中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (12): 121-137.DOI: 10.13304/j.nykjdb.2022.0652
• 动植物健康 • 上一篇
杨廷泽(), 蒋祎(
), 王美晶, 胡中烜, 黄维兰, 吴立涛, 潘华, 张芳(
)
收稿日期:
2022-08-09
接受日期:
2022-10-26
出版日期:
2023-12-15
发布日期:
2023-12-12
通讯作者:
张芳
作者简介:
杨廷泽 E-mail:tz17585595052@163.com基金资助:
Tingze YANG(), Yi JIANG(
), Meijing WANG, Zhongxuan HU, Weilan HUANG, Litao WU, Hua PAN, Fang ZHANG(
)
Received:
2022-08-09
Accepted:
2022-10-26
Online:
2023-12-15
Published:
2023-12-12
Contact:
Fang ZHANG
摘要:
随着纳米技术的快速发展,纳米材料因其尺寸小、结构特殊等特性给农业领域带来革命性的变化。介孔硅是一种孔径介于微孔与大孔之间的新型材料,对植物生长有促进作用,且具有良好的稳定性、可调控性和生物相容性。新型的多功能介孔硅基纳米递送体系可以增加农药有效利用率并延长持效性,减少农药流失,有效控制环境污染,对绿色农业的发展和保障人民安全具有重要意义。对介孔硅基纳米材料的分类、特性、表面功能化修饰与内部结构改造以及其在农业领域中的应用进行了归纳与总结,为今后介孔硅基纳米农药的规模化推广提供了理论依据。
中图分类号:
杨廷泽, 蒋祎, 王美晶, 胡中烜, 黄维兰, 吴立涛, 潘华, 张芳. 功能化介孔硅基纳米材料在农药领域中的应用[J]. 中国农业科技导报, 2023, 25(12): 121-137.
Tingze YANG, Yi JIANG, Meijing WANG, Zhongxuan HU, Weilan HUANG, Litao WU, Hua PAN, Fang ZHANG. Application of Functionalized Mesoporous Silica-based Nanomaterial in the Field of Pesticide[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 121-137.
材料 Matrerial | 相态结构 Phase structure | 孔径 Pore diameter/nm | 粒径Particle size/nm | 负载农药 Loaded pesticide | 表征参数 Characterization parameter | 生物活性 Bioactivity | |
---|---|---|---|---|---|---|---|
M41S系列 M41S series | MCM-41 | 二维六边形[ Two-dimensional hexagon[ | 2~10 | 80~120 | 烯啶虫胺Nitenpyram | Nit@MCM-41/HTCC载药量 最大为2.8%,有良好的 缓释性能。 Maximum drug loading of Nit@MCM-41/HTCC was 2.8%, with good sustained-release performance. | — |
MCM-48 | 三维立方[ Cubic[ | 2~4 | 120 | 吡虫啉Imidacloprid | — | ||
MCM-50 | 层状[ lamellar[ | 10~20 | — | — | — | — | |
SBA系列 SBA series | SBA-15 | 二维六方相[ Two-dimensional hexagon[ | 5~15 | — | 毒死蜱Chlorpyrifos | SBA-15对毒死蜱的吸附量为100 mg·g-1,Cu-SBA-15为 195 mg·g-1,增加了95%。 The sorption capacity of chlorpyrifos by SBA-15 and cu-SBA-15 were 100 mg·g-1 and 195 mg·g-1, respectively, which increased by 95% . | 较大幅度改善了毒死蜱的缓释性能。当pH为7时,药物释放相对最慢。 The sustained-release property of chlorpyrifos was greatly improved. When pH was 7, drug release was the slowest. |
SBA-16 | 立方相[ | 5~30 | — | — | — | — | |
FDU系列 FDU series | FDU-12 | 三维面心立方 结构[ | 10~50 | — | 啶酰菌胺Boscalid | Bos-FDU-12粒径为870.61 nm,颗粒状分布,载药量为22.44%,良好的热稳定性和 缓释性。 The particle size of Bos-fdu-12 was 870.61 nm and the drug loading was 22.44%. | 对立枯丝核菌有更强的抑制效果。 It had stronger inhibition effect on Rhizoctonia solani. |
MSU-n | 蠕虫状六方[ Wormholelike, hexagonal[ | 2~15 | — | — | — | — | |
MSNs | 球形,蜂窝状孔道Spherical, honeycomb-shaped channels | 2~50 | 68 | 唑菌胺酯Pyraclostrobine | Pyr@MSN 球形规则、粒径均匀(200 nm)、载药量高(38.9%)、抗紫外线能力强。 Pyr@MSN was characterized by regular spherical shape, uniform particle size (200nm), high drug loading (38.9%) and strong anti-ultraviolet ability. | 对禾谷镰刀菌的防治效果明显提高,防治期延长,对斑马鱼、 蚯蚓和BEAS-2B细胞毒性降低[ The control effect to Frium graminearum was obviously improved, the control period was prolonged, and the cytotoxicity to zebrafish, earthworm and BEAS-2B cells was reduced[ | |
咪鲜胺 Prochloraz | 平均尺寸70.89 nm,有良好的负载效率(30%质量分数)。Pro@MSN-Pec在水稻植株中具有更好的吸收和转运。The average size is 70.89 nm and the load efficiency is 30% W/W. Pro@MSN-PEC has better absorption and transport in rice plants. | Pro@MSN-Pec对稻瘟病具有更长的持续时间和更好的抗真菌活性。在不同水稻植物部位和土壤中积累的风险较低[ Pro@MSN-PEC had longer duration and better antifungal activity against rice blast. The risk of accumulation in different rice plant parts and soils was lower[ | |||||
HMSNs | 六方有序Hexagonal, hollow mesopore | 2~10 | 250 | 鱼藤酮 Rotenone | 粒径均一,分散性良好,比表面积达21.8 m2·g-1,孔容积0.16 cm3·g-1,孔径3.1 nm。载药率达到最大值为46.7%。 The particle size was uniform, the specific surface area was 21.8 m2·g-1, the pore volume was 0.16 cm3·g-1 and the pore diameter was 3.1 nm. The maximum drug loading rate was 46.7%. | 鱼藤酮的释放行为符合Fickian扩散和骨架的溶蚀共同作用的释放行为,能够提高鱼藤酮在黄瓜植株中的含量,并且向下传导的能力更强[ The release behavior of rotenone was consistent with that of Fickian diffusion and matrix erosion. It can increase the content of rotenone in cucumber plants and has a stronger ability to conduct down[ | |
BMMs | 双峰介孔 Bimodal mesoporous | 10~30 | 324 | 噻虫嗪 Thiamethoxam | 大小约为(891.7±4.9) nm,zeta 电位约为(-25.7±2.5) mV。负载率约为25.2%。优异的抗光解性能和储存稳定性。 The size is about (891.7±4.9) nm and the zeta potential is about (-25.7±2.5) mV. The load factor is about 25.2%. Excellent photolysis resistance and storage stability. | 在pH 10.0磷酸盐缓冲液中Thi的释放速率高于在pH 7.4和pH 3.0缓冲液中的释放率。P/Thi-NN-BMMs对桃蚜的相对毒性是商品Thi的1.44倍[ The release rate of Thi in pH 10.0 phosphate buffer was higher than that in pH 7.4 and pH 3.0 buffer. The relative toxicity of P/Thi-NN-BMMs to Myzus persicae was 1.44-fold higher than that of commercial Thi[ | |
咪鲜胺 Prochloraz | 球形结构,平均直径为(546.4±3.0) nm。Pro负载率为28.3%。具有良好的黏附性。紫外光稳定性,高温稳定性,Pro有效利用率提高。 The structure is spherical with an average diameter of (546.4±3.0) nm. The Pro load rate was 28.3%. Good adhesion. UV light stability, high temperature stability, Pro effective utilization increased. | 在酸性条件下实现了优异的pH/氧化还原双响应释放性能。纳米颗粒表现出抗真菌活性有效性,良性生物安全性[ The excellent pH/redox dual-response release performance was achieved under acidic conditions. Nanoparticles have demonstrated antifungal activity with efficacy and benign biosafety[ |
表1 不同硅基介孔材料的分类与特性 (续表Continued)
Table 1 Characteristics of different silicon-based mesoporous materials
材料 Matrerial | 相态结构 Phase structure | 孔径 Pore diameter/nm | 粒径Particle size/nm | 负载农药 Loaded pesticide | 表征参数 Characterization parameter | 生物活性 Bioactivity | |
---|---|---|---|---|---|---|---|
M41S系列 M41S series | MCM-41 | 二维六边形[ Two-dimensional hexagon[ | 2~10 | 80~120 | 烯啶虫胺Nitenpyram | Nit@MCM-41/HTCC载药量 最大为2.8%,有良好的 缓释性能。 Maximum drug loading of Nit@MCM-41/HTCC was 2.8%, with good sustained-release performance. | — |
MCM-48 | 三维立方[ Cubic[ | 2~4 | 120 | 吡虫啉Imidacloprid | — | ||
MCM-50 | 层状[ lamellar[ | 10~20 | — | — | — | — | |
SBA系列 SBA series | SBA-15 | 二维六方相[ Two-dimensional hexagon[ | 5~15 | — | 毒死蜱Chlorpyrifos | SBA-15对毒死蜱的吸附量为100 mg·g-1,Cu-SBA-15为 195 mg·g-1,增加了95%。 The sorption capacity of chlorpyrifos by SBA-15 and cu-SBA-15 were 100 mg·g-1 and 195 mg·g-1, respectively, which increased by 95% . | 较大幅度改善了毒死蜱的缓释性能。当pH为7时,药物释放相对最慢。 The sustained-release property of chlorpyrifos was greatly improved. When pH was 7, drug release was the slowest. |
SBA-16 | 立方相[ | 5~30 | — | — | — | — | |
FDU系列 FDU series | FDU-12 | 三维面心立方 结构[ | 10~50 | — | 啶酰菌胺Boscalid | Bos-FDU-12粒径为870.61 nm,颗粒状分布,载药量为22.44%,良好的热稳定性和 缓释性。 The particle size of Bos-fdu-12 was 870.61 nm and the drug loading was 22.44%. | 对立枯丝核菌有更强的抑制效果。 It had stronger inhibition effect on Rhizoctonia solani. |
MSU-n | 蠕虫状六方[ Wormholelike, hexagonal[ | 2~15 | — | — | — | — | |
MSNs | 球形,蜂窝状孔道Spherical, honeycomb-shaped channels | 2~50 | 68 | 唑菌胺酯Pyraclostrobine | Pyr@MSN 球形规则、粒径均匀(200 nm)、载药量高(38.9%)、抗紫外线能力强。 Pyr@MSN was characterized by regular spherical shape, uniform particle size (200nm), high drug loading (38.9%) and strong anti-ultraviolet ability. | 对禾谷镰刀菌的防治效果明显提高,防治期延长,对斑马鱼、 蚯蚓和BEAS-2B细胞毒性降低[ The control effect to Frium graminearum was obviously improved, the control period was prolonged, and the cytotoxicity to zebrafish, earthworm and BEAS-2B cells was reduced[ | |
咪鲜胺 Prochloraz | 平均尺寸70.89 nm,有良好的负载效率(30%质量分数)。Pro@MSN-Pec在水稻植株中具有更好的吸收和转运。The average size is 70.89 nm and the load efficiency is 30% W/W. Pro@MSN-PEC has better absorption and transport in rice plants. | Pro@MSN-Pec对稻瘟病具有更长的持续时间和更好的抗真菌活性。在不同水稻植物部位和土壤中积累的风险较低[ Pro@MSN-PEC had longer duration and better antifungal activity against rice blast. The risk of accumulation in different rice plant parts and soils was lower[ | |||||
HMSNs | 六方有序Hexagonal, hollow mesopore | 2~10 | 250 | 鱼藤酮 Rotenone | 粒径均一,分散性良好,比表面积达21.8 m2·g-1,孔容积0.16 cm3·g-1,孔径3.1 nm。载药率达到最大值为46.7%。 The particle size was uniform, the specific surface area was 21.8 m2·g-1, the pore volume was 0.16 cm3·g-1 and the pore diameter was 3.1 nm. The maximum drug loading rate was 46.7%. | 鱼藤酮的释放行为符合Fickian扩散和骨架的溶蚀共同作用的释放行为,能够提高鱼藤酮在黄瓜植株中的含量,并且向下传导的能力更强[ The release behavior of rotenone was consistent with that of Fickian diffusion and matrix erosion. It can increase the content of rotenone in cucumber plants and has a stronger ability to conduct down[ | |
BMMs | 双峰介孔 Bimodal mesoporous | 10~30 | 324 | 噻虫嗪 Thiamethoxam | 大小约为(891.7±4.9) nm,zeta 电位约为(-25.7±2.5) mV。负载率约为25.2%。优异的抗光解性能和储存稳定性。 The size is about (891.7±4.9) nm and the zeta potential is about (-25.7±2.5) mV. The load factor is about 25.2%. Excellent photolysis resistance and storage stability. | 在pH 10.0磷酸盐缓冲液中Thi的释放速率高于在pH 7.4和pH 3.0缓冲液中的释放率。P/Thi-NN-BMMs对桃蚜的相对毒性是商品Thi的1.44倍[ The release rate of Thi in pH 10.0 phosphate buffer was higher than that in pH 7.4 and pH 3.0 buffer. The relative toxicity of P/Thi-NN-BMMs to Myzus persicae was 1.44-fold higher than that of commercial Thi[ | |
咪鲜胺 Prochloraz | 球形结构,平均直径为(546.4±3.0) nm。Pro负载率为28.3%。具有良好的黏附性。紫外光稳定性,高温稳定性,Pro有效利用率提高。 The structure is spherical with an average diameter of (546.4±3.0) nm. The Pro load rate was 28.3%. Good adhesion. UV light stability, high temperature stability, Pro effective utilization increased. | 在酸性条件下实现了优异的pH/氧化还原双响应释放性能。纳米颗粒表现出抗真菌活性有效性,良性生物安全性[ The excellent pH/redox dual-response release performance was achieved under acidic conditions. Nanoparticles have demonstrated antifungal activity with efficacy and benign biosafety[ |
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 吡虫啉[ | SNHS | NH2 | pH=5 | 释放动力学曲线 呈现伪一级曲线 The release kinetics curve shows a pseudo first order curve | — | — | |
吡虫啉[ | BHSNs | — | — | 16.10% | 83% (60 h) | — | — | |
大豆蛋白酶 机制剂[ | Si20Nps/Si100Nps | APTES | — | 80% | 60%(Si20APT-STI), 50%(Si1000APT-STI50%) | 棉铃虫幼虫 Bollworm larvae | 8天后,试验组(Si20及Si100)明显低于对照组18%。 After 8 d, the experimental group (Si20 and Si100) was significantly lower than the control group by 18%. | |
阿维菌素[ | MSNs | -S-S-,-COOH | — | 9.30% | 51.3%(Glu, 8 mmol·L-1,7 d), 72.2%(α-amylase,7 d) | 小菜蛾幼虫 Diamondback moth larvae | 对于小菜蛾的抑制效果的持效期明显高于对照组(12 d,抑制率70%,对照组仅为26.67%)。 The persistence period of the inhibitory effect of the experimental group on diamondback moth was significantly higher than that of the control group (at 12 d, the inhibition rate was 70%, and that of the control group was reduce 26.67%). | |
二嗪磷[ | 亲水性纳米硅 Hydrophilic nano silica | — | — | — | — | 滨海 夜蛾幼虫 Spodoptera larvae | 试验组对滨海夜蛾虫蛹的孵化率低于对照组30%左右。 The hatching rate of Spodoptera littoralis pupae in the experimental group was about 30% lower than that in the control group. |
表2 介孔硅基纳米材料在农药领域的应用
Table 2 Application of silica-based nanomaterials in pesticides
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 吡虫啉[ | SNHS | NH2 | pH=5 | 释放动力学曲线 呈现伪一级曲线 The release kinetics curve shows a pseudo first order curve | — | — | |
吡虫啉[ | BHSNs | — | — | 16.10% | 83% (60 h) | — | — | |
大豆蛋白酶 机制剂[ | Si20Nps/Si100Nps | APTES | — | 80% | 60%(Si20APT-STI), 50%(Si1000APT-STI50%) | 棉铃虫幼虫 Bollworm larvae | 8天后,试验组(Si20及Si100)明显低于对照组18%。 After 8 d, the experimental group (Si20 and Si100) was significantly lower than the control group by 18%. | |
阿维菌素[ | MSNs | -S-S-,-COOH | — | 9.30% | 51.3%(Glu, 8 mmol·L-1,7 d), 72.2%(α-amylase,7 d) | 小菜蛾幼虫 Diamondback moth larvae | 对于小菜蛾的抑制效果的持效期明显高于对照组(12 d,抑制率70%,对照组仅为26.67%)。 The persistence period of the inhibitory effect of the experimental group on diamondback moth was significantly higher than that of the control group (at 12 d, the inhibition rate was 70%, and that of the control group was reduce 26.67%). | |
二嗪磷[ | 亲水性纳米硅 Hydrophilic nano silica | — | — | — | — | 滨海 夜蛾幼虫 Spodoptera larvae | 试验组对滨海夜蛾虫蛹的孵化率低于对照组30%左右。 The hatching rate of Spodoptera littoralis pupae in the experimental group was about 30% lower than that in the control group. |
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 柠檬醛二醇物[ | MeSiNps | 富氮化修饰Nitrogen-rich modification | — | 19% | 药物释放遵循Fickian扩散 Drug release follows Fickian diffusion | — | — |
氯虫苯甲酰胺[ | HMS | 酶促响应 控释制剂(CRF)Enzymatically responsive controlled release formulation (CRF) | α-淀粉酶 α-amylase | — | 42.47%(α-amylase,18 d) | 小菜蛾幼虫 Diamondback moth larvae | 试验组能延长药物的有效性半衰期,而不会对环境造成任何危害压力。(25 d,抑制率57.66%; 30 d,抑制率30%) The experimental group was able to prolong the half-life of the drug’s effectiveness without causing any harmful stress to the environment. (25 d, the inhibition rate was 57.66%; 30 d, the inhibition rate was 30%) | |
阿维霉素[ | HMS | P(GMA-AA) | 碱性条件 Alkaline condition | 33% | 39%(pH=10,5 h), 87%(pH=10,15 d) | 水稻稻纵卷 叶螟幼虫 Rice leaf roller larvae | 碱性条件触发释放特性,不仅对试验幼虫具有速效作用,而且对害虫的防治时间可达21 d以上。 The alkaline condition triggers the release characteristic, which not only has a quick-acting effect on the experimental larvae, but also can control the pests for more than 21 d. | |
辣椒蛋白酶抑制剂(CanPI-13)[ | SiO2Nps | — | pH=10 | — | 62%(pH=7),56%(pH=10) | 棉铃虫幼虫 Bollworm larvae | 试验组对幼虫的变态有延缓作用,并且能达到50%的抑制率。 The experimental group has a delaying effect on the metamorphosis of larvae, and can achieve 50% inhibition rate. |
表2 介孔硅基纳米材料在农药领域的应用 (续表Continued)
Table 2 Application of silica-based nanomaterials in pesticides
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 柠檬醛二醇物[ | MeSiNps | 富氮化修饰Nitrogen-rich modification | — | 19% | 药物释放遵循Fickian扩散 Drug release follows Fickian diffusion | — | — |
氯虫苯甲酰胺[ | HMS | 酶促响应 控释制剂(CRF)Enzymatically responsive controlled release formulation (CRF) | α-淀粉酶 α-amylase | — | 42.47%(α-amylase,18 d) | 小菜蛾幼虫 Diamondback moth larvae | 试验组能延长药物的有效性半衰期,而不会对环境造成任何危害压力。(25 d,抑制率57.66%; 30 d,抑制率30%) The experimental group was able to prolong the half-life of the drug’s effectiveness without causing any harmful stress to the environment. (25 d, the inhibition rate was 57.66%; 30 d, the inhibition rate was 30%) | |
阿维霉素[ | HMS | P(GMA-AA) | 碱性条件 Alkaline condition | 33% | 39%(pH=10,5 h), 87%(pH=10,15 d) | 水稻稻纵卷 叶螟幼虫 Rice leaf roller larvae | 碱性条件触发释放特性,不仅对试验幼虫具有速效作用,而且对害虫的防治时间可达21 d以上。 The alkaline condition triggers the release characteristic, which not only has a quick-acting effect on the experimental larvae, but also can control the pests for more than 21 d. | |
辣椒蛋白酶抑制剂(CanPI-13)[ | SiO2Nps | — | pH=10 | — | 62%(pH=7),56%(pH=10) | 棉铃虫幼虫 Bollworm larvae | 试验组对幼虫的变态有延缓作用,并且能达到50%的抑制率。 The experimental group has a delaying effect on the metamorphosis of larvae, and can achieve 50% inhibition rate. |
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 噻虫嗪[ Thiazine[ | HMS | P(NIPAMMAA) | 28、31、34 ℃ | — | 25.03%(28 ℃,14 d)、39.77%(31 ℃,14 d)、50.39%(34 ℃,14 d) | 褐飞虱 Brown planthopper | 高温下(31、34 ℃)对于褐飞虱的抑制率高于低温(28 ℃),且持效期更长。 The inhibition rate of N. lugens at high temperature (31, 34 ℃) was higher than that at low temperature (28 ℃), and the duration of effect was longer. |
氟虫腈[ Fipronil[ | 油核二氧化硅壳纳米胶囊 Oil core silica shell nanocapsules | — | — | 70% | 40.7%(142 h,d=8 nm) | 白蚁 Termite | 试验组的持续释放特性能确保氟虫腈持续暴露于群落中的白蚁,直至群落死亡率达到100%。 The sustained release characteristics of the experimental group ensured that fipronil was continuously exposed to termites in the colony until colony mortality reached 100%. | |
转基因杀虫蛋白Cry1Ab[ Transgenic insecticidal protein Cry1Ab[ | SiO2Nps | — | — | — | — | — | Cry1Ab蛋白吸附SiO2上不会造成该蛋白失活,从而影响到其杀虫性能。 Cry1Ab protein adsorption on SiO2 will not cause the protein inactivation, thus affecting its insecticidal performance | |
纳米杀菌剂 Nano fungicide | 咪酰胺[ | MSNs | 通过硅烷偶联剂将壳聚糖与MSNs交联 Crosslinking of Chitosan with MSNs via Silane Coupling Agents | pH=5,酯酶 pH=5, esterase | 25.40% | 63.22%(pH=5),82.54%(pH=5 酯酶) 63.22% (pH=5), 82.54% (pH=5 esterase) | 引起柑橘产生霉层的真菌 Fungi that cause moldy layers in citrus | 试验组对柑橘腐败的防治效果相当于咪酰胺原药,但是其急性毒性降低了6倍。 The control effect of the experimental group on citrus spoilage was equivalent to that of the original imidamide drug, but its acute toxicity was reduced by 6 times. |
表2 介孔硅基纳米材料在农药领域的应用 (续表Continued)
Table 2 Application of silica-based nanomaterials in pesticides
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀虫剂 Nano insecticide | 噻虫嗪[ Thiazine[ | HMS | P(NIPAMMAA) | 28、31、34 ℃ | — | 25.03%(28 ℃,14 d)、39.77%(31 ℃,14 d)、50.39%(34 ℃,14 d) | 褐飞虱 Brown planthopper | 高温下(31、34 ℃)对于褐飞虱的抑制率高于低温(28 ℃),且持效期更长。 The inhibition rate of N. lugens at high temperature (31, 34 ℃) was higher than that at low temperature (28 ℃), and the duration of effect was longer. |
氟虫腈[ Fipronil[ | 油核二氧化硅壳纳米胶囊 Oil core silica shell nanocapsules | — | — | 70% | 40.7%(142 h,d=8 nm) | 白蚁 Termite | 试验组的持续释放特性能确保氟虫腈持续暴露于群落中的白蚁,直至群落死亡率达到100%。 The sustained release characteristics of the experimental group ensured that fipronil was continuously exposed to termites in the colony until colony mortality reached 100%. | |
转基因杀虫蛋白Cry1Ab[ Transgenic insecticidal protein Cry1Ab[ | SiO2Nps | — | — | — | — | — | Cry1Ab蛋白吸附SiO2上不会造成该蛋白失活,从而影响到其杀虫性能。 Cry1Ab protein adsorption on SiO2 will not cause the protein inactivation, thus affecting its insecticidal performance | |
纳米杀菌剂 Nano fungicide | 咪酰胺[ | MSNs | 通过硅烷偶联剂将壳聚糖与MSNs交联 Crosslinking of Chitosan with MSNs via Silane Coupling Agents | pH=5,酯酶 pH=5, esterase | 25.40% | 63.22%(pH=5),82.54%(pH=5 酯酶) 63.22% (pH=5), 82.54% (pH=5 esterase) | 引起柑橘产生霉层的真菌 Fungi that cause moldy layers in citrus | 试验组对柑橘腐败的防治效果相当于咪酰胺原药,但是其急性毒性降低了6倍。 The control effect of the experimental group on citrus spoilage was equivalent to that of the original imidamide drug, but its acute toxicity was reduced by 6 times. |
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀菌剂 Nano fungicide | 春日霉素[ | SiO2Nps | -s-s-,果胶 Disulfide bonds, pectin | 果胶酶、谷胱甘肽 Pectinase, GSH | 20% | 68.87%(果胶酶,13 h),77.74%(GSH,33 h),88.32%(果胶酶+GSH,13 h) 68.87% (pectinase, 13 h), 77.74% (GSH, 33 h),88.32% (pectinase +GSH, 13 h) | 胡萝卜欧文氏菌 Erwinia carotovii | 试验组在低浓度(12.5 mg·L-1)时,在第21天的防治效果为52.29%,大约是原药的两倍。 At the low concentration (12.5 mg·L-1), the control effect of the experimental group on the 21st day was 52.29%, which was about twice that of the original drug. |
嘧霉胺[ | MSNs | — | — | — | 93% (pH 6.93, 80 h), 91% (pH 8.06, 80 h) | 引起黄瓜灰霉病的真菌 Fungus causing cucumber botrytis | 试验组在黄瓜叶片和根部的缓释性能良好,残留符合国际标准。 The slow-release performance of the experimental group on cucumber leaves and roots was good, and the residues met international standards. | |
脓菌素[ | MSNs | — | — | — | 40% (24 h), 85.13% (28 d) | 真菌Fungus | 弱碱性条件下表现出良好的稳定性,且能保持料号的杀菌效果。 It shows good stability under weak alkaline conditions, and can maintain the bactericidal effect of the material number. | |
己唑醇[ | BMMs | 偶氮苯 Azobenzene | UV(365nm) | 27.30% | 41.5% (UV 150 W,365 nm,6 h), 58.3% (UV 300 W, 365 nm, 6 h), 79.0% (UV 500 W, 365 nm, 6 h) | 立枯丝核菌Rhizoctonia solani | 试验组对立枯丝核菌的抗菌活性比己唑醇原药药效好、更持久。 The antibacterial activity of the experimental group against Rhizoctonia solani was better and more durable than that of the original drug of hexaconazole |
表2 介孔硅基纳米材料在农药领域的应用 (续表Continued)
Table 2 Application of silica-based nanomaterials in pesticides
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀菌剂 Nano fungicide | 春日霉素[ | SiO2Nps | -s-s-,果胶 Disulfide bonds, pectin | 果胶酶、谷胱甘肽 Pectinase, GSH | 20% | 68.87%(果胶酶,13 h),77.74%(GSH,33 h),88.32%(果胶酶+GSH,13 h) 68.87% (pectinase, 13 h), 77.74% (GSH, 33 h),88.32% (pectinase +GSH, 13 h) | 胡萝卜欧文氏菌 Erwinia carotovii | 试验组在低浓度(12.5 mg·L-1)时,在第21天的防治效果为52.29%,大约是原药的两倍。 At the low concentration (12.5 mg·L-1), the control effect of the experimental group on the 21st day was 52.29%, which was about twice that of the original drug. |
嘧霉胺[ | MSNs | — | — | — | 93% (pH 6.93, 80 h), 91% (pH 8.06, 80 h) | 引起黄瓜灰霉病的真菌 Fungus causing cucumber botrytis | 试验组在黄瓜叶片和根部的缓释性能良好,残留符合国际标准。 The slow-release performance of the experimental group on cucumber leaves and roots was good, and the residues met international standards. | |
脓菌素[ | MSNs | — | — | — | 40% (24 h), 85.13% (28 d) | 真菌Fungus | 弱碱性条件下表现出良好的稳定性,且能保持料号的杀菌效果。 It shows good stability under weak alkaline conditions, and can maintain the bactericidal effect of the material number. | |
己唑醇[ | BMMs | 偶氮苯 Azobenzene | UV(365nm) | 27.30% | 41.5% (UV 150 W,365 nm,6 h), 58.3% (UV 300 W, 365 nm, 6 h), 79.0% (UV 500 W, 365 nm, 6 h) | 立枯丝核菌Rhizoctonia solani | 试验组对立枯丝核菌的抗菌活性比己唑醇原药药效好、更持久。 The antibacterial activity of the experimental group against Rhizoctonia solani was better and more durable than that of the original drug of hexaconazole |
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀菌剂 Nano fungicide | 咪酰胺[ | BMMs | -s-s- | pH=4 | 28.30% | 41.4% (pH 4, 24 h), 64.9% (pH 4, 120 h) | 立枯丝核菌Rhizoctonia solani | 试验组比原药具有较好的机制效果,且染菌植物局部酸环境会促进咪酰胺的释放。 The experimental group had better mechanism effect than the original drug, and the acid environment of infected plants would promote the release of imidamide. |
纳米除草剂 Nano herbicide | 草甘膦[ | SBA-15 | — | — | — | 35% (pH 3, 30 s), 85% (pH 3, 5 min) | 杂草 Weed | 在水/土壤悬浮系统中证明了载体对草甘膦缓释的适用性(7 d后,载体仍含有10%~20%)。 A sufficient simulation in the water/soil system demonstrated the suitability of the carrier for sustained release of glyphosate in practical applications (after 7 d, the carrier still contained 10%~20%). |
表2 介孔硅基纳米材料在农药领域的应用 (续表Continued)
Table 2 Application of silica-based nanomaterials in pesticides
类型 Type | 农药 Pesticide | 硅基纳米载体 Silica-based nanocarrier | 修饰 Modification | 刺激条件 Stimulus condition | 载药率 Loading rate | 药物释放率 Release rate | 靶标 Target | 生物活性 Bioactivity |
---|---|---|---|---|---|---|---|---|
纳米杀菌剂 Nano fungicide | 咪酰胺[ | BMMs | -s-s- | pH=4 | 28.30% | 41.4% (pH 4, 24 h), 64.9% (pH 4, 120 h) | 立枯丝核菌Rhizoctonia solani | 试验组比原药具有较好的机制效果,且染菌植物局部酸环境会促进咪酰胺的释放。 The experimental group had better mechanism effect than the original drug, and the acid environment of infected plants would promote the release of imidamide. |
纳米除草剂 Nano herbicide | 草甘膦[ | SBA-15 | — | — | — | 35% (pH 3, 30 s), 85% (pH 3, 5 min) | 杂草 Weed | 在水/土壤悬浮系统中证明了载体对草甘膦缓释的适用性(7 d后,载体仍含有10%~20%)。 A sufficient simulation in the water/soil system demonstrated the suitability of the carrier for sustained release of glyphosate in practical applications (after 7 d, the carrier still contained 10%~20%). |
1 | 王琪.三种缓释型纳米农药的制备及特性研究[D].北京:北京工业大学,2019. |
WANG Q. Preparation and characterization of three sustained-release nano-pesticides [D]. Beijing: Beijing University of Technology, 2019. | |
2 | ISA K M, KYLE J M, BRENT H S. Acidic mesoporous silica for the catalytic conversion of fatty acids in beef tallow [J]. Ind. Eng. Chem. Res., 2006, 45(9):3022-3028. |
3 | KONG X P, ZHANG B H, WANG J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: a review [J]. J. Agric. Food Chem., 2021, 69(24):6735-6754. |
4 | RATURI G, SHARMA Y, RANA V, et al.. Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle [J]. Plant Physiol. Biochem., 2021, 166(9):827-838. |
5 | HAWERROTH C, ARAUJO L, BERMÚDEZ-CARDONA M B, et al.. Silicon-mediated maize resistance to macrospora leaf spot [J]. Trop Plant Pathol., 2019, 44(2):192-196. |
6 | GAUR S, KUMAR J, KUMAR D, et al.. Fascinating impact of silicon and silicon transporters in plants: a review [J/OL]. Ecotoxicol. Environ. Saf., 2020, 202:110885 [2022-07-03]. . |
7 | LUKACOVA Z, SVUBOVA R, JANIKOVICOVA S, et al.. Tobacco plants (Nicotiana bentham iana) were influenced by silicon and were not infected by dodder (Cuscuta europaea) [J]. Plant Physiol. Biochem., 2019, 139(2):179-190. |
8 | KUHLMANN F, MÜLLER C. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects [J]. Environ. Exp. Bot., 2009, 66(1):61-68. |
9 | SILVA R V, OLIVEIRA R D L, NASCIMENTO K J T, et al.. Biochemical responses of c offee resistance against Meloidogyne exigua mediated by silicon [J]. Plant Pathol., 2010, 59(3):586-593 |
10 | STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interface Sci., 1968, 26(1):62-69. |
11 | HAN Y D, LU Z Y, TENG Z G, et al.. Unraveling the growth mechanism of silica particles in the stöber method: in situ seeded growth model [J]. Langmuir, 2017, 33(23):5879-5890. |
12 | LIN H P, CHENG Y R, MOU C Y. Hierarchical order in hollow spheres of mesoporous silicates [J]. Chem. Mater., 1998, 10 (12):3772-3776. |
13 | ZHAO D Y, FENG J L, HUO Q S, et al.. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279 (5350):548-552. |
14 | PAN H, HUANG W L, WU L T, et al.. A pH dual-responsive multifunctional nanoparticle based on mesoporous silica with metal-polymethacrylic acid gatekeeper for improving plant protection and nutrition [J/OL]. Nanomaterials, 2022, 12(4):687 [2022-07-03]. . |
15 | YU T, ZHANG H, YAN X, et al.. Pore structures of ordered large cage-type mesoporous silica FDU-12s [J]. J. Phys. Chem. B 2006, 110(43):21467-21472. |
16 | BAGSHAW S A, PROUZET E, PINNAVAIA T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269:1242-1244. |
17 | SHAFIEI N, NASROLLAHZADEH M, IRAVANI S. Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications [J]. Comments Inorganic Chem., 2021, 41(6):317-372. |
18 | 张芳,王琪,白诗扬,等.基于氧化硅介孔材料的啶酰菌胺纳米农药制备及其性能评价[J].植物保护学报,2019,46(6):1335-1342. |
ZHANG F, WANG Q, BAI S Y, et al.. Preparation and evaluation of boscalid nanopesticide based on mesoporous silica [J]. J. Plant Prot., 2019, 46(6):1335-1342. | |
19 | 马国仙,钟庆东,鲁雄刚,等.HRP在大孔笼状介孔分子筛上的固定及直接电化学[J].物理化学学报,2009,25(10):2061-2067. |
MA G X, ZHONG Q D, LU X G, et al.. Immobilization and direct electrochemistry of horseradish peroxidase on large cagelike mesoporous silica FDU-12. [J]. Acta Physico-Chim. Sin., 2009, 25(10):2061-2067. | |
20 | 张嘉坤,黄啟良,吴雁.MCM-41介孔二氧化硅/季铵化壳聚糖载烯啶虫胺纳米颗粒的制备及缓释性能[J].农药学学报,2020,22(2):225-232. |
ZHANG J K, HUANG Q L, WU Y. Preparation and sustained-release performance of nitenpyram@MCM-41 mesoporous silica/HTCC nanoparticles. [J].Chin. J. Pesticide Sci., 2020, 22(2):225-232. | |
21 | POPAT A, LIU J, HU Q, et al.. Adsorption and release of biocides with mesoporous silica nanoparticles [J]. Nanoscale, 2012, 4(3):970-975. |
22 | 岳聪峰.介孔二氧化硅纳米粒子的制备、改性及应用[D].广州:华南理工大学,2012. |
YUE C F, Preparation, modification and application of mesoporous silica nanoparticles [D]. Guangzhou: South China University of Technology, 2012. | |
23 | 林粤顺,周红军,周新华,等.pH值响应性毒死蜱/铜席夫碱配合物改性SBA-15 的制备及缓释性能[J].无机化学学报,2017,33(3):446-454. |
LIN Y S. ZHOU H J, ZHOU X H,et al.. Preparation and properties of pH value-responsive sustained release system of chlorpyrifos/copper (Ⅱ) schiff base SBA-15 [J]. Chin. J. Inorganic Chem., 2017, 33(3):446-454. | |
24 | 廖玉霞,万晨露,余艺,等.介孔二氧化硅纳米材料在缓释递药系统中的研究进展[J].中国新药杂志,2019,28(7):804-809. |
LIAO Y X, WAN C L, YU Y, et al.. Research progress of mesoporous silica nanomaterials in drug sustained delivery system [J]. Chin. J. New Drugs, 2019, 28(7):804-809. | |
25 | 王炎,郑旭翰,姜兆华.有序介孔材料在生物医药领域中的应用[J].化学进展,2006(10):1345-1351. |
WANG Y, ZHENG X H, JIANG Z H, Ordered mesoporous materials for biology and medicine [J]. Progress Chem., 2006(10):1345-1351. | |
26 | YANG J, FENG J, HE K, et al.. Preparation of thermosensitive buprofezin‐loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control [J]. Pest Manag. Sci., 2021, 77(10):4627-4637. |
27 | ABDELRAHMAN T M, QIN X, LI D, et al.. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants [J/OL]. Chem. Eng. J., 2021, 404:126440 [2022-07-03]. . |
28 | 沈殿晶.两种介孔二氧化硅负载鱼藤酮的纳米颗粒的制备及其应用研究[D].扬州:扬州大学,2021. |
SHEN D J. Preparation and application of rotenone nanoparticles based on two types of mesoporous silica. [D]. Yangzhou: Yangzhou University, 2021. | |
29 | LI W J, WANG Q, ZHANG F, et al.. pH-sensitive thiamethoxam nanoparticles based on bimodal mesoporous silica for improving insecticidal efficiency [J/OL]. Royal Soc. Open Sci., 2021, 8(2):201967 [2023-07-03]. . |
30 | WU L T, PAN H, HUANG W L, et al.. pH and redox dual-responsive mesoporous silica nanoparticle as nanovehicle for improving fungicidal efficiency [J/OL]. Materials, 2022, 15(6):2207 [2022-03-17]. . |
31 | XU C, CAO L, ZHAO P, et al.. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release [J]. Chem. Eng. J., 2018, 348:244-254. |
32 | SONG Y H, LI Y H, XU Q, et al.. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook [J]. Int. J. Nanomedicine, 2017, Volume 12:87-110. |
33 | PAN H, LI W J, WU L T, et al.. β-cyclodextrin-modified mesoporous silica nanoparticles with photo-responsive gatekeepers for controlled release of hexaconazole [J]. Coatings, 2021, 11(12):1489-1495. |
34 | LIU D F, ZHANG H B, HERRANZ-BLANCO B, et al.. microfluidic assembly of monodisperse multistage ph-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery [J]. Small, 2014, 10(10):2029-2038. |
35 | 陈莎,彭海龙,熊华,等.温度响应性纳米介孔硅的制备、表征及其载药性能[J].南昌大学学报(工科版),2014,36(4):322-327. |
CHEN S, PENG H L, XIONG H, et al.. Temperature-responsive mesoporous silicon nanoparticles: Preparation, characterization and research of ability as drug carrier [J]. J. Nanchang Univ. (Eng.), 2014, 36(4):322-327. | |
36 | AL-KADY A S, GABER M, HUSSEIN M M, et al.. Nanostructure-loaded mesoporous silica for controlled release of coumarin derivatives: a novel testing of the hyperthermia effect [J]. Eur. J. Pharm Biopharm., 2011, 77(1):66-74. |
37 | KALHOR M M, RAFATI A A, RAFATI L, et al.. Synthesis, characterization and adsorption studies of amino functionalized silica nano hollow sphere as an efficient adsorbent for removal of imidacloprid pesticide [J]. J. Mol. Liq., 2018, 266:453-459. |
38 | GAO Y H, XIAO Y N, MAO K K, et al.. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery [J/OL]. Chem. Eng. J., 2020, 383:123169 [2023-07-03]. . |
39 | GAO Y H, YOU L, DONG H Q, et al.. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence [J]. ACS Sustain. Chem. Eng., 2020, 8(14):5716-5723. |
40 | LIANG Y, FAN C, DONG H Q, et al.. Preparation of MSNs-chitosan@prochloraz nanoparticles for reducing toxicity and improving release properties of prochloraz [J]. ACS Sustain. Chem. Eng., 2018, 6(8):10211-10220. |
41 | FINOTELLI P V, DA-SILVA D, SOLA-PENNa M, et al.. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin [J]. Colloids Surf. B, 2010, 81(1):206-211. |
42 | CHEN F, GUO M C, LIANG Y, et al.. Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin [J]. Carbohydr. Polym., 2017, 172(9):322-331. |
43 | YANG L P, KAZIEM A, LIN Y G, et al.. Carboxylated β-cyclodextrin anchored hollow mesoporous silica enhances insecticidal activity and reduces the toxicity of indoxacarb [J/OL]. Carbohydr. Polym., 2021, 266(9):118150 [2023-07-03]. . |
44 | YANG B W, YU C, SHI J L. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application [J]. Materials Sci. Eng. R Rep., 2019 137(7):66-105. |
45 | YANG B, SHI J. Defect engineering of mesoporous silica nanoparticles for biomedical applications [J]. Acc. Chem. Res., 2021, 2(8):581-593. |
46 | WU Z Y, LI L, CHEN X Q, et al.. Janus nanoarchitectures: From structural design to catalytic applications [J/OL]. NanoToday, 2018, 22:S1748013218301907 [2023-07-03]. . |
47 | LIU R, ZHANG H, LAL R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (lactuca sativa) seed germination: nanotoxicants or nanonutrients? [J]. Water Air Soil Pollut., 2016, 227(1):168-179. |
48 | NURUZZAMAN M, REN J, LIU Y, et al.. Hollow porous silica nanosphere with single large pore opening for pesticide loading and delivery [J]. ACS Appl. Nano Mater., 2020, 3(1):105-113. |
49 | BAPAT G, ZINJARDE S, TAMHANE V. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera [J/OL]. Colloids Surf. B, 2020, 193:111079 [2023-07-03]. . |
50 | LIANG Y, GAO Y H, WANG W C, et al.. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery [J/OL]. J. Hazard. Mater., 2020, 389:122075 [2023-07-03]. . |
51 | EL-HELALY A, EI-BANDARY H, ABDEL-WAHAB A, et al.. The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae[J]. J. Entomol. Zool. Stud., 2016, 4(1):175-180. |
52 | PLOHL O, GYERGYEK S, ZEMLJIČ L F. Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides [J/OL]. Microporous Mesoporous Mater., 2021, 310:110663 [2023-07-03]. . |
53 | KAZIEM A E, GAO Y, HE S, et al.. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release [J]. J. Agric. Food Chem., 2017, 65(36):7854-7864. |
54 | GAO Y H, ZHANG Y H, HE S, et al.. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide [J]. Chem. Eng. J., 2019, 364(9):361-369. |
55 | KHANDELWAL N, DOKE D S, KHANDARE J J, et al.. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres [J]. Colloids Surf. B, 2015, 130(3):84-92. |
56 | WIBOWO D, ZHAO C, PETERS B C, et al.. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules [J]. J. Agric. Food Chem., 2014, 62(52):12504-12511. |
57 | MADLIGER M, GASSER C A, SCHWARZENBACH R P, et al.. Adsorption of transgenic insecticidal cry1ab protein to silica particles. effects on transport and bioactivity [J]. Environ. Sci. Technol.,2011, 45(10):4377-4384. |
58 | ZHAO P Y, CAO L D, MA D K, et al.. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants [J/OL]. Molecules, 2017, 22(5):817 [2023-07-03]. . |
59 | CHEN J, WANG W, XU Y Q, et al.. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica [J]. J. Agric. Food Chem., 2011, 59(1):307-311. |
60 | RIVOIRA L, FRASSATI S, CORDOLA S, et al.. Encapsulation of the glyphosate herbicide in mesoporous and soil-affine sorbents for its prolonged release [J/OL]. Chem. Eng. J., 2022, 431:134225 [2022-07-10]. . |
61 | BAI L L, GAO Y, JIA Z H, et al.. Detection of pesticide residues based on a porous silicon optical biosensor with a quantum dot fluorescence label [J]. IEEE Sens. J., 2021, 21(19):21441-21449. |
62 | ZHAO P Y, CAO L D, MA D K, et al.. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants [J]. Molecules, 2017, 22(5):817-829. |
[1] | 赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22. |
[2] | 曹子健, 邱艳红, 王爽, 赵娟, 郑素月, 乔广行, 秦文韬. 多重PCR技术在植物病原物检测中的应用[J]. 中国农业科技导报, 2023, 25(8): 216-224. |
[3] | 李星, 赵宁, 江勇, 王志秀, 陈国宏, 白皓, 常国斌. 传感器技术在现代家禽生产中的研究进展[J]. 中国农业科技导报, 2023, 25(7): 1-11. |
[4] | 苗丽青, 马旭辉, 李素贞, 陈茹梅, 柳小庆. 虾青素的生物合成与产业化应用[J]. 中国农业科技导报, 2023, 25(3): 21-29. |
[5] | 蔡阳扬, 陶秀萍, 李同, 尚斌, 宋建超, 刘璐. 天然高分子絮凝剂的制备及应用研究[J]. 中国农业科技导报, 2023, 25(10): 165-172. |
[6] | 颜志辉, 郑怀国, 王爱玲, 串丽敏, 赵静娟. “十三五”时期中国农业“药肥双减”效果分析[J]. 中国农业科技导报, 2022, 24(11): 159-170. |
[7] | 郭林宇, 周超, 宋欣欣, 高瑞刚, 崔素娟, 叶贵标. 我国农产品出口韩国受阻原因分析及对策建议[J]. 中国农业科技导报, 2022, 24(10): 14-22. |
[8] | 林卉,姜忠群,冒建华*. 人工湿地在农村生活污水处理中的应用及研究进展[J]. 中国农业科技导报, 2020, 22(5): 129-136. |
[9] | 陈天金1,任育锋2,柯小华1*. 中国与欧美农业科技创新体系对比研究[J]. 中国农业科技导报, 2020, 22(11): 1-10. |
[10] | 李传友1,窦硕2,熊波1,张莉1,李震1,滕飞1,刘京蕊1,杨烨1,陈玉梅1. 温室番茄不同生长期常温烟雾机的作业方式及参数研究[J]. 中国农业科技导报, 2020, 22(11): 87-94. |
[11] | 秦雨露1,孙晓红1,陶光灿1,2*. 我国食品安全追溯系统推广应用难点及对策研究[J]. 中国农业科技导报, 2020, 22(1): 1-11. |
[12] | 宋海潮1,2,徐幼林2*,郑加强2,代祥2. 旋动射流混药器螺旋弯曲收缩管螺距和分流器位置的模拟优化分析[J]. 中国农业科技导报, 2019, 21(9): 84-89. |
[13] | 刘洋1,王玮1,朱旭冉1,张佳笑1,刘媛1,2,王健1,2*. 马铃薯及土壤中烯酰吗啉的残留及消解动态研究[J]. 中国农业科技导报, 2019, 21(9): 104-110. |
[14] | 乔岩1,2,孙佳庆1,2,魏如倩2,刘越1,2,3*. GBS技术在植物中的研究进展[J]. 中国农业科技导报, 2019, 21(8): 47-55. |
[15] | 代快1,李江舟1*,蒲天燕1,计思贵1,张立猛1,张璐2,段淑辉3,孟军4,张翠萍1,樊苗苗5. 施用生物炭对3种烟用农药残留的影响[J]. 中国农业科技导报, 2019, 21(8): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||