中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (4): 173-184.DOI: 10.13304/j.nykjdb.2021.0070
张晓晴1,2(), 李壮壮1, 陈世宝3(
), 孟昱1, 任大军1,2, 张淑琴1,2
收稿日期:
2021-01-20
接受日期:
2021-04-14
出版日期:
2022-04-15
发布日期:
2022-04-19
通讯作者:
陈世宝
作者简介:
张晓晴 E-mail:zhangxiaoqing@wust.edu.cn;
基金资助:
Xiaoqing ZHANG1,2(), Zhuangzhuang LI1, Shibao CHEN3(
), Yu MENG1, Dajun REN1,2, Shuqing ZHANG1,2
Received:
2021-01-20
Accepted:
2021-04-14
Online:
2022-04-15
Published:
2022-04-19
Contact:
Shibao CHEN
摘要:
为探究灌木幼苗及不同测试终点对镉(Cd)毒害的抗性和敏感性差异,选取了12种常见的灌木植物,通过Cd对灌木幼苗毒害的水培试验,测定不同含量Cd处理[0(对照)、0.5、1.0、2.0、4.0、8.0、16.0、32.0 mg·L-1]下植物的生长状况(表观毒害症状、株高、地上部鲜重和干重、根系生长状态),比较不同测试终点稳定性,并运用Burr-Ⅲ模型制作物种敏感性分布图(species sensitivity distributions,SSD),分析不同灌木幼苗对Cd的敏感性。结果表明,供试植物在Cd含量为1.0~4.0 mg·L-1时开始出现表观毒害症状;Cd对不同的植物地上部和根系毒害阈值差异较大,地上部干重减少10%(EC10)和50%(EC50)对应的毒性阈值变化范围分别为0.11(海桐)~1.30 mg·L-1(八角金盘)和2.58(金森女贞)~10.90 mg·L-1(八角金盘),差异分别达到了11.8和4.2倍;根分支数对应的EC10和EC50变化范围分别为0.08(金森女贞)~1.27 mg·L-1(八角金盘)和2.40(金森女贞)~10.30 mg·L-1(八角金盘),差异分别达到了15.8和4.3倍;不同测试终点的敏感性从大到小依次为根分枝数>总根长>总根表面积>总根尖数>地上部分干重>株高>地上部分鲜重,说明根系指标对Cd毒性更为敏感;基于地上部干重和根分支数的EC50数据得到的SSD表明,大部分植物的敏感性分布趋于一致,其中金森女贞和海桐对Cd毒害最为敏感,八角金盘为Cd毒害的抗性品种;同时,根据SSD得出保护95%林木品质不受Cd毒害的生态风险阈值HC5。
中图分类号:
张晓晴, 李壮壮, 陈世宝, 孟昱, 任大军, 张淑琴. 灌木幼苗对镉毒害的敏感性差异[J]. 中国农业科技导报, 2022, 24(4): 173-184.
Xiaoqing ZHANG, Zhuangzhuang LI, Shibao CHEN, Yu MENG, Dajun REN, Shuqing ZHANG. Sensitivity Differences of Shrub Seedlings to Cadmium Toxicity[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 173-184.
植物种类Plant species | 株高 Plant height | 地上部分鲜重 Aboveground fresh weight | 地上部分干重 Aboveground dry weight | |||
---|---|---|---|---|---|---|
EC10 | EC50 | EC10 | EC50 | EC10 | EC50 | |
法国冬青Viburnum odoratissimum Ker-Gawl | 1.63(0.9,2.3) | 4.56(2.8,6.4) | 1.04(0.6,1.5) | 4.42(3.0,5.9) | 0.35(0.2,0.7) | 5.19(3.9,6.9) |
杜鹃 Rhododendron simsii | 0.37(0.2,0.7) | 4.46(3.5,5.7) | 0.17(0.0,0.6) | 7.17(4.4,11.8) | 0.14(0.0,0.6) | 4.45(2.6,7.7) |
十大功劳 Mahonia fortune | 2.28(0.6,4.0) | 10.60(2.2,19.0) | 0.30(0.1,1.1) | 5.08(2.9,8.9) | 0.21(0.0,1.0) | 5.69(3.0,10.8) |
洒金珊瑚Aucuba japonica cv. variegata | 0.39(0.1,1.0) | 5.77(3.8,8.8) | 0.20(0.1,1.0) | 10.70(5.6,20.3) | 0.20(0.1,0.3) | 5.55(4.6,6.8) |
八角金盘 Fatsia japonica | 0.59(0.2,2.3) | 8.90(5.0,15.7) | 1.41(0.5,2.3) | 11.50(1.8,21.2) | 1.30(0.8,1.7) | 10.90(2.1,19.7) |
红叶石楠 Photinia × fraseri Dress | 0.26(0.1,0.8) | 5.43(3.5,8.4) | 0.18(0.0,0.7) | 6.14(3.5,10.7) | 0.16(0.1,0.4) | 7.31(5.0,10.6) |
红花继木Loropetalum chinense var. rubrum | 1.31(0.9,1.7) | 14.8(7.8,21.8) | 0.33(0.1,1.0) | 14.10(9.6,20.8) | 0.22(0.0,1.0) | 9.28(5.3,16.2) |
南天竹 Nandina domestica | 0.42(0.1,1.7) | 4.76(2.5,9.2) | 0.19(0.1,0.5) | 4.02(2.7,6.1) | 0.15(0.0,0.6) | 5.16(2.9,9.1) |
金森女贞Ligustrum japonicum‘Howardii’ | 0.25(0.1,0.5) | 4.40(3.3,5.9) | 0.08(0.0,0.3) | 3.26(1.9,5.6) | 0.13(0.0,0.3) | 2.58(1.7,3.9) |
金边黄杨 Buxus megistophylla | 0.16(0.0,1.6) | 5.16(2.1,13.0) | 0.10(0.0,0.5) | 6.10(3.2,11.6) | 0.19(0.1,0.5) | 6.70(4.5,10.0) |
海桐 Pittosporum tobira | 0.16(0.1,0.3) | 3.23(2.4,4.4) | 0.08(0.0,0.4) | 3.28(1.8,6.0) | 0.11(0.0,0.4) | 3.50(2.1,5.7) |
茶梅 Camellia sasanqua | 0.32(0.1,1.0) | 4.55(2.8,7.4) | 0.16(0.1,0.5) | 5.38(3.4,8.5) | 0.25(0.1,0.8) | 8.40(5.4,13.1) |
平均值 Average | 0.68 | 6.39 | 0.35 | 6.76 | 0.28 | 6.22 |
几何平均值 Geometric mean | 0.48 | 5.83 | 0.23 | 6.10 | 0.22 | 5.82 |
表1 Cd对植物生长和生物量的毒性阈值及其95%的置信区间 (mg·L-1)
Table 1 Toxicity threshold of cadmium to plant growth and biomass and 95% confidence intervals
植物种类Plant species | 株高 Plant height | 地上部分鲜重 Aboveground fresh weight | 地上部分干重 Aboveground dry weight | |||
---|---|---|---|---|---|---|
EC10 | EC50 | EC10 | EC50 | EC10 | EC50 | |
法国冬青Viburnum odoratissimum Ker-Gawl | 1.63(0.9,2.3) | 4.56(2.8,6.4) | 1.04(0.6,1.5) | 4.42(3.0,5.9) | 0.35(0.2,0.7) | 5.19(3.9,6.9) |
杜鹃 Rhododendron simsii | 0.37(0.2,0.7) | 4.46(3.5,5.7) | 0.17(0.0,0.6) | 7.17(4.4,11.8) | 0.14(0.0,0.6) | 4.45(2.6,7.7) |
十大功劳 Mahonia fortune | 2.28(0.6,4.0) | 10.60(2.2,19.0) | 0.30(0.1,1.1) | 5.08(2.9,8.9) | 0.21(0.0,1.0) | 5.69(3.0,10.8) |
洒金珊瑚Aucuba japonica cv. variegata | 0.39(0.1,1.0) | 5.77(3.8,8.8) | 0.20(0.1,1.0) | 10.70(5.6,20.3) | 0.20(0.1,0.3) | 5.55(4.6,6.8) |
八角金盘 Fatsia japonica | 0.59(0.2,2.3) | 8.90(5.0,15.7) | 1.41(0.5,2.3) | 11.50(1.8,21.2) | 1.30(0.8,1.7) | 10.90(2.1,19.7) |
红叶石楠 Photinia × fraseri Dress | 0.26(0.1,0.8) | 5.43(3.5,8.4) | 0.18(0.0,0.7) | 6.14(3.5,10.7) | 0.16(0.1,0.4) | 7.31(5.0,10.6) |
红花继木Loropetalum chinense var. rubrum | 1.31(0.9,1.7) | 14.8(7.8,21.8) | 0.33(0.1,1.0) | 14.10(9.6,20.8) | 0.22(0.0,1.0) | 9.28(5.3,16.2) |
南天竹 Nandina domestica | 0.42(0.1,1.7) | 4.76(2.5,9.2) | 0.19(0.1,0.5) | 4.02(2.7,6.1) | 0.15(0.0,0.6) | 5.16(2.9,9.1) |
金森女贞Ligustrum japonicum‘Howardii’ | 0.25(0.1,0.5) | 4.40(3.3,5.9) | 0.08(0.0,0.3) | 3.26(1.9,5.6) | 0.13(0.0,0.3) | 2.58(1.7,3.9) |
金边黄杨 Buxus megistophylla | 0.16(0.0,1.6) | 5.16(2.1,13.0) | 0.10(0.0,0.5) | 6.10(3.2,11.6) | 0.19(0.1,0.5) | 6.70(4.5,10.0) |
海桐 Pittosporum tobira | 0.16(0.1,0.3) | 3.23(2.4,4.4) | 0.08(0.0,0.4) | 3.28(1.8,6.0) | 0.11(0.0,0.4) | 3.50(2.1,5.7) |
茶梅 Camellia sasanqua | 0.32(0.1,1.0) | 4.55(2.8,7.4) | 0.16(0.1,0.5) | 5.38(3.4,8.5) | 0.25(0.1,0.8) | 8.40(5.4,13.1) |
平均值 Average | 0.68 | 6.39 | 0.35 | 6.76 | 0.28 | 6.22 |
几何平均值 Geometric mean | 0.48 | 5.83 | 0.23 | 6.10 | 0.22 | 5.82 |
植物种类 Plant species | 总根长 Total root length | 总根表面积 Total root surface area | 总根尖数 Total root tip | 根分支数 Root branches | ||||
---|---|---|---|---|---|---|---|---|
EC10) | EC50 | EC10 | EC50 | EC10 | EC50 | EC10 | EC50 | |
法国冬青Viburnum odoratissimum Ker-Gawl | 0.16(0.0,1.2) | 5.82(2.5,13.5) | 0.15(0.0,1.3) | 5.83(2.4,14.0) | 0.17(0.0,1.5) | 4.78(1.9,12.0) | 0.21(0.0,1.2) | 4.58(2.1,9.8) |
杜鹃 Rhododendron simsii | — | — | — | — | — | — | — | — |
十大功劳 Mahonia fortune | 0.22(0.0,1.1) | 5.75(3.0,11.1) | 0.18(0.0,0.7) | 5.50(3.0,9.9) | 0.20(0.1,0.8) | 5.60(3.2,9.7) | 0.29(0.1,0.6) | 5.33(3.8,7.4) |
洒金珊瑚 Aucuba japonica cv. variegata | 0.15(0.0,0.8) | 6.45(3.5,12.0) | 0.15(0.1,0.4) | 5.95(4.0,8.8) | 0.15(0.0,0.7) | 8.16(4.6,14.5) | 0.20(0.0,1.0) | 9.08(4.9,16.7) |
八角金盘 Fatsia japonica | 1.52(1.0,2.0) | 10.10(6.7,13.5) | 1.23(1.0,1.5) | 11.20(6.4,21.8) | 1.56(1.0,2.1) | 10.20(6.6,13.8) | 1.27(1.1,1.5) | 10.30(4.7,16.0) |
红叶石楠 Photinia × fraseri Dress | 0.12(0.0,0.5) | 6.61(3.8,11.5) | 0.10(0.0,0.6) | 5.59(2.8,11.1) | 0.11(0.0,0.5) | 6.04(3.3,11.1) | 0.08(0.0,0.6) | 5.54(2.5,12.1) |
红花继木 Loropetalum chinense var. rubrum | — | — | — | — | — | — | — | — |
南天竹 Nandina domestica | 0.18(0.1,0.5) | 4.14(2.7,6.3) | 0.24(0.1,0.5) | 3.78(2.6,5.4) | 0.21(0.1,0.5) | 3.84(2.7,5.4) | 0.15(0.1,0.4) | 4.34(3.0,6.2) |
金森女贞 Ligustrum japonicum‘Howardii’ | 0.15(0.1,0.4) | 2.18(1.4,3.3) | 0.13(0.1,0.2) | 2.46(1.9,3.2) | 0.08(0.0,0.4) | 2.59(1.4,4.9) | 0.09(0.0,0.3) | 2.40(1.6,3.6) |
金边黄杨 Buxus megistophylla | 0.13(0.0,0.8) | 6.78(3.4,13.3) | 0.12(0.0,0.3) | 7.26(4.9,10.7) | 0.11(0.0,0.5) | 6.43(3.5,11.7) | 0.14(0.0,0.6) | 5.70(3.1,10.3) |
海桐 Pittosporum tobira | 0.10(0.0,0.2) | 3.4(2.4,4.8) | 0.14(0.0,0.5) | 3.65(2.1,6.4) | 0.10(0.0,0.5) | 4.64(2.4,8.8) | 0.13(0.1,0.3) | 3.44(2.3,5.1) |
茶梅 Camellia sasanqua | 0.24(0.1,0.7) | 5.6(3.6,8.7) | 0.19(0.1,0.6) | 6.35(4.0,10.1) | 0.15(0.0,0.7) | 7.19(4.0,13.1) | 0.14(0.0,0.7) | 5.57(2.8,10.9) |
平均值 Average | 0.30 | 5.68 | 0.26 | 5.76 | 0.28 | 5.95 | 0.27 | 5.63 |
几何平均值 Geometric mean | 0.20 | 5.31 | 0.19 | 5.38 | 0.18 | 5.60 | 0.19 | 5.24 |
表2 Cd对植物根系生长的毒性阈值及其95%的置信区间 (mg·L-1)
Table 2 Toxicity threshold of cadmium to plant root growth and 95% confidence intervals
植物种类 Plant species | 总根长 Total root length | 总根表面积 Total root surface area | 总根尖数 Total root tip | 根分支数 Root branches | ||||
---|---|---|---|---|---|---|---|---|
EC10) | EC50 | EC10 | EC50 | EC10 | EC50 | EC10 | EC50 | |
法国冬青Viburnum odoratissimum Ker-Gawl | 0.16(0.0,1.2) | 5.82(2.5,13.5) | 0.15(0.0,1.3) | 5.83(2.4,14.0) | 0.17(0.0,1.5) | 4.78(1.9,12.0) | 0.21(0.0,1.2) | 4.58(2.1,9.8) |
杜鹃 Rhododendron simsii | — | — | — | — | — | — | — | — |
十大功劳 Mahonia fortune | 0.22(0.0,1.1) | 5.75(3.0,11.1) | 0.18(0.0,0.7) | 5.50(3.0,9.9) | 0.20(0.1,0.8) | 5.60(3.2,9.7) | 0.29(0.1,0.6) | 5.33(3.8,7.4) |
洒金珊瑚 Aucuba japonica cv. variegata | 0.15(0.0,0.8) | 6.45(3.5,12.0) | 0.15(0.1,0.4) | 5.95(4.0,8.8) | 0.15(0.0,0.7) | 8.16(4.6,14.5) | 0.20(0.0,1.0) | 9.08(4.9,16.7) |
八角金盘 Fatsia japonica | 1.52(1.0,2.0) | 10.10(6.7,13.5) | 1.23(1.0,1.5) | 11.20(6.4,21.8) | 1.56(1.0,2.1) | 10.20(6.6,13.8) | 1.27(1.1,1.5) | 10.30(4.7,16.0) |
红叶石楠 Photinia × fraseri Dress | 0.12(0.0,0.5) | 6.61(3.8,11.5) | 0.10(0.0,0.6) | 5.59(2.8,11.1) | 0.11(0.0,0.5) | 6.04(3.3,11.1) | 0.08(0.0,0.6) | 5.54(2.5,12.1) |
红花继木 Loropetalum chinense var. rubrum | — | — | — | — | — | — | — | — |
南天竹 Nandina domestica | 0.18(0.1,0.5) | 4.14(2.7,6.3) | 0.24(0.1,0.5) | 3.78(2.6,5.4) | 0.21(0.1,0.5) | 3.84(2.7,5.4) | 0.15(0.1,0.4) | 4.34(3.0,6.2) |
金森女贞 Ligustrum japonicum‘Howardii’ | 0.15(0.1,0.4) | 2.18(1.4,3.3) | 0.13(0.1,0.2) | 2.46(1.9,3.2) | 0.08(0.0,0.4) | 2.59(1.4,4.9) | 0.09(0.0,0.3) | 2.40(1.6,3.6) |
金边黄杨 Buxus megistophylla | 0.13(0.0,0.8) | 6.78(3.4,13.3) | 0.12(0.0,0.3) | 7.26(4.9,10.7) | 0.11(0.0,0.5) | 6.43(3.5,11.7) | 0.14(0.0,0.6) | 5.70(3.1,10.3) |
海桐 Pittosporum tobira | 0.10(0.0,0.2) | 3.4(2.4,4.8) | 0.14(0.0,0.5) | 3.65(2.1,6.4) | 0.10(0.0,0.5) | 4.64(2.4,8.8) | 0.13(0.1,0.3) | 3.44(2.3,5.1) |
茶梅 Camellia sasanqua | 0.24(0.1,0.7) | 5.6(3.6,8.7) | 0.19(0.1,0.6) | 6.35(4.0,10.1) | 0.15(0.0,0.7) | 7.19(4.0,13.1) | 0.14(0.0,0.7) | 5.57(2.8,10.9) |
平均值 Average | 0.30 | 5.68 | 0.26 | 5.76 | 0.28 | 5.95 | 0.27 | 5.63 |
几何平均值 Geometric mean | 0.20 | 5.31 | 0.19 | 5.38 | 0.18 | 5.60 | 0.19 | 5.24 |
1 | 叶俊,任大军,张晓晴,等.中国部分林地土壤重金属含量特征及污染评价[J].科学技术与工程,2020,20(6):2507-2514. |
YE J, REN D J, ZHANG X Q, et al.. Heavy metal contents distribution and contamination assessment in some Chinese forest soils [J]. Sci. Tech. Eng., 2020, 20(6): 2507-2514. | |
2 | 陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017,36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al.. Analysis of the report on the national general survey of soil contamination[J]. J. Agro-Environ. Sci., 2017, 36(9): 1689-1692. | |
3 | 周垂帆,李莹,殷丹阳,等.林地重金属污染来源解析[J].世界林业研究,2015,28(5):15-21. |
ZHOU C F, LI Y, YIN D Y, et al.. A review on heavy metal contamination on forest land [J]. World For. Res., 2015, 28(5): 15-21. | |
4 | 罗倩,张珍明,向准,等.梵净山自然保护区林地土壤重金属分布与富集特征[J].西南农业学报,2017,30(10):2352-2359. |
LUO Q, ZHANG Z M, XIANG Z, et al.. Distribution and enrichment characteristics of heavy metals in soil of woodland in Fanjing mountain nature reserve [J]. Southwest China J. Agric. Sci., 2017, 30(10): 2352-2359. | |
5 | 王玥琳,胡冀珍.四川北部林地土壤地球化学特征分析[J].南方农业学报,2016,47(3):365-370. |
WANG Y L, HU J Z. Analysis on forest soil geochemical features of north Sichuan[J]. J. Southern Agric., 2016, 47(3): 365-370. | |
6 | 李向阳,吴疆,刘洪强.鄂东南5种森林土壤重金属含量及污染评价[J].中南林业科技大学学报,2019,39(10):102-108. |
LI X Y, WU J, LIU H Q. Concentration and ecology risk assessment of heavy metal in five forest soils in southeastern Hubei province[J]. J. Central South Univ. For. Tech., 2019, 39(10): 102-108. | |
7 | 庄玉婷,冯嘉仪,储双双,等.粤西地区不同林分类型土壤重金属含量及生态风险评价[J].华南农业大学学报,2018,39(5):25-31. |
ZHUANG Y T, FENG J Y, CHU S S, et al.. Contents and ecology risk assessments of heavy metals in different forest soils in West Guangdong [J]. J. South China Agric.Univ., 2018, 39(5): 25-31. | |
8 | DOGAN M, KARATAS M, AASIM M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study[J]. Ecotoxicol. Environ. Safety, 2017, 148: 431-440. |
9 | YANG D P, GUO Z Q, GREEN I D, et al.. Effect of cadmium accumulation on mineral nutrient levels in vegetable crops: potential implications for human health[J]. Environ. Sci. Pollut. Res., 2016, 23(19): 19744-19753. |
10 | 杨瑛,王德立,张兴翠,等.不同林下益智果实及环境土壤中铜镉铅污染综合评价[J].中国现代中药,2018,20(5):570-575. |
YANG Y, WANG D L, ZHANG X C, et al.. Comprehensive evaluation of Cu, Cd and Pb contamination in sharpleaf galangal fruits and environment soils under different forests [J]. Modern Chin Med., 20(5): 570-575. | |
11 | 林龙勇,阎秀兰,廖晓勇,等.三七对土壤中镉、铬、铜、铅的累积特征及健康风险评价[J].生态学报,2014,34(11):2868-2875. |
Lin L Y, Yan X L, Liao X Y, et al.. Accumulation of soil Cd, Cr, Cu, Pb by Panax notoginseng and its associated health risk [J]. Acta Ecol. Sin., 2014, 34(11): 2868-2875. | |
12 | ROSTAMI S, AZHDARPOOR A. The application of plant growth regulators to improve phytoremediation of contaminated soils: a review [J]. Chemosphere, 2019, 220: 818-827. |
13 | IRAM G, MARIA M, JEROME S, et al.. EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil [J]. Int. J. Phytoremediation, 2019, 21(2): 101-110. |
14 | SALEEM M H, ALI S, REHMAN M, et al.. Jute: a potential candidate for phytoremediation of metals—a review [J/OL]. Plant, 2020, 9(2): 258 [2022-01-24]. . |
15 | 钟斌,陈俊任,彭丹莉,等.速生林木对重金属污染土壤植物修复技术研究进展[J].浙江农林大学学报,2016,33(5):899-909. |
ZHONG B, CHEN J R, PENG D L, et al.. Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil [J]. J. Zhejiang A F Univ., 2016, 33(5): 899-909. | |
16 | 陈波宇,郑斯瑞,牛希成,等.物种敏感度分布及其在生态毒理学中的应用[J].生态毒理学报,2010,5(4):491-497. |
CHEN B Y, ZHENG S R, NIU X C, et al.. Species sensitivity distribution and its application in ecotoxicology [J]. Asian J. Ecotoxicol., 2010, 5(4): 491-497. | |
17 | XU F L, LI Y L, WANG Y, et al.. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment [J]. Ecol. Ind., 2015, 54(3): 227-237. |
18 | KWAK J I, MOON J, KIM D, et al.. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach [J]. J. Hazard. Mater., 2018, 344: 390-397. |
19 | 文晨,杨虹,卢学强,等.基于物种敏感性分布法的生态风险评价研究进展[J].安全与环境学报,2017,17(1):353-357. |
WEN C, YANG H, LU X Q, et al.. Research advances in the ecological risk assessment based on the species sensitivity distributions [J]. J. Safety Environ., 2017, 17(1): 353-357. | |
20 | 刘亚莉,谢玉为,张效伟,等.应用物种敏感性分布评价敌敌畏对淡水生物的生态风险[J].生态毒理学报,2016,11(2):531-538. |
LIU Y L, XIE Y W, ZHANG X W, et al.. Assessing ecological risks of dichlorvos to freshwater organisms by species sensitivity distribution [J]. Asian J. Ecotoxicol., 2016, 11(2), 531-538. | |
21 | 崔广娟,曹华元,陈康,等.镉胁迫对4种基因型大豆生长和体内元素分布的影响[J].华南农业大学学报,2020,41(5):1-14. |
CUI G J, CAO H Y, CHEN K, et al.. Effects of cadmium stress on plant growth and element distribution of four soybean genotypes[J]. J. South China Agric.Univ., 2020, 41(5), 49-57. | |
22 | 郭瞻宇,张子杨,蒋亚辉,等.不同品种芥菜对镉胁迫的敏感性分布及抗氧化特征[J].农业环境科学学报,2018,37(12):2660-2668. |
GUO Z Y, ZHANG Z Y, JIANG Y H, et al.. Assessment of variation in sensitivity and antioxidant characteristics of different mustard cultivars under different Cd stress levels [J]. J. Agro-Environ. Sci., 2018, 37(12): 2660-2668. | |
23 | TAO L, GUO M Y, REN J. Effects of cadmium on seed germination, coleoptile growth, and root elongation of six pulses [J]. Polish J. Environ. Studies, 2014, 24(1): 295-299. |
24 | HAANSTRA L, DOELMAN P, VOSHAAR J H O. The use of sigmoidal dose response curves in soil ecotoxicological research [J]. Plant Soil, 1985, 84(2): 293-297. |
25 | SCHABENBERGER O, THARP B E, KELLS J J, et al.. Statistical tests for hormesis and effective dosages in herbicide dose response [J]. Agron. J., 1999, 91(4): 713-721. |
26 | ZHANG X Q, WU H X, MA Y B, et al.. Intrinsic soil property effects on Cd phytotoxicity to Ligustrum japonicum ‘Howardii’ expressed as different fractions of Cd in forest soils [J/OL]. Ecotoxicol. Environ. Safety, 2020, 206: 110949[2022-01-24]. . |
27 | ZHANG X Q, WANG X D, WEI D P, et al.. The influence of soil solution properties on phytotoxicity of soil soluble copper in a wide range of soils [J]. Geoderma, 2013, 211-212: 1-7. |
28 | 李波.外源重金属铜、镍的植物毒害及预测模型研究[D].北京:中国农业科学院,2010:24-46. |
LI B. The phytotoxicity of added Copper and Nickel to soils and predictive models [D]. Beijing: Chinese Academy of Agricultural Science, 2010: 24-46. | |
29 | 葛依立,陈心胜,黄道友,等.湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应[J].生态毒理学报, 2020,15(2):190-200. |
GE Y L, CHEN X S, HUANG D Y, et al.. Accumulation characteristics and physiological responses of the wetland plant, Polygonum hydropiper L. to cadmium [J]. Asian J. Ecotoxicol., 2020, 15(2): 190-200. | |
30 | 贾茵,刘才磊,兰晓悦,等.镉胁迫对小报春幼苗生长及生理特性的影响[J].西北植物学报, 2020,40(3):454-462. |
JIA Y, LIU C L, LAN X Y, et al.. Effect of cadmium stress on the growth and psychological characteristics of Primula forbesii seedlings [J]. Acta Bot. Boreali-Occ. Sinica, 2020, 40(3): 454-462. | |
31 | CALABRESE E J, BALDWIN L A, HOLLAND C D. Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment [J]. Risk Anal., 1999, 19(2): 261-281. |
32 | RODRICKS J V. Hormesis and toxicological risk assessment[J]. Toxicol. Sci., 2003, 71(2): 134-136. |
33 | CARVALHO M E A, CASTROP R C, AZEVEDO R A. Hormesis in plants under Cd exposure: from toxic to beneficial element [J/OL]. J. Hazard. Mater., 2020, 384: 121434 [2022-01-24]. . |
34 | ARDUINI I, MASONI A, MARIOTTI M, et al.. Low cadmium application increase miscanthus growth and cadmium translocation [J]. Environ. Exp. Bot., 2004, 52(2): 89-100. |
35 | SUNDARAMANICKAM A, SHANMUGAM N, CHOLAN S, et al.. Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India [J]. Environ. Pollut., 2016, 218: 186-195. |
36 | WHITE P J, BROWN P H. Plant nutrition for sustainable development and global health [J]. Annals Bot., 2010, 105(7): 1073-1080. |
37 | XIN J P, ZHANG Y, TIAN R N. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure [J]. Ecotoxicol. Environ. Safety, 2018, 165: 611-621. |
38 | 岳莉然,罗陈筝筝,王竞莹,等.金属镉及温度胁迫对紫根水葫芦植株几种生理指标的影响[J].北方园艺,2020,9:89-96. |
YUE L R, LUO C Z Z, WANG J Y, et al.. Effects of cadmium stress and temperature stress on several physiological indicators of Eichhornia crassipes [J]. Northern Hort., 2020, 9: 89-96. | |
39 | DAUD M K, QUILING H, LEI M, et al.. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress [J]. Chemosphere, 2015, 120: 309-320. |
40 | 杨红霞,陈俊良,刘崴.镉对植物的毒害及植物解毒机制研究进展[J].江苏农业科学,2019,47(2):1-8. |
41 | CEYDA O K, EVREN Y, MUSTAFA B, et al.. The humicacid induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress [J]. Ecotoxicol. Environ. Safety, 2018, 155: 66-75. |
42 | SINGH S, PARIHAR P, SINGH R, et al.. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics [J/OL]. Front. Plant Sci., 2016, 6: 1143[2022-01-24]. . |
43 | DUTTA S, MITRA M, AGARWAL P, et al.. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability [J/OL]. Plant Signal. Behav., 2018, 13(8): e1460048[2022-01-24]. . |
44 | 徐铭焓.南京市主要路域植物的环境效应研究[D].南京:南京林业大学,2014:21-40. |
XU M H. Study on environmental effects of the main road domain plants in Nanjing [D]. Nanjing: Nanjing Forestry University, 2014: 21-40. | |
45 | 王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,5:83-87. |
WANG G L, ZHANG J C, ZHUANG J Y, et al.. Accumulation research of 31 species of ornamental plants on heavy metal [J]. J. West Anhui Univ., 2011, 5, 83-87. | |
46 | 田大勇,常琛朝,王成志,等.环境中重金属和有机污染物的物种敏感性分布研究进展[J].生态毒理学报,2015,10(3):38-49. |
TIAN D Y, CHANG C C, WANG C Z, et al.. Review of species sensitivity distributions for heavy metals and organic conta-minants [J]. Asian J. Ecotoxicol., 2015, 10(3): 38-49. | |
47 | 何佳,时迪,王贝贝,等.10种典型重金属在八大流域的生态风险及水质标准评价[J].中国环境科学,2019,39(7):2970-2982. |
HE J, SHI D, WANG B B, et al.. Ecological risk assessment and water quality standard evaluation of 10 typical metals in eight basins in China [J]. China Environ. Sci., 2019, 39(7): 2970-2982. | |
48 | 胡国涛.竹柳积累重金属及其生理变化规律的研究[D].杭州:浙江农林大学,2016:11-17. |
HU G T. Metal accumulation and psychological responses of Bamboo-willow (Salix sp.) to heavy metal stress [D]. Hangzhou: Zhejiang A&F University, 2016: 11-17. | |
49 | 杨岚鹏,朱健,王平,等.栾树对镉的耐性、富集及胁迫响应[J].植物生理学报,2017,53(8):1419-1427. |
YANG L P, ZHU J, WANG P, et al.. Tolerance, accumulation and stress response of Koelreuteria paniculata to cadmium [J]. Plant Physiol. J., 2017, 53(8): 1419-1427. |
[1] | 董国然, 沙理堂, 周闯, 符可芯, 杨叶. 两株解淀粉芽孢杆菌的鉴定及对抗多菌灵可可球二孢菌的拮抗作用#br#[J]. 中国农业科技导报, 2021, 23(7): 136-144. |
[2] | 岳琳祺,郭佳晖,白雄辉,施卫萍,郭平毅*,郭杰*. 叶面喷施硒肥对不同基因型谷子农艺性状及籽粒硒含量的影响[J]. 中国农业科技导报, 2021, 23(4): 154-163. |
[3] | 陈斌, 石荣康, 王志城, 刘松, 李青, 刘正文, 孙正文, 王国宁, 吴金华, 马峙英, 张艳, 王省芬. 陆地棉核心种质抗黄萎病鉴定与优异种质筛选[J]. 中国农业科技导报, 2021, 23(10): 45-51. |
[4] | 辛红佳,李鹏程,滕守振,李圣彦,汪海,郎志宏*. 拟南芥SWEET1/2/3基因突变体构建及功能鉴定[J]. 中国农业科技导报, 2020, 22(2): 39-49. |
[5] | 李颜方,王高鸿,杜艳伟,王振华,成凯,王玉文,赵根有,赵晋锋*,余爱丽. 作物抗性淀粉研究进展[J]. 中国农业科技导报, 2019, 21(8): 56-62. |
[6] | 杨彩峰,李刚强,王楠,刘德虎*. GNA和ACA双价转基因烟草培育及其抗蚜研究[J]. 中国农业科技导报, 2019, 21(4): 35-41. |
[7] | 张娜1,赵晨光1,温晓蕾2,杨文香1,张娜1*,刘大群1*. 小麦CBL结合蛋白激酶TaCIPK31负调控TcLr37对小麦叶锈菌的抗性[J]. 中国农业科技导报, 2019, 21(12): 102-109. |
[8] | 李霞1,2,范鑫2,梁成真2,王远2,张锐2,孟志刚2*,刘晓东1*,孙国清2*. BS2基因在烟草中的功能解析[J]. 中国农业科技导报, 2019, 21(11): 43-50. |
[9] | 杨小艳1,刘亚娟2,吴 红1,王忠伟1,雷开荣1,谢树章1*. 草甘膦抗性菌株的分离鉴定及其抗性基因的克隆[J]. 中国农业科技导报, 2018, 20(6): 47-54. |
[10] | 战园,张超,占锦,张永强*. 转苋色藜NDR1基因水稻的获得及对白叶枯病抗性的初步研究[J]. 中国农业科技导报, 2017, 19(5): 22-27. |
[11] | 张骞月1,赵婉婉1,吴伟1,2*. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134. |
[12] | 刘小芸1,2,姚冬生1,2,3*. 饲用酶蛋白的理性设计及其改良技术[J]. , 2013, 15(5): 46-52. |
[13] | 曾钢1,2,叶艳英1,曹鸣庆1,马荣才1,唐乐尘2,姚磊1*. 外壳蛋白基因片段介导的高抗TuMV研究[J]. , 2013, 15(2): 83-88. |
[14] | 邱振华1,2,石鹏君2,刘素纯1,姚斌2. 来源于链霉菌Streptomyces fradiae var. k11的抗蛋白酶甘露聚糖酶的克隆[J]. , 2010, 12(4): 114-120. |
[15] | 张新忠,王忆,韩振海. 我国苹果属(Malus Mill.)野生资源研究利用的现状分析[J]. , 2010, 12(3): 8-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||