial barcoding technologies | 同时获得单细胞和空间信息,揭示细胞异质性的空间分布 Acquiring single-cell and spatial data to reveal cellular heterogeneity | 数据集成的复杂性和潜在的空间分辨率损失 Complexity in data integration and potential loss of spatial resolution |
带条形码的原位杂交 FISH with barcoding | FISH与条形码技术相结合 Combines FISH with barcoding technology | 提供直观的多目标RNA成像,适用于研究RNA在空间上的关系 Provides intuitive multi-target RNA imaging for studying spatial relationships of RNA | 可能存在可伸缩性问题和潜在的光漂白问题 May face scalability issues and potential photobleaching problems |
Slide-seq 技术 Slide-seq | RNA捕获的微滴和空间坐标标签 RNA capture with microdroplets and spatial coordinate labels | 对整个组织切片进行高通量的转录组学分析,提供细胞类型和空间信息 High-throughput transcriptomics of tissue sections, providing cell type and spatial data | 对数据分析和解释的计算需求较高 High computational demands for data analysis and interpretation |
Nanostring GeoMx 数字空间分析仪 Nanostring GeoMx digital spatial profiler | 基于芯片的数字化空间分析技术 Chip-based digital spatial analysis technology | 提供高度精准的定量信息,并允许在组织中进行多目标的高通量分析 Provides highly accurate quantitative information and enables multi-target high-throughput analysis in tissues | 有关芯片设计和性能的 限制 Constraints related to chip design and performance |
激光捕获微切片 (LCM) 结合 RNA 测序 Laser capture microdissection (LCM) combined with RNA sequencing | 激光捕获微切片中的特定细胞,然后进行RNA测序 Laser capture microdissection of specific cells followed by RNA sequencing | 可以选择性地获取特定细胞群体的转录组信息 Allows selective acquisition of transcriptomic information from specific cell populations | 样本处理可能导致RNA降解或污染 Sample handling may lead to RNA degradation or contamination |
工具 Tool | 开发语言 Development language | 步骤 Procedure | 链接 Link |
---|---|---|---|
Seurat[ | R | 批量效应校正;降维与聚类;空间细胞类型注释;空间可变基因 Batch effect correction; dimensionality reduction and clustering; spatial cell type annotation; and spatially variable genes | https://github.com/satijalab/seurat |
Harmony[ | R | 批量效应校正 Batch effect correction | https://github.com/immunogenomics/harmony |
stLearn | Python | 降维与聚类;空间可变基因;空间轨迹 Dimensionality reduction and clustering; spatially variable genes; spatial trajectory | https://github.com/BiomedicalMachineLearning/stLearn |
cell2location[ | Python | 空间细胞类型注释;空间区域定位 Spatial cell type annotation; spatial region localization | https://github.com/BayraktarLab/cell2location/ |
Scanorama[ | Python | 批量效应校正 Batch effect correction | https://github.com/brianhie/scanorama |
scHOT[ | R | 基因-基因相互作用 Gene-gene interaction | https://bioconductor.org/packages/release/bioc/html/scHOT.html |
STUtility[ | R | 降维与聚类;空间可变基因;三维模型构建 Dimensionality reduction and clustering; spatially variable genes; 3D model construction | https://github.com/jbergenstrahle/STUtility |
表2 空间转录组学数据分析常用的工具包
Table 2 Tools commonly used for spatial transcriptomic data analysis
工具 Tool | 开发语言 Development language | 步骤 Procedure | 链接 Link |
---|---|---|---|
Seurat[ | R | 批量效应校正;降维与聚类;空间细胞类型注释;空间可变基因 Batch effect correction; dimensionality reduction and clustering; spatial cell type annotation; and spatially variable genes | https://github.com/satijalab/seurat |
Harmony[ | R | 批量效应校正 Batch effect correction | https://github.com/immunogenomics/harmony |
stLearn | Python | 降维与聚类;空间可变基因;空间轨迹 Dimensionality reduction and clustering; spatially variable genes; spatial trajectory | https://github.com/BiomedicalMachineLearning/stLearn |
cell2location[ | Python | 空间细胞类型注释;空间区域定位 Spatial cell type annotation; spatial region localization | https://github.com/BayraktarLab/cell2location/ |
Scanorama[ | Python | 批量效应校正 Batch effect correction | https://github.com/brianhie/scanorama |
scHOT[ | R | 基因-基因相互作用 Gene-gene interaction | https://bioconductor.org/packages/release/bioc/html/scHOT.html |
STUtility[ | R | 降维与聚类;空间可变基因;三维模型构建 Dimensionality reduction and clustering; spatially variable genes; 3D model construction | https://github.com/jbergenstrahle/STUtility |
1 | MOSES L, PACHTER L. Museum of spatial transcriptomics [J]. Nat. Methods, 2022,19(5):534-546. |
2 | CHEN S, LOPER J, CHEN X, et al.. BARcode DEmixing through non-negative spatial regression (BarDensr) [J/OL]. PLoS Comput. Biol., 2021,17(3):e1008256 [2024-08-29]. . |
3 | EICHENBERGER B T, ZHAN Y X, REMPFLER M, et al.. deepBlink:threshold-independent detection and localization of diffraction-limited spots [J]. Nucl. Acids Res., 2021,49(13):7292-7297. |
4 | PARTEL G, HILSCHER M M, MILLI G, et al.. Automated identification of the mouse brain’s spatial compartments from in situ sequencing data [J]. BMC Biol., 2020,18(1):144. |
5 | PARTEL G, WÄHLBY C. Spage2vec:unsupervised representation of localized spatial gene expression signatures [J]. FEBS J., 2021,288(6):1859-1870. |
6 | LITTMAN R, HEMMINGER Z, FOREMAN R, et al.. Joint cell segmentation and cell type annotation for spatial transcriptomics [J/OL]. Mol. Syst. Biol.,2021,17(6):e10108 [2024-08-29]. . |
7 | PARK J, CHOI W, TIESMEYER S, et al.. Cell segmentation-free inference of cell types from in situ transcriptomics data [J/OL]. Nat. Commun.,2021,12(1):3545 [2024-08-29]. . |
8 | LIU S L, PUNTHAMBAKER S, IYER E P R, et al.. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses [J/OL]. Nucl. Acids Res., 2021,49(10):e58 [2024-08-29]. . |
9 | HAO Y H, HAO S, ANDERSEN-NISSEN E, et al.. Integrated analysis of multimodal single-cell data [J]. Cell, 2021,184(13):3573-3587. |
10 | KORSUNSKY I, MILLARD N, FAN J, et al.. Fast,sensitive and accurate integration of single-cell data with Harmony [J]. Nat. Meth., 2019,16(12):1289-1296. |
11 | KLESHCHEVNIKOV V, SHMATKO A, DANN E, et al.. Cell2location maps fine-grained cell types in spatial transcriptomics [J]. Nat. Biotechnol., 2022,40(5):661-671. |
12 | HIE B, BRYSON B, BERGER B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama [J]. Nat. Biotechnol., 2019,37(6):685-691. |
13 | GHAZANFAR S, LIN Y X, SU X B, et al.. Investigating higher-order interactions in single-cell data with scHOT [J].Nat. Meth., 2020,17 (8):799-806. |
14 | BERGENSTRÅHLE J, LARSSON L, LUNDEBERG J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows [J/OL]. BMC Genom., 2020,21(1):482 [2024-08-29]. . |
15 | FAN Z, CHEN R S, CHEN X W. SpatialDB:a database for spatially resolved transcriptomes [J]. Nucl. Acids Res., 2020,48(D1):D233-D237. |
16 | XU Z C, WANG W W, YANG T,et al.. STOmicsDB:a comprehensive database for spatial transcriptomics data sharing, analysis and visualization [J].Nucl. Acids Res., 2024,52(D1):D1053-D1061. |
17 | REGEV A, TEICHMANN SA, LANDER ES, et al.. The human cell atlas [J/OL]. Elife, 2017, 6:e27041 [2024-08-29]. . |
18 | SHAH S, LUBECK E, ZHOU W, et al.. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus [J]. Neuron, 2016,92(2):342-357. |
19 | OVADIA S, CUI G, ELKON R, et al.. SWI/SNF complexes are required for retinal pigmented epithelium differentiation and for the inhibition of cell proliferation and neural differentiation programs [J/OL]. Development, 2023,150(16): dev201488 [2024-08-29]. . |
20 | WEITZ J, GARG B, MARTSINKOVSKIY A, et al.. Pancreatic ductal adenocarcinoma induces neural injury that promotes a transcriptomic and functional repair signature by peripheral neuroglia [J]. Oncogene, 2023,42(34):2536-2546. |
21 | FATEMI M Y, LU Y, SHARMA C,et al.. Feasibility of inferring spatial transcriptomics from single-cell histological patterns for studying colon cancer tumor heterogeneity [J/OL]. MedRxiv, 2023 [2024-08-29]. . |
22 | FIGIEL S, YIN W C, DOULTSINOS D, et al.. Spatial transcriptomic analysis of virtual prostate biopsy reveals confounding effect of tissue heterogeneity on genomic signatures [J/OL]. Mol. Cancer, 2023,22(1): 162 [2024-08-29]. . |
23 | FENG Y W, WANG S G, XIE J J, et al.. Spatial transcriptomics reveals heterogeneity of macrophages in the tumor microenvironment of granulomatous slack skin [J].J. Pathol., 2023,261(1):105-119. |
24 | LIU Y Q, LI N S, QI J,et al.. A hybrid machine learning and regression method for cell type deconvolution of spatial barcoding-based transcriptomic data [J/OL]. BioRxiv,2023 [2024-08-29]. . |
25 | LI Y W, LUO Y. STdGCN:spatial transcriptomic cell-type deconvolution using graph convolutional networks [J/OL]. Genome Biol., 2024,25(1):206 [2024-08-29]. . |
26 | ROBERTSON A G, MEGHANI K, COOLEY L F, et al.. Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer [J/OL]. Nat. Commun., 2023,14 (1): 2126 [2024-08-29].. |
27 | LARROQUETTE M, GUEGAN J P, BESSE B, et al.. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies [J/OL]. J. Immunother. Cancer,2022,10(5):e003890 [2024-08-29]. . |
28 | SONG X Y, XIONG A W, WU F Y, et al.. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody [J/OL]. J. Immunother. Cancer, 2023,11(2): e006234 [2024-08-29]. . |
29 | MOSQUERA M J, KIM S, BAREJA R,et al.. Extracellular matrix in synthetic hydrogel-based prostate cancer organoids regulate therapeutic response to EZH2 and DRD2 inhibitors [J/OL]. Adv. Mater., 2022,34(2): e2100096 [2024-08-29]. . |
30 | BARECHE Y, BUISSERET L, GRUOSSO T, et al.. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity:towards an optimized treatment approach [J]. J. Natl. Cancer Inst., 2020,112(7):708-719. |
31 | LIU G, HU Q F, PENG S G,et al.. The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment [J/OL]. Cancer Lett., 2024,581:216485 [2024-08-29].. |
32 | GIACOMELLO S, SALMÉN F, TEREBIENIEC B K, et al.. Spatially resolved transcriptome profiling in model plant species [J/OL]. Nat. Plants, 2017,3:17061 [2024-08-29]. . |
33 | YANG X L, POELMANS W, GRONES C,et al.. Spatial transcriptomics of a lycophyte root sheds light on root evolution [J]. Curr. Biol.,2023,33(19): 4069-4084. |
34 | FU Y X, XIAO W X, TIAN L, et al.. Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development [J/OL]. Nat. Commun.,2023,14 (1): 7191 [2024-08-29]. . |
35 | MORENO-VILLENA J J, ZHOU H, GILMAN I S, et al.. Spatial resolution of an integrated C4 +CAM photosynthetic metabolism [J/OL].Sci. Adv., 2022,8(31):eabn2349 [2024-08-29]. . |
36 | LIU Z J, KONG X Y, LONG Y P, et al.. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation [J]. Nat. Plants, 2023,9 (4): 515-524. |
37 | SAARENPÄÄ S, SHALEV O, ASHKENAZY H,et al.. Spatially resolved host-bacteria-fungi interactomes via spatial metatranscriptomics [J/OL]. BioRxiv,2022 [2024-08-29]. . |
38 | WALKER B L, CANG Z X, REN H L, et al.. Deciphering tissue structure and function using spatial transcriptomics [J/OL]. Commun. Biol., 2022, 5(1):220 [2024-08-29]. . |
39 | RAO A, BARKLEY D, FRANÇA G S, et al.. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021,596 (7871):211-220. |
40 | ARMINGOL E, OFFICER A, HARISMENDY O, et al.. Deciphering cell-cell interactions and communication from gene expression [J]. Nat. Rev. Genet., 2021,22(2):71-88. |
41 | TIAN L Y, CHEN F, MACOSKO E Z. The expanding vistas of spatial transcriptomics [J]. Nat. Biotechnol., 2023,41(6):773-782. |
[1] | 熊晓菲, 吴文茜, 霍洪彦, 张馨, 于艳, 安冬, 张同, 吴建伟. 基于传感器的农业温室数据直报系统与智能调控研究[J]. 中国农业科技导报, 2024, 26(7): 93-102. |
[2] | 徐杭, 宋浩, 樊高成, 黄淑坚, 罗玉子, 仇华吉. 单克隆抗体制备技术的研究现状[J]. 中国农业科技导报, 2024, 26(11): 210-224. |
[3] | 赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22. |
[4] | 曹子健, 邱艳红, 王爽, 赵娟, 郑素月, 乔广行, 秦文韬. 多重PCR技术在植物病原物检测中的应用[J]. 中国农业科技导报, 2023, 25(8): 216-224. |
[5] | 李星, 赵宁, 江勇, 王志秀, 陈国宏, 白皓, 常国斌. 传感器技术在现代家禽生产中的研究进展[J]. 中国农业科技导报, 2023, 25(7): 1-11. |
[6] | 苗丽青, 马旭辉, 李素贞, 陈茹梅, 柳小庆. 虾青素的生物合成与产业化应用[J]. 中国农业科技导报, 2023, 25(3): 21-29. |
[7] | 杨廷泽, 蒋祎, 王美晶, 胡中烜, 黄维兰, 吴立涛, 潘华, 张芳. 功能化介孔硅基纳米材料在农药领域中的应用[J]. 中国农业科技导报, 2023, 25(12): 121-137. |
[8] | 蔡阳扬, 陶秀萍, 李同, 尚斌, 宋建超, 刘璐. 天然高分子絮凝剂的制备及应用研究[J]. 中国农业科技导报, 2023, 25(10): 165-172. |
[9] | 王帅, 宋伟, 王荣焕, 赵久然. 我国玉米生物学研究进展[J]. 中国农业科技导报, 2022, 24(7): 23-31. |
[10] | 马俊桃, 周文, 李静浩, 景艺卓, 韩丹, 邵惠芳. 外源硒调控植物重金属胁迫机制的研究进展[J]. 中国农业科技导报, 2022, 24(6): 27-35. |
[11] | 许辉, 赵阳阳, 孙东岳, 柯媛媛, 张乐乐, 陈翔, 魏凤珍, 李金才. 稻虾共作模式研究进展[J]. 中国农业科技导报, 2022, 24(2): 160-168. |
[12] | 王文月, 米晓钰, 孙康泰, 戴翊超, 姚志鹏, 高元鹏, 刘军, 葛毅强, 张松梅, 邓小明, 张涌. 畜禽重要性状遗传调控机制与分子设计育种[J]. 中国农业科技导报, 2022, 24(12): 39-47. |
[13] | 张守攻. 林木重要性状形成的分子基础研究进展[J]. 中国农业科技导报, 2022, 24(12): 48-58. |
[14] | 胡婷婷, 王健康, 丁成伟, 郭荣良, 吴玉玲, 徐家安, 王友霜, 赵轶鹏, 何弯弯. 植物种子的发育调控研究进展[J]. 中国农业科技导报, 2021, 23(5): 27-34. |
[15] | 顾生浩, 卢宪菊, 王勇健, 郭新宇, . 数字孪生系统在农业生产中的应用探讨[J]. 中国农业科技导报, 2021, 23(10): 82-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||