中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (4): 239-249.DOI: 10.13304/j.nykjdb.2023.0818
• 生物制造 资源生态 • 上一篇
刘文娟1(), 张世纪1, 陈宏伟2, 杨建军3, 韩兆敏4, 裴志永1(
)
收稿日期:
2023-11-08
接受日期:
2024-02-02
出版日期:
2025-04-15
发布日期:
2025-04-15
通讯作者:
裴志永
作者简介:
刘文娟 E-mail:liumux1998@126.com;
基金资助:
Wenjuan LIU1(), Shiji ZHANG1, Hongwei CHEN2, Jianjun YANG3, Zhaomin HAN4, Zhiyong PEI1(
)
Received:
2023-11-08
Accepted:
2024-02-02
Online:
2025-04-15
Published:
2025-04-15
Contact:
Zhiyong PEI
摘要:
为探究不同径级沙柳(Salix psammophila)的液流特征及其与环境因子的关系,采用植物液流仪(EMS62)对沙柳液流速率进行持续监测,同步采用小型气象站(HOBO U30)和水势传感器(TEROS 21)监测气象因子及土壤因子。结果表明,各径级沙柳液流速率的日变化均呈“单峰”型曲线。随着时间变化,>10 mm径级沙柳的液流速率呈先升后降趋势,≤10 mm径级沙柳的液流速率呈下降趋势,且液流启动与结束时间存在差异。晴天时沙柳的液流速率大于阴天,其中晴天液流的变化呈“单峰”型曲线;而雨天液流变化呈“单峰”或“双峰”型曲线。太阳辐射是影响沙柳液流变化的首要因子,且随着时间尺度的扩大,液流变化的解释率降低,影响因子的数量增多。综上,在生长季内,沙柳液流量随径级增大而增大,但不同径级液流变化存在差异。
中图分类号:
刘文娟, 张世纪, 陈宏伟, 杨建军, 韩兆敏, 裴志永. 不同径级沙柳液流特征及其对环境因子的响应[J]. 中国农业科技导报, 2025, 27(4): 239-249.
Wenjuan LIU, Shiji ZHANG, Hongwei CHEN, Jianjun YANG, Zhaomin HAN, Zhiyong PEI. Sap Flow Characteristics of Different Diameter Classes of Salix psammophila and Its Response to Environmental Factors[J]. Journal of Agricultural Science and Technology, 2025, 27(4): 239-249.
天气 Weather | 径级 Diameter class/mm | 回归方程Regression equation | 决定系数R2 | P值P value |
---|---|---|---|---|
晴天 Sunny day | 6<SD≤8 | Y=5.996+0.012R+1.148Vw-0.354Ta+0.794Ts+2.091VPD+0.057RH+0.365SWP | 0.793 | 0.000 |
8<SD≤10 | Y=11.647+0.022R+2.053Vw+2.264VPD+0.076RH | 0.888 | 0.000 | |
10<SD≤12 | Y=24.653+0.025R+0.49SWP | 0.884 | 0.000 | |
SD>12 | Y=22.4+0.041R+4.898Vw-0.609Ta+1.186Ts+0.842SWP | 0.868 | 0.000 | |
雨天 Rainy day | 6<SD≤8 | Y=-6.452+0.006R-0.246SWP+0.278RH+7.816VPD-0.3Ta-0.231Vw+0.222Ts | 0.710 | 0.000 |
8<SD≤10 | Y=2.308+0.012R+6.522VPD+0.187RH-0.583Vw-0.237SWP | 0.814 | 0.000 | |
10<SD≤12 | Y=-8.19+0.012R+16.092VPD+0.386RH-0.495Ta | 0.888 | 0.000 | |
SD>12 | Y=-20.393+0.018R+30.075VPD+0.812RH-1.284Ta | 0.761 | 0.000 |
表1 不同天气条件下液流量与气象因子的多元回归模型
Table 1 Multiple regression model of liquid flow and meteorological factors under different weather conditions
天气 Weather | 径级 Diameter class/mm | 回归方程Regression equation | 决定系数R2 | P值P value |
---|---|---|---|---|
晴天 Sunny day | 6<SD≤8 | Y=5.996+0.012R+1.148Vw-0.354Ta+0.794Ts+2.091VPD+0.057RH+0.365SWP | 0.793 | 0.000 |
8<SD≤10 | Y=11.647+0.022R+2.053Vw+2.264VPD+0.076RH | 0.888 | 0.000 | |
10<SD≤12 | Y=24.653+0.025R+0.49SWP | 0.884 | 0.000 | |
SD>12 | Y=22.4+0.041R+4.898Vw-0.609Ta+1.186Ts+0.842SWP | 0.868 | 0.000 | |
雨天 Rainy day | 6<SD≤8 | Y=-6.452+0.006R-0.246SWP+0.278RH+7.816VPD-0.3Ta-0.231Vw+0.222Ts | 0.710 | 0.000 |
8<SD≤10 | Y=2.308+0.012R+6.522VPD+0.187RH-0.583Vw-0.237SWP | 0.814 | 0.000 | |
10<SD≤12 | Y=-8.19+0.012R+16.092VPD+0.386RH-0.495Ta | 0.888 | 0.000 | |
SD>12 | Y=-20.393+0.018R+30.075VPD+0.812RH-1.284Ta | 0.761 | 0.000 |
图5 不同径级液流速率差异性注:不同小写字母表示不同径级间在P<0.05水平差异显著。
Fig. 5 Difference of liquid flow rate in different diameter classNote:Different lowercase letters indicate significant between different diameters classes at P<0.05 level.
径级 Diameter class/mm | 风速 Vw/(m·s-1) | 空气温度 Ta/℃ | 相对湿度 RH/% | 饱和水汽压差VPD | 太阳辐射 R/(W·m-2) | 土壤水势 SWP/KPa | 土壤温度 Ts/℃ |
---|---|---|---|---|---|---|---|
6<SD≤8 | 0.801** | 0.785** | -0.632** | 0.748** | 0.917** | 0.110 | -0.200 |
8<SD≤10 | 0.807** | 0.806** | -0.623** | 0.743** | 0.931** | 0121 | -0.191 |
10<SD≤12 | 0.840** | 0.812** | -0.653** | 0.776** | 0.945** | 0.120 | -0.199 |
SD>12 | 0.809** | 0.796** | -0.604** | 0.736** | 0.931** | 0.105 | -0.181 |
表2 沙柳液流日变化与环境因子的相关系数
Table 2 Correlation coefficient between daily variation of Salix psammophila sap flow and environmental factors
径级 Diameter class/mm | 风速 Vw/(m·s-1) | 空气温度 Ta/℃ | 相对湿度 RH/% | 饱和水汽压差VPD | 太阳辐射 R/(W·m-2) | 土壤水势 SWP/KPa | 土壤温度 Ts/℃ |
---|---|---|---|---|---|---|---|
6<SD≤8 | 0.801** | 0.785** | -0.632** | 0.748** | 0.917** | 0.110 | -0.200 |
8<SD≤10 | 0.807** | 0.806** | -0.623** | 0.743** | 0.931** | 0121 | -0.191 |
10<SD≤12 | 0.840** | 0.812** | -0.653** | 0.776** | 0.945** | 0.120 | -0.199 |
SD>12 | 0.809** | 0.796** | -0.604** | 0.736** | 0.931** | 0.105 | -0.181 |
径级 Diameter class/mm | 风速 Vw/(m·s-1) | 空气温度 Ta/℃ | 相对湿度 RH/% | 饱和水汽压差VPD | 太阳辐射 R/(W·m-2) | 土壤水势 SWP/KPa | 土壤温度 Ts/℃ |
---|---|---|---|---|---|---|---|
6<SD≤8 | 0.504** | 0.142 | -0.822** | 0.742** | 0.558** | 0.303** | -0.409** |
8<SD≤10 | 0.455** | 0.343** | -0.795** | 0.778** | 0.689** | 0.210* | -0.224* |
10<SD≤12 | 0.237** | 0.548** | -0.340** | 0.521** | 0.457** | 0.220* | 0.129 |
SD>12 | 0.358** | 0.555** | -0.480** | 0.638** | 0.518** | 0.260* | 0.051 |
表3 沙柳液流月变化与环境因子的相关系数
Table 3 Correlation coefficient between monthly sap flow change of Salix psammophila and environmental factors
径级 Diameter class/mm | 风速 Vw/(m·s-1) | 空气温度 Ta/℃ | 相对湿度 RH/% | 饱和水汽压差VPD | 太阳辐射 R/(W·m-2) | 土壤水势 SWP/KPa | 土壤温度 Ts/℃ |
---|---|---|---|---|---|---|---|
6<SD≤8 | 0.504** | 0.142 | -0.822** | 0.742** | 0.558** | 0.303** | -0.409** |
8<SD≤10 | 0.455** | 0.343** | -0.795** | 0.778** | 0.689** | 0.210* | -0.224* |
10<SD≤12 | 0.237** | 0.548** | -0.340** | 0.521** | 0.457** | 0.220* | 0.129 |
SD>12 | 0.358** | 0.555** | -0.480** | 0.638** | 0.518** | 0.260* | 0.051 |
图6 环境因子间的相关性分析注:对角线下方为月变化;对角线上方为日变化。*表示在P<0.05水平显著相关。
Fig.6 Correlation analysis of environmental factorsNote: The monthly variation is under the diagonal line;and the daily variation is above the diagonal line. * indicates significant correlation at P<0.05 level.
时间尺度 Time-scale | 径级 Diameter class/mm | 进入顺序Access order | 因子Factor | 回归方程Regression equation | 决定系数R2 |
---|---|---|---|---|---|
日变化 Daily variation | 6<SD≤8 | 1 | R | Y=1.958+0.039R | 0.841 |
2 | Ta | Y=-6.615+0.033R+0.456Ta | 0.856 | ||
8<SD≤10 | 1 | R | Y=1.665+0.049R | 0.867 | |
2 | Ta | Y=-10.399+0.041R+0.641Ta | 0.886 | ||
10<SD≤12 | 1 | R | Y=2.240+0.052R | 0.892 | |
2 | Ta | Y=-9.573+0.043R+0.628Ta | 0.909 | ||
SD>12 | 1 | R | Y=4.639+0.074R | 0.867 | |
2 | Ta | Y=-11.369+0.062R+0.851Ta | 0.882 | ||
月变化 Monthly variation | 6<SD≤8 | 1 | RH | Y=31.383-0.140RH | 0.676 |
2 | Ta | Y=31.543-0.136RH+0.046SWP | 0.701 | ||
8<SD≤10 | 1 | RH | Y=33.387-0.129RH | 0.633 | |
2 | Ta | Y=27.506-0.124RH+0.247Ta | 0.690 | ||
3 | VPD | Y=39.673-0.378RH-0.840Ta-9.224VPD | 0.763 | ||
4 | Ts | Y=44.430-0.367RH+1.220Ta-10.100VPD-0.617Ts | 0.794 | ||
5 | R | Y=40.225-0.330RH+1.080Ta-9.069VPD-0.497Ts+0.005R | 0.805 | ||
10<SD≤12 | 1 | Ta | Y=12.820+0.580Ta | 0.300 | |
2 | R | Y=10.368+0.518Ta+0.014R | 0.442 | ||
3 | Ts | Y=16.756+0.791Ta+0.009R-0.524Ts | 0.474 | ||
SD>12 | 1 | VPD | Y=33.798+5.281VPD | 0.406 | |
2 | RH | Y=12.612+12.088VPD+0.227RH | 0.508 | ||
3 | R | Y=3.063+12.181VPD+0.290RH+0.021R | 0.586 | ||
4 | Ts | Y=3.385+16.029VPD+0.428RH+0.020R-0.600Ts | 0.607 |
表4 液流速率与环境因子的回归分析
Table 4 Regression analysis of sap flow rate and environmental factors
时间尺度 Time-scale | 径级 Diameter class/mm | 进入顺序Access order | 因子Factor | 回归方程Regression equation | 决定系数R2 |
---|---|---|---|---|---|
日变化 Daily variation | 6<SD≤8 | 1 | R | Y=1.958+0.039R | 0.841 |
2 | Ta | Y=-6.615+0.033R+0.456Ta | 0.856 | ||
8<SD≤10 | 1 | R | Y=1.665+0.049R | 0.867 | |
2 | Ta | Y=-10.399+0.041R+0.641Ta | 0.886 | ||
10<SD≤12 | 1 | R | Y=2.240+0.052R | 0.892 | |
2 | Ta | Y=-9.573+0.043R+0.628Ta | 0.909 | ||
SD>12 | 1 | R | Y=4.639+0.074R | 0.867 | |
2 | Ta | Y=-11.369+0.062R+0.851Ta | 0.882 | ||
月变化 Monthly variation | 6<SD≤8 | 1 | RH | Y=31.383-0.140RH | 0.676 |
2 | Ta | Y=31.543-0.136RH+0.046SWP | 0.701 | ||
8<SD≤10 | 1 | RH | Y=33.387-0.129RH | 0.633 | |
2 | Ta | Y=27.506-0.124RH+0.247Ta | 0.690 | ||
3 | VPD | Y=39.673-0.378RH-0.840Ta-9.224VPD | 0.763 | ||
4 | Ts | Y=44.430-0.367RH+1.220Ta-10.100VPD-0.617Ts | 0.794 | ||
5 | R | Y=40.225-0.330RH+1.080Ta-9.069VPD-0.497Ts+0.005R | 0.805 | ||
10<SD≤12 | 1 | Ta | Y=12.820+0.580Ta | 0.300 | |
2 | R | Y=10.368+0.518Ta+0.014R | 0.442 | ||
3 | Ts | Y=16.756+0.791Ta+0.009R-0.524Ts | 0.474 | ||
SD>12 | 1 | VPD | Y=33.798+5.281VPD | 0.406 | |
2 | RH | Y=12.612+12.088VPD+0.227RH | 0.508 | ||
3 | R | Y=3.063+12.181VPD+0.290RH+0.021R | 0.586 | ||
4 | Ts | Y=3.385+16.029VPD+0.428RH+0.020R-0.600Ts | 0.607 |
1 | GRANIER A. Sap flow measurements in Douglas fir tree trunks by means of a new thermal method [J]. Anna. For. Sci., 1987, 44(1):1-14. |
2 | WULLSCHLEGER A D. A review of whole-plant use studies in tree [J]. Tree Physiol., 1998, 18(8/9):499-512. |
3 | 汪滢,王健.植物液流研究进展[J].安徽农学通报,2012,18(5):49-50. |
4 | 王一心,冯天骄,肖辉杰,等.干旱胁迫和不同株高基径条件下的白刺液流速率特征差异[J].水土保持研究,2023,30(5):234-240, 249. |
WANG Y X, FENG T J, XIAO H J, et al.. Characteristics of sap flow rate of Nitraria tangutorum under drought stress and different plant height and basal diameter [J].Res.Soil Water Conserv., 2023,30(5):234-240, 249. | |
5 | 洪光宇,王晓江,刘果厚,等.毛乌素沙地沙柳液流特征及其对环境因子的响应[J].干旱区研究,2021,38(3):794-801. |
HONG G Y, WANG X J, LIU G H,et al.. Characteristics of Salix psammophila sap flow and its response to environmental factors in Mu Us sandy land [J].Arid Zone Res.,2021,38(3):794-801. | |
6 | 王卓,郭月峰,祁伟,等.不同灌水梯度下沙棘液流特征与环境因子的关系[J].干旱区研究,2020,37(4):1018-1025. |
WANG Z, GUO Y F, QI W, et al.. Relationship between the characteristics of Hippophae rhamnoides fluid flow and environmental factors under different irrigation gradients [J]. Arid Zone Res., 2020, 37(4):1018-1025. | |
7 | 刘毅,金谦,桂东伟,等.新疆南部矮化红枣树干液流特征及其对环境因子的响应[J].干旱区研究,2019,36(5):1146-1152. |
LIU Y, JIN Q, GUI D W, et al.. Characteristics of sap flow of Dwarf Red Jujube trees and the response to environmental factors in south Xinjiang [J]. Arid Zone Res., 2019, 36(5):1146-1152. | |
8 | 魏新光,陈滇豫,汪星,等.山地枣林蒸腾主要影响因子的时间尺度效应[J].农业工程学报,2014,30(17):149-156. |
WEI X G, CHEN D Y, WANG X, et al.. Time scale effect on main factors that influence jujube transpiration in hillside jujube orchard [J]. Trans.Chin.Soc.Agric.Eng.,2014,30(17):149-156. | |
9 | DELZON S, SARTORE M, GRANIER A, et al.. Radial pro files of sap flow with increasing tree size in maritime pine [J]. Tree Physiol., 2004, 24:1285-1293. |
10 | 刘华,佘春燕,白志强,等.不同径级的西伯利亚红松树干液流及蒸腾耗水特征的差异[J].西北植物学报,2016,36(2):390-397. |
LIU H, SHE C Y, BAI Z Q, et al.. Sap flow and transpiring water-consumption of Pinus sibirica in differernt diameter classes [J]. Acta Bot. Bor-Occid. Sin.,2016,36(2):390-397. | |
11 | 莫康乐,陈立欣,周洁,等.永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应[J].生态学报,2014,34(20):5812-5822. |
MO K L, CHEN L X, ZHOU J, et al.. Transpiration responses of a poplar plantation to the environmental conditions on a floodplain in Northern China [J]. Acta Ecol. Sin., 2014,34(20):5812-5822. | |
12 | 内蒙古植物志编写组.内蒙古植物志:第三卷[M].呼和浩特:内蒙古人民出版社,1997:1-324. |
13 | 李慧龙,黄雪娇.鄂尔多斯市造林总场打造林草良种“芯片”[EB/OL].(2022-06-21) [2024-07-03]. . |
14 | 裴志永,郝少荣,乔敬伟,等.毛乌素沙地沙柳枝条茎流特征[J].生态环境学报,2019,28(1):48-56. |
PEI Z Y, HAO S R, QIAO J W, et al.. Characteristics of stem flow of Salix psammophila’s branch in Mu Us sand land [J]. Ecol. Environ. Sci., 2019,28(1):48-56. | |
15 | 郝少荣.毛乌素沙地沙柳茎流及土壤结构特征研究[D].呼和浩特:内蒙古农业大学,2021. |
HAO S R. Study on characteristics of sap flow of Salix psammophila and soil structure in Mu Us sandy land [D]. Hohhot: Inner Mongolia Agricultural University, 2021. | |
16 | 魏鸾葳,陈左司南,陈胜楠,等.降雨对河岸生态系统杨树树干液流及其环境控制的影响[J].水土保持学报,2023,37(4):284-293. |
WEI L W, CHEN Z S N, CHEN S N, et al.. Effects of rainfall on sap flow and its environmental controls in a riparian poplar plantation ecosystem [J].J.Soil Water Conserv.,2023,37(4):284-293. | |
17 | STUART S A, CHOAT B, MARTIN K C,et al..The role of freezing in setting the latitudinal limits of mangrove forests [J]. New Phytol., 2007,173(3):576-583. |
18 | 颜超,王中生,安树青,等.濒危植物银缕梅(Parrotia subaequalis)不同径级个体的光合能力差异与更新限制[J].生态学报,2008,28(9):4153-4161. |
YAN C, WANG Z S, AN S Q, et al.. Differences in photosynthetic capacity among different diameter-classes of Parrotia subaequalis populations and their implications to regeneration limitation [J].Acta Ecol. Sin., 2008,28(9):4153-4161. | |
19 | 夏永辉,梁凤超,师庆东,等.准噶尔西部人工碳汇林原生荒漠植被梭梭蒸腾耗水研究[J].安徽农业科学,2014,42(33):11755-11759. |
XIA Y H, LIANG F C, SHI Q D,et al..The research of transpiration water-consumption on original Haloxylon desert vegetation around planted forest in arid region [J].J.Anhui Agric. Sci., 2014,42(33):11755-11759. | |
20 | 徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905. |
XU X Y, SUN B P, DING G D, et al.. Sap flow patterns of three main sand-fixing shrubs and their responses to environmental factors in desert areas [J]. Acta Ecol. Sin., 2008,28(3):895-905. | |
21 | 张荣,毕华兴,王宁,等.不同时间尺度下刺槐蒸腾耗水与环境因子关系[J].水土保持学报,2022,36(5):204-211. |
ZHANG R, BI H X, WANG N, et al.. Relationship between transpiration of Robinia Pseudoacacia and environmental factors at different time scales [J]. J. Soil Water Conserv., 2022, 36(5):204-211. | |
22 | WULLSCHLEGER S D, HANSON P J, TODD D E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques [J]. For. Ecol. Manage., 2001,143(1/2/3):205-213. |
23 | 何秋月.黄土高原半湿润区刺槐人工林蒸腾耗水特征对降雨减少的响应[D].杨凌:西北农林科技大学,2021. |
HE Q Y. Transpiration characteristics of a black locust plantation in response to rainfall reduction in the sub-humid region of Loess Plateau, China [D]. Yangling: Northwest A&F University, 2021. | |
24 | 黄安,曾祥划.植物学[M].北京:中国农业大学出版社,2018:1-288. |
25 | 洪光宇,王晓江,高孝威,等.毛乌素沙地杨柴液流变化对气象因子的响应[J].生态学报,2023,43(4):1635-1645. |
HONG G Y, WANG X J, GAO X W, et al.. Responses of sap flow of Hedysarum leave to climatic factors in Mu Us sandy land [J]. Acta Ecol. Sin., 2023, 43(4):1635-1645. | |
26 | 郑家银,李绣宏,李少宁,等.典型天气下经济林液流特征及其对环境因子的响应[J].西部林业科学,2022,51(6):62-70. |
ZHENG J Y, LI X H, LI S N, et al.. Characteristics of sap flow in non-wood forest under typical weather and its response to environmental factors [J]. J. West China For. Sci., 2022,51(6):62-70. | |
27 | 关连珠.普通土壤学[M].2版.北京:中国农业大学出版社,2016:1-281. |
28 | 刘朋飞,郭浩,辛智鸣.乌兰布和沙漠沙枣树干液流与环境因子关系[J].干旱区资源与环境,2021,35(9):177-184. |
LIU P F, GUO H, XIN Z M. The relationship between the stem sap flow of Elaeagnus angustifolia Linn.and environmental factors in Ulan Buh Desert [J].J.Arid Land Resour.Environ.,2021,35(9):177-184. | |
29 | 彭苓.宁夏河东沙区刺槐和丝绵木蒸腾耗水研究[D].银川:宁夏大学,2022. |
PENG L. Transpiration and water consumption of Robinia pseudoacacia and Euonymus bungeanus in the east sandy land of Yellow River, Ningxia [D]. Yinchuan: Ningxia University, 2022. | |
30 | 王小菁,李玲,张盛春.植物生理学 第8版[M].高等教育出版社,2019:1-376. |
31 | 崔楠.梭梭树干液流变化特征及其与环境因子关系研究[D].乌鲁木齐:新疆大学,2015. |
CUI N. Study on the variation characteristics of trunk sap flow of Haloxylon ammodendron and its relationship with environmental factors [D]. Urumqi: Xinjiang University, 2015. |
[1] | 林小兵, 王斌强, 成艳红, 周利军, 黄尚书, 武琳, 黄欠如, 何绍浪. 井冈蜜柚主产区土壤重金属污染特征及风险评价[J]. 中国农业科技导报, 2024, 26(3): 188-200. |
[2] | 裴薇薇, 杨喆, 王云英, 王新, 杜岩功. 祁连山区青海云杉林碳汇特征及调控因子[J]. 中国农业科技导报, 2024, 26(1): 226-233. |
[3] | 甄琦, 闫广泽, 塔娜, 赵志勇, 于慧敏. 不同二氧化碳含量对马铃薯贮藏室内温度分布的影响[J]. 中国农业科技导报, 2023, 25(11): 154-165. |
[4] | 白思琦, 邹晓荣, 丁鹏, 林铭. 基于环境因子的东南太平洋智利竹筴鱼剩余产量模型建立[J]. 中国农业科技导报, 2022, 24(7): 197-204. |
[5] | 黄雅茹, 马迎宾, 李永华, 董雪, 刘源, 于猛, 韩春霞, 菅凯敏, 马海峰. 不同时间尺度胡杨液流速率与土壤因子的关系[J]. 中国农业科技导报, 2022, 24(6): 196-205. |
[6] | 张标, 张冬梅, 张浪, 冯仲科, 孙林豪. 树干液流监测系统的研制[J]. 中国农业科技导报, 2022, 24(11): 121-129. |
[7] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 天山北坡典型草地土壤呼吸特征及其对环境因子的响应[J]. 中国农业科技导报, 2022, 24(10): 189-199. |
[8] | 王檬檬1,党宏忠2*,李钢铁1,冯金超2,闫晶秋子1,胡杨1,李星1,杨超1. 晋西黄土区苹果树液流特征及其与环境因子的关系[J]. 中国农业科技导报, 2020, 22(7): 140-147. |
[9] | 黄雅茹1,李永华2*,辛智鸣1,马迎宾1,董雪1,李新乐1,段瑞兵1,罗凤敏1,边凯1. 乌兰布和沙漠人工梭梭夏季茎干液流变化特征及其与气象因子的关系[J]. 中国农业科技导报, 2020, 22(7): 155-165. |
[10] | 马鑫,秦富仓*,李龙,高天,黎英华. 黄土丘陵区山杏人工林蒸腾速率与环境因子的关系[J]. 中国农业科技导报, 2020, 22(12): 146-154. |
[11] | 李震,刘彭,高雨航. 环模成型机楔形区域物料运动速度与压力分析[J]. 中国农业科技导报, 2019, 21(3): 76-84. |
[12] | 魏娜,次顿,张唐伟. 西藏高原地理与气候因子对青稞功能性成分的影响[J]. 中国农业科技导报, 2018, 20(12): 115-121. |
[13] | 陈庆根,王磊,程式华*. 中国水稻生产环境与条件因子对产量的影响研究——湖南、浙江、黑龙江三省1 540农户实证调查[J]. 中国农业科技导报, 2017, 19(8): 1-8. |
[14] | 颜建辉,陈崇成*,魏一丁,唐丽玉. 基于ZigBee无线传感器网络的林区局地环境监测系统[J]. 中国农业科技导报, 2017, 19(6): 72-82. |
[15] | 宫聚辉,邵婷婷,路平,武彦伟,高学艺,王克冰*. 煤和沙柳的O2/CO2混合燃烧特性及相互作用研究[J]. 中国农业科技导报, 2017, 19(10): 96-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||