中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (3): 83-94.DOI: 10.13304/j.nykjdb.2023.0667
邵鹏阳(), 沙玉柱, 刘秀(
), 陈国顺, 朱才业, 王继卿, 王翻兄, 陈小伟, 杨文鑫
收稿日期:
2023-09-06
接受日期:
2023-12-11
出版日期:
2025-03-15
发布日期:
2025-03-14
通讯作者:
刘秀
作者简介:
邵鹏阳 E-mail:shaopengyang666@163.com;
基金资助:
Pengyang SHAO(), Yuzhu SHA, Xiu LIU(
), Guoshun CHEN, Caiye ZHU, Jiqing WANG, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG
Received:
2023-09-06
Accepted:
2023-12-11
Online:
2025-03-15
Published:
2025-03-14
Contact:
Xiu LIU
摘要:
为了解黄芪饲料添加剂对早期断奶羔羊机体免疫、瘤胃发酵功能及瘤胃微生物菌群特征的影响,选择30只健康、体重相近(14.63±1.22 kg)的断奶羔羊(45日龄)开展饲喂试验。对照组饲喂基础日粮,黄芪组在饲喂基础日粮的基础上添加0.3%的黄芪添加剂。试验结束后对羔羊的体重、血清免疫球蛋白(immunoglobulin,Ig)含量、瘤胃微生物菌群特征及发酵参数进行测定分析。结果表明,黄芪组羔羊日增重高于对照组,但差异不显著;黄芪组血液的IgA和IgM含量显著高于对照组;黄芪组瘤胃中的挥发性脂肪酸(volatile fatty acids,VFAs)含量显著高于对照组,其中乙酸和丁酸含量差异极显著,且黄芪组的氨态氮(NH3-N)含量也极显著高于对照组。瘤胃微生物16S rRNA分析发现,黄芪组和对照组的微生物菌群特征存在显著差异,在门水平,拟杆菌门(Bacteroidetes)在黄芪组的相对丰度极显著高于对照组,而厚壁菌门(Firmicutes)在黄芪组的相对丰度极显著低于对照组;在属水平,普雷沃氏菌属(Prevotella)和琥珀酸菌属(Succiniclasticum)在黄芪组的相对丰度极显著高于对照组。微生物的基因与功能预测结果显示,能量代谢、多聚糖生物合成与代谢等通路在黄芪组显著富集。相关性分析发现,瘤胃微生物菌群与发酵产物VFAs、Ig间存在显著相关性。因此,黄芪作为饲料添加剂可增强羔羊机体免疫力,改善羔羊瘤胃微生物菌群结构,提高瘤胃发酵能力,从而缓解早期断奶羔羊的应激反应。
中图分类号:
邵鹏阳, 沙玉柱, 刘秀, 陈国顺, 朱才业, 王继卿, 王翻兄, 陈小伟, 杨文鑫. 黄芪饲料添加剂对羔羊生长性能、血清Ig和瘤胃发酵功能及微生物菌群特征的影响[J]. 中国农业科技导报, 2025, 27(3): 83-94.
Pengyang SHAO, Yuzhu SHA, Xiu LIU, Guoshun CHEN, Caiye ZHU, Jiqing WANG, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG. Effects of Astragalus Feed Additive on Growth Performance, Serum Ig, Rumen Fermentation and Microbiota of Lambs[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 83-94.
指标Index | 处理Treatment | |
---|---|---|
CK | HQ | |
初始体质量 Initial weight | 14.50±1.46 a | 14.75±1.81 a |
终末体质量 Final weight | 29.28±3.76 a | 30.43±4.71 a |
日增重Average daily gain | 0.25±0.05 a | 0.26±0.08 a |
表1 不同处理组早期断奶羔羊的生长性能
Table 1 Growth performance of early weaned lambs under different treatments
指标Index | 处理Treatment | |
---|---|---|
CK | HQ | |
初始体质量 Initial weight | 14.50±1.46 a | 14.75±1.81 a |
终末体质量 Final weight | 29.28±3.76 a | 30.43±4.71 a |
日增重Average daily gain | 0.25±0.05 a | 0.26±0.08 a |
指标Index | 处理Treatment | P值 P value | |
---|---|---|---|
CK | HQ | ||
IgA | 19.28±1.78 | 28.29±1.86 | 0.004 |
IgM | 6.07±1.58 | 9.11±0.60 | 0.035 |
IgG | 831.18±22.94 | 824.41±107.35 | 0.924 |
表2 不同处理组早期断奶羔羊血清的免疫球蛋白水平 (μg·mL-1)
Table 2 Serum Ig levels of early weaned lambs under different treatments
指标Index | 处理Treatment | P值 P value | |
---|---|---|---|
CK | HQ | ||
IgA | 19.28±1.78 | 28.29±1.86 | 0.004 |
IgM | 6.07±1.58 | 9.11±0.60 | 0.035 |
IgG | 831.18±22.94 | 824.41±107.35 | 0.924 |
指标Index | 处理Treatment | P 值 P value | |
---|---|---|---|
CK | HQ | ||
乙酸Acetic/(mmol·L-1) | 15.61±1.33 | 18.37±0.23 | 0.002 |
丙酸Propionic/(mmol·L-1) | 5.20±0.04 | 5.22±0.01 | 0.467 |
异丁酸Isobutyric/(mmol·L-1) | 0.81±0.02 | 0.78±0.04 | 0.103 |
丁酸Butyrate/(mmol·L-1) | 2.86±0.12 | 3.69±0.40 | 0.002 |
异戊酸Isovaleric/(mmol·L-1) | 1.05±0.06 | 0.94±0.04 | 0.012 |
戊酸Valeric/(mmol·L-1) | 0.71±0.01 | 0.72±0.06 | 0.757 |
总酸Total VFAs/(mmol·L-1) | 26.25±1.21 | 29.72±0.45 | 0.000 |
氨氮NH3-N/(mg·100 mL-1) | 16.25±2.48 | 20.31±0.94 | 0.009 |
表3 不同处理早期断奶羔羊瘤胃的VFAs及NH3-N含量
Table 3 Effect of Astragalus additive on rumen fermentation parameters of early weaned lambs
指标Index | 处理Treatment | P 值 P value | |
---|---|---|---|
CK | HQ | ||
乙酸Acetic/(mmol·L-1) | 15.61±1.33 | 18.37±0.23 | 0.002 |
丙酸Propionic/(mmol·L-1) | 5.20±0.04 | 5.22±0.01 | 0.467 |
异丁酸Isobutyric/(mmol·L-1) | 0.81±0.02 | 0.78±0.04 | 0.103 |
丁酸Butyrate/(mmol·L-1) | 2.86±0.12 | 3.69±0.40 | 0.002 |
异戊酸Isovaleric/(mmol·L-1) | 1.05±0.06 | 0.94±0.04 | 0.012 |
戊酸Valeric/(mmol·L-1) | 0.71±0.01 | 0.72±0.06 | 0.757 |
总酸Total VFAs/(mmol·L-1) | 26.25±1.21 | 29.72±0.45 | 0.000 |
氨氮NH3-N/(mg·100 mL-1) | 16.25±2.48 | 20.31±0.94 | 0.009 |
指标 Index | 处理Treatment | P 值 P value | |
---|---|---|---|
HQ | CK | ||
ACE指数ACE index | 765.88 | 763.22 | 0.648 |
Chao1指数Chao1 index | 768.90 | 766.06 | 0.648 |
Simpson指数Simpson index | 0.96 | 0.98 | 0.004 |
Shannon指数Shannon index | 7.00 | 7.26 | 0.001 |
表4 不同处理组微生物的Alpha多样性
Table 4 Alpha diversity of microorganism under different treatments
指标 Index | 处理Treatment | P 值 P value | |
---|---|---|---|
HQ | CK | ||
ACE指数ACE index | 765.88 | 763.22 | 0.648 |
Chao1指数Chao1 index | 768.90 | 766.06 | 0.648 |
Simpson指数Simpson index | 0.96 | 0.98 | 0.004 |
Shannon指数Shannon index | 7.00 | 7.26 | 0.001 |
图8 羔羊瘤胃微生物与瘤VFAs、免疫球蛋白的相关性分析注:*、**和***分别表示在P<0.05、P<0.01和P<0.001水平相关显著。
Fig. 8 Correlation analysis of rumen microbiota with VFAs and immunoglobulin in lambsNote: *, ** and *** indicate significant correlations at P<0.05, P<0.01 and P<0.001 levels, respectively.
1 | LI C, WANG W, LIU T, et al.. Effect of early weaning on the intestinal microbiota and expression of genes related to barrier function in lambs [J/OL]. Front. Microbiol., 2018, 9:1431 [2023-08-10]. . |
2 | GUO G Z, YANG W G, FAN C J, et al.. The effects of fucoidan as a dairy substitute on diarrhea rate and intestinal barrier function of the large intestine in weaned lambs [J/OL]. Front. Vet. Sci., 2022, 9:1007346 [2023-08-10]. . |
3 | MCCOARD S A, CRISTOBAL-CARBALLO O, KNOL F W, et al.. Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lambs [J/OL]. J. Anim. Sci., 2020, 98(1):skz356 [2023-08-10]. . |
4 | 杜海东,娜仁花.反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报,2023,54(5):1804-1814. |
DU H D, NA R H. Study on gastrointestinal epithelial barrier function and interaction withmicroorganisms in ruminants [J]. Acta. Vet. Zootechnica. Sin., 2023, 54(5):1804-1814. | |
5 | SHEN H, XU Z H, SHEN Z M, et al.. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers [J/OL]. Front. Physiol., 2019, 10:1305 [2023-08-10]. . |
6 | EDWARDS J E, MCEWAN N R, TRAVIS A J, et al.. 16S rDNA library-based analysis of ruminal bacterial diversity [J]. Antonie Van Leeuwenhoek, 2004, 86(3):263-281. |
7 | GENSOLLEN T, IYER S S, KASPER D L, et al.. How colonization by microbiota in early life shapes the immune system [J]. Science, 2016, 352(6285):539-544. |
8 | MIZRAHI I, WALLACE R J, MORAIS S. The rumen microbiome: balancing food security and environmental impacts [J]. Nat. Rev. Microbiol., 2021, 19(9):553-566. |
9 | JAMI E, WHITE B A, MIZRAHI I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency [J/OL]. PLoS One, 2014, 9(1):e85423 [2023-08-10]. . |
10 | LI C, ZHANG Q, WANG G X, et al.. The functional development of the rumen is influenced by weaning and associated with ruminal microbiota in lambs [J]. Anim. Biotechnol., 2022, 33(4):612-628. |
11 | MAO H L, ZHANG Y F, YUN Y, et al.. Weaning age affects the development of the ruminal bacterial and archaeal community in hu lambs during early life [J/OL]. Front. Microbiol., 2021, 12:636865 [2023-08-10]. . |
12 | CHENG C, YIN Y Y, BIAN G R. Effects of whole maize high-grain diet feeding on colonic fermentation and bacterial community in weaned lambs [J/OL]. Front. Microbiol., 2022, 13:1018284 [2023-08-10]. . |
13 | 杨芙蓉,张琴,孙成忠,等.蒙古黄芪潜在分布区预测的多模型比较[J].植物科学学报,2019,37(2):136-143. |
YANG F R, ZHANG Q, SUN C Z, et al.. Comparative evaluation of multiple models for predicting the potential distributionareas of Astragalus membranaceus var mongholicus [J]. Plant. Sci. J., 2019, 37(2):136-143. | |
14 | 张蔷,高文远,满淑丽.黄芪中有效成分药理活性的研究进展[J].中国中药杂志,2012,37(21):3203-3207. |
ZHANG Q, GAO W Y, MAN S L. Chemical composition and pharmacological activities of astragali radix [J]. China J. Chin. Mat. Med., 2012, 37(21):3203-3207. | |
15 | HAO X, WANG P, REN Y, et al.. Effects of Astragalus membranaceus roots supplementation on growth performance, serum antioxidant and immune response in finishing lambs [J]. Asian-Austr. J. Anim. Sci., 2020, 33(6):965-972. |
16 | YIN F G, LIU Y L, YIN Y L, et al.. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets [J]. Amino Acids, 2009, 37(2):263-270. |
17 | 李艺蔓.黄芪多糖和发酵麸皮多糖对肉羊生长性能、营养物质消化率及血液指标的影响[D].呼和浩特:内蒙古农业大学,2022. |
LI Y M. Effects of Astragalus polysaccharides and fermentedwheat branpolysaccharides on production performance, nutrient digestibilityand blood indexs of mutton sheep [D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
18 | ZHONG R Z, YU M, LIU H W, et al.. Effects of dietary Astragalus polysaccharide and Astragalus membranaceus root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs [J]. Anim. Feed. Sci. Technol., 2012, 174(1-2):60-67. |
19 | CHE D S, ADAMS S, WEI C, et al.. Effects of Astragalus membranaceus fiber on growth performance, digestibilitynutrient, compositionmicrobial, productionVFA, pHgut, and immunity of weaned pigs [J/OL]. Microbiologyopen, 2019, 8(5):e712 [2023-08-10]. . |
20 | 李娜,程贺平,柳调过,等.黄芪和板蓝根对湖寒杂交F1代育肥羊生产性能和免疫指标的影响[J].中国饲料,2021(21):48-52. |
LI N, CHENG H P, LIU D G, et al.. Effects of Astragalus membranaceus and Radix isatidis on performance and immune indexes of Huhan hybrid F1 sheep [J]. China Feed, 2021, 689(21):48-52. | |
21 | LIU X, SHA Y Z, DINGKAO R, et al.. Interactions between rumen microbes, vfas, and host genes regulate nutrient absorption and epithelial barrier function during cold season nutritional stress in Tibetan sheep [J/OL]. Front. Microbiol., 2020, 11:593062 [2023-08-10]. . |
22 | 冯宗慈,高民.通过比色测定瘤胃液氨氮含量方法的改进[J].畜牧与饲料科学,2010,31():37. |
23 | BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al.. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing [J]. Nat. Methods, 2013, 10(1):57-59. |
24 | WANG X J, DING L M, WEI H Y, et al.. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep [J/OL]. Animal, 2021, 15(1):100061 [2023-08-10]. . |
25 | ASCHENBACH J R, PENNER G B, STUMPFF F, et al.. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH [J]. J. Anim. Sci., 2011, 89(4):1092-1107. |
26 | BERGMAN E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species [J]. Physiol. Rev., 1990, 70(2):567-590. |
27 | GABEL G, ASCHENBACH J R, MULLER F. Transfer of energy substrates across the ruminal epithelium: implications and limitations [J]. Anim. Health. Res. Rev., 2002, 3(1):15-30. |
28 | REYNOLDS C K, KRISTENSEN N B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis [J]. J. Anim. Sci., 2008, 86(S14):293-305. |
29 | CANNON J P, DISHAW L J, HAIRE R N, et al.. Recognition of additional roles for immunoglobulin domains in immune function [J]. Semin. Immunol., 2010, 22(1):17-24. |
30 | SONG C J, GAN S Q, SHEN X Y. Effects of nano-copper poisoning on immune and antioxidant function in the Wumeng semi-fine wool sheep [J]. Biol. Trace. Elem. Res., 2020, 198(2):515-520. |
31 | KEYT B A, BALIGA R, SINCLAIR A M, et al.. Structure, function, and therapeutic use of igm antibodies [J/OL]. Antibodies (Basel), 2020, 9(4):53 [2023-08-10]. . |
32 | WANG Q Y, ZENG Y T, ZENG X L, et al.. Effects of dietary energy levels on rumen fermentation, gastrointestinal tract histology, and bacterial community diversity in fattening male hu lambs [J/OL]. Front. Microbiol., 2021, 12:695445 [2023-08-10]. |
33 | NAAS A E, MACKENZIE A K, MRAVEC J, et al.. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? [J]. mBio, 2014, 5(4):1401-1414. |
34 | RANSOM-JONES E, JONES D L, MCCARTHY A J, et al.. The Fibrobacteres: an important phylum of cellulose-degrading bacteria [J]. Microb. Ecol., 2012, 63(2):267-281. |
35 | HUANG C, GE F, YAO X X, et al.. Microbiome and metabolomics reveal the effects of different feeding systems on the growth and ruminal development of yaks [J/OL]. Front. Microbiol., 2021, 12:682989 [2023-08-10]. . |
36 | HOLMAN D B, GZYL K E. A meta-analysis of the bovine gastrointestinal tract microbiota [J/OL]. FEMS Microbiol. Ecol., 2019, 95(6): fiz072 [2023-08-10]. . |
37 | VAN GYLSWYK N O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism [J/OL]. Int. J. Syst. Bacteriol., 1995, 45(2):297 [2023-08-10]. . |
38 | AUFFRET M D, STEWART R D, DEWHURST R J, et al.. Identification of microbial genetic capacities and potential mechanisms within the rumen microbiome explaining differences in beef cattle feed efficiency [J/OL]. Front. Microbiol., 2020, 11:1229 [2023-08-10]. . |
39 | DAGHIO M, CIUCCI F, BUCCIONI A, et al.. Correlation of breed, growth performance, and rumen microbiota in two rustic cattle breeds reared under different conditions [J/OL]. Front. Microbiol., 2021, 12:652031 [2023-08-10]. . |
40 | WATERS J L, LEY R E. The human gut bacteria christensenellaceae are widespread, heritable, and associated with health [J/OL]. BMC Biol., 2019, 17(1):83 [2023-08-10]. . |
41 | MA J, ZHU Y Y, WANG Z S, et al.. Comparing the bacterial community in the gastrointestinal tracts between growth-retarded and normal yaks on the Qinghai-Tibetan plateau [J/OL]. Front. Microbiol., 2020, 11:600516 [2023-08-10]. . |
42 | 王文娟,孙冬岩,孙笑非.猪肠道微生物菌群及其与营养代谢的相互作用[J].饲料研究,2023,46(15):124-127. |
WANG W J, SUN D Y, SUN X F. Swine gut microbiota and its interaction with nutrient metabolism [J]. Feed Res., 2023, 46(15):124-127. | |
43 | WANG X J, HU C S, DING L M, et al.. Astragalus membranaceus alters rumen bacteria to enhance fiber digestion, improves antioxidant capacity and immunity indices of small intestinal mucosa, and enhances liver metabolites for energy synthesis in tibetan sheep [J/OL]. Animals (Basel), 2021, 11(11):3236 [2023-08-10]. . |
44 | LEE-SARWAR K A, LASKY-SU J, KELLY R S, et al.. Metabolome-microbiome crosstalk and human disease [J/OL]. Metabolites, 2020, 10(5):181 [2023-08-10]. . |
45 | ZHOU F, LIU B D, LIU X, et al.. The impact of microbiome and microbiota-derived sodium butyrate on Drosophila transcriptome and metabolome revealed by multi-omics analysis [J/OL]. Metabolites, 2021, 11(5):298 [2023-08-10]. . |
46 | REN Z, YAO R, LIU Q, et al.. Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats [J/OL]. PLoS One, 2019, 14(8):e221815 [2023-08-10]. . |
47 | VITAL M, HOWE A C, TIEDJE J M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data [J/OL]. mBio, 2014, 5(2):e889 [2023-08-10]. . |
48 | TAKEUCHI T, MIYAUCHI E, KANAYA T, et al.. Acetate differentially regulates IgA reactivity to commensal bacteria [J]. Nature, 2021, 595(7868):560-564. |
49 | DONALDSON G P, LADINSKY M S, YU K B, et al.. Gut microbiota utilize immunoglobulin A for mucosal colonization [J]. Science, 2018, 360(6390):795-800. |
50 | SUN J, QI C, ZHU H L, et al.. IgA-targeted lactobacillus jensenii modulated gut barrier and microbiota in high-fat diet-fed mice [J/OL]. Front. Microbiol., 2019, 10:1179 [2023-08-10]. . |
[1] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[2] | 麻仲花, 陈娟, 吴娜, 满本菊, 王晓港, 者永清, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期光合特性与总生物量的影响[J]. 中国农业科技导报, 2023, 25(6): 190-200. |
[3] | 侯志雄, 井长青, 王公鑫, 郭文章, 赵苇康. 1998—2018年北疆天然草地植被覆盖度时空变化及其与气象因子的关系[J]. 中国农业科技导报, 2023, 25(2): 140-151. |
[4] | 王颖, 李珺, 马力通, 曹晓冰. 黄腐植酸对泥炭产甲烷的影响[J]. 中国农业科技导报, 2023, 25(1): 128-133. |
[5] | 郑锦锦1,2,刘帅1,陈岩1*,张欣1,2,杨慧1,刘香香1,王富华1,2*. 岭南地区荔枝主栽品种品质评价分析[J]. 中国农业科技导报, 2021, 23(4): 128-136. |
[6] | 郭佳晖, 白雄辉, 王爱东, 李瑞杰, 石晓鑫, 史勇峰, 李爱莲, 王西成, 王宏富, 郭杰. 黄淮北片冬麦区国家区试冬小麦品种抗寒性鉴定与评价[J]. 中国农业科技导报, 2021, 23(10): 25-34. |
[7] | 张永芳,高志慧,史鹏清,韩志平*. 基于不同大豆品种农艺性状及品质性状的适应性分析[J]. 中国农业科技导报, 2020, 22(8): 25-32. |
[8] | 张兴伟,陈超*,田姗,付琳. 基于机器学习的苹果始花期预测[J]. 中国农业科技导报, 2020, 22(10): 93-100. |
[9] | 朱茜1,林杰2*,张阳1. 经济林营建后基于137Cs示踪法的土壤侵蚀特征研究[J]. 中国农业科技导报, 2019, 21(6): 135-142. |
[10] | 徐峰1,索良喜1,孟海龙2,李桂红1,程凯2,张佳乐2,贾斌2,王冬雪2,相吉山2*. 不同来源谷子品种产量比较及综合评价[J]. 中国农业科技导报, 2018, 20(5): 100-110. |
[11] | 王淑芬1,王卫2*. 基于自组织特征映射神经网络技术的多维土壤数据分析[J]. 中国农业科技导报, 2018, 20(4): 61-71. |
[12] | 张天能1,王继卿1,谢文章2,苟占发2,胡江1,刘秀1,. 饲喂全价颗粒饲料对子午岭黑山羊生产性能的影响[J]. 中国农业科技导报, 2016, 18(4): 52-57. |
[13] | 田稼1,孙超1,杨明琰2,张晓琦1*. 黄土高原不同苹果园土壤酶、有机质、微生物及树体产量品质的调查研究[J]. , 2012, 14(5): 115-122. |
[14] | 杨芸菲,常亚青,丁君. 虾夷马粪海胆群体的遗传多样性及微卫星标记与生长性状的相关性分析[J]. , 2011, 13(4): 120-128. |
[15] | 薛薇1,崔江慧1,孙爱芹2,常金华1. 高粱可溶性糖含量与SS、SPS酶活性的相关性研究[J]. , 2009, 11(2): 124-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||