中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (6): 36-46.DOI: 10.13304/j.nykjdb.2021.0806
吴楠(), 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬(
)
收稿日期:
2021-09-13
接受日期:
2021-11-22
出版日期:
2022-06-15
发布日期:
2022-06-21
通讯作者:
王省芬
作者简介:
吴楠 E-mail:wn2013@126.com;
基金资助:
Nan WU(), Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG(
)
Received:
2021-09-13
Accepted:
2021-11-22
Online:
2022-06-15
Published:
2022-06-21
Contact:
Xingfen WANG
摘要:
纤维品质改良一直是棉花育种的重要目标。基于纤维不同发育时期的RNA-seq数据,发现1个在海岛棉和陆地棉间差异表达的葡萄糖醛酸激酶基因(glucuronic acid kinase/glucuronokinase,GlcAK)。从海岛棉(Gossypium barbadense)Pima90-53纤维中克隆了GbGlcAK,其ORF为1 101 bp,编码366个氨基酸。GbGlcAK具有GHMP 激酶 N和C结构域,为GHMP超家族成员,属于可溶性非分泌蛋白,与拟南芥GlcAK亲缘关系最近。亚细胞定位结果显示GbGlcAK分布在细胞质中。超表达GbGlcAK的拟南芥叶表皮毛、下胚轴、下胚轴细胞和根的长度较野生型均极显著增加,UDP-D-GlcA代谢相关基因表达量增加,果胶含量显著增加,说明过表达GbGlcAK能够上调UDP-D-GlcA代谢通路相关基因的表达从而提高果胶含量,进而促进细胞伸长,这为进一步研究GbGlcAK在棉纤维发育中的功能提供了参考。
中图分类号:
吴楠, 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬. 过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J]. 中国农业科技导报, 2022, 24(6): 36-46.
Nan WU, Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG. Overexpression of a Cotton Glucuronokinase Gene GbGlcAK Promotes Cell Elongation in Arabidopsis thaliana[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46.
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
---|---|---|---|
GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
表1 试验中用到的PCR和qPCR引物
Table 1 PCR and qPCR primers used in this study
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
---|---|---|---|
GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
图1 GbGlcAK蛋白特征A:ProtScale分析GbGlcAK肽链亲/疏水性分布曲线;B、C:TOPpred2和TMHMM 2.0工具对GbGlcAK氨基酸序列的跨膜区预测;D:GbGlcAK蛋白信号肽分析
Fig. 1 Characterization of GbGlcAK proteinA: Hydrophilic/hydrophobic distribution curve of the GbGlcAK peptide analyzed by ProtScale; B, C: Transmembrane region prediction of the GbGlcAK amino acid sequence by TOPpred2 and TMHMM 2.0; D: Signal peptide analysis of the GbGlcAK protein
图2 GbGlcAK系统进化分析注:Rc—蓖麻;Pt—毛果杨;Vv—葡萄;At—拟南芥;Gm—大豆;Os—水稻;Zm—玉米;Sb—高粱。
Fig.2 Evolutionary analysis of GbGlcAKNote: Rc—Ricinus communis; Pt—Populus trichocarpa; Vv—Vitis vinifera; At—Arabidopsis thaliana; Gm—Glycine max; Os—Oryza sativa; Zm—Zea mays; Sb—Sorghum bicolor.
图3 GbGlcAK的亚细胞定位A、B、C:蓝光、可见光叠加蓝光、可见光下的转pCam::GFP细胞;D、E、F:质壁分离后蓝光、可见光叠加蓝光、可见光下的转pCam::GbGlcAK-GFP细胞
Fig. 3 Subcellular localization of GbGlcAKA, B, C: Cell transfected with pCam::GFP under Blu-ray, visible light superimposed Blu-ray, and visible light; D, E, F: Cell transfected with pCam::GbGlcAK-GFP under Blu-ray, visible light superimposed Blu-ray, and visible light after plasma-wall separation
图4 转基因拟南芥叶表皮毛长度分析注:**表示在P<0.01水平差异显著(双尾t检验)。
Fig. 4 Analysis of leaf trichome length in transgenic A. thalianaNote:** indicates significant difference at the P<0.01 level (2-tailed t-test).
图5 转基因拟南芥下胚轴长度分析A、B:超表达GbGlcAK拟南芥与野生型拟南芥下胚轴长度比较;C:显微镜下观察超表达GbGlcAK拟南芥与野生型拟南芥叶下胚轴细胞。**表示P<0.01水平的显著性(双尾t检验);白色箭头所示细胞边界
Fig. 5 Analysis of hypocotyl length in transgenic A. thalianaA, B: Comparison of hypocotyl length between transgenic and wild-type Arabidopsis; C: Microscopic observation of hypocotyl cells; ** indicates significant difference at the P<0.01 level (2-tailed t-test);white arrows show the ends of cells
图6 转基因拟南芥根长分析注:**表示P<0.01水平的显著性(双尾t检验)。
Fig. 6 Analysis of root length in transgenic A. thalianaNote:** indicates significant difference at the P<0.01 level (2-tailed t-test).
图8 转基因拟南芥果胶含量注:*表示P<0.05水平的显著性(双尾t检验)。
Fig. 8 Pectin content in transgenic ArabidopsisNote:* indicates significant difference at P<0.05 level (2-tailed t-test).
1 | 喻树迅,魏晓文,赵新华.中国棉花生产与科技发展 [J].棉花学报, 2000, 12(6): 327-329. |
YU S X, WEI X W, ZHAO X H. Cotton production and technical development in China [J]. Acta Gossypii Sin., 2000, 12(6): 327-329. | |
2 | MA Z, ZHANG Y, WU L, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9): 1385-1391. |
3 | BASRA A S, MALIK C P. Development of the cotton fiber [J]. Int. Rev. Cytol., 1984, 89(6): 65-113. |
4 | HAIGLER C H, BETANCUR L, STIFF M R, et al.. Cotton fiber: a powerful single-cell model for cell wall and cellulose research [J/OL]. Front. Plant Sci., 2012, 3: 104 [2021-11-09]. . |
5 | QIN Y M, ZHU Y X. How cotton fibers elongate: a tale of linear cell-growth mode [J]. Curr. Opin. Plant Biol., 2011, 14(1): 106-111. |
6 | SINGH B, AVCI U, EICHLER INWOOD S E, et al.. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles [J]. Plant Physiol., 2009, 150(2): 684-699. |
7 | ZABLACKIS E, JING H, MüLLER B, et al.. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves [J]. Plant Physiol., 1995, 107(4): 1129-1138. |
8 | KANTER U, USADEL B, GUERINEAU F, et al.. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides [J]. Planta, 2005, 221(2): 243-254. |
9 | LOEWUS F A, KELLY S, NEUFELD E F. Metabolism of myo-inositol in plants: conversion to pectin, hemicellulose, D-xylose, and sugar acids [J]. Proc. Natl. Acad. Sci. USA, 1962, 48(3): 421-425. |
10 | NEUFELD E F, FEINGOLD D S, HASSID W Z. Enzymic phosphorylation of D-glucuronic acid by extracts from seedlings of Phaseolus aureus [J]. Arch. Biochem. Biophys., 1959, 83(1): 96-100. |
11 | LEIBOWITZ M D, DICKINSON D B, LOEWUS F A, et al.. Partial purification and study of pollen glucuronokinase [J]. Arch. Biochem. Biophys., 1977, 179(2): 559-564. |
12 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Nonradioactive enzyme measurement by high-performance liquid chromatography of partially purified sugar-1-kinase (glucuronokinase) from pollen of Lilium longiflorum [J]. Anal. Biochem., 2009, 388(2): 254-259. |
13 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Cloning of Glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars [J]. J. Biol. Chem., 2010, 285(5): 2902-2910. |
14 | HOLDEN H M, THODEN J B, TIMSON D J, et al.. Galactokinase: structure, function and role in type Ⅱ galactosemia [J]. Cell. Mol. Life Sci., 2004, 61(19-20): 2471-2484. |
15 | XIAO W, HU S, ZHOU X, et al.. A glucuronokinase gene in Arabidopsis, AtGlcAK, is involved in drought tolerance by modulating sugar metabolism [J]. Plant Mol. Biol. Rep., 2017, 35(2): 1-14. |
16 | IVANOV KAVKOVA E, BLöCHL C, TENHAKEN R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis [J]. Plant Biol., 2019, 21 (): 95-102. |
17 | LIU Z, WANG X, SUN Z, et al.. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes [J/OL]. BMC Plant Biol., 2021, 21(1): 89[2022-03-07]. . |
18 | WANG Z, YANG Z, LI F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton [J]. Plant Biotechnol. J., 2019, 17(9): 1706-1722. |
19 | 吴立柱,王省芬,李喜焕,等.通用型植物表达载体pCamE的构建及功能验证[J].农业生物技术学报, 2014, 22(6): 661-671. |
WU L Z, WANG X F, LI X H, et al.. Construction and function identification of universal plant expression vector pCamE [J]. J. Agric. Biotechnol., 2014, 22(6): 661-671. | |
20 | WANG M, TU L, YUAN D, et al.. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nat. Genet., 2019, 51(2): 224-229. |
21 | MISTRY J, CHUGURANSKY S, WILLIAMS L, et al.. Pfam: The protein families database in 2021 [J]. Nucleic Acids Res., 2021, 49(D1): D412-D419. |
22 | ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al.. ExPASy: SIB bioinformatics resource portal [J]. Nucleic Acids Res., 2012, 40(W1): W597-W603. |
23 | CUTHBERTSON J M, DOYLE D A, SANSOM M S. Transmembrane helix prediction: a comparative evaluation and analysis [J]. Protein Eng. Des. Sel., 2005, 18(6): 295-308. |
24 | KROGH A, LARSSON B, GVON HEIJNE, et al.. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. J. Mol. Biol., 2001, 305(3): 567-580. |
25 | MÖLLER S, CRONING M D, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646-653. |
26 | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SøNDERBY C K, et al.. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nat. Biotechnol., 2019, 37(4): 420-423. |
27 | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol. Biol. Evol., 2016, 33(7): 1870-1874. |
28 | YANG J, JI L, WANG X, et al.. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt [J]. Plant Cell Rep., 2015, 34(8): 1429-1441. |
29 | CHEN H, NELSON R S, SHERWOOD J L. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection [J]. Biotechniques, 1994, 16(4): 664-668, 670. |
30 | CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J., 1998, 16(6): 735-743. |
31 | An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121 [J]. New Phytol., 2017, 214(3): 1245-1259. |
32 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25(4): 402-408. |
33 | JEAN-MARC L, TRUNG-BIEU N, BRIGITTE C, et al.. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations [J]. BMC Plant Biol., 2005, 45(1): 123-140. |
34 | SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures [J]. Trends Plant Sci., 2006, 11(6): 274-280. |
35 | GUAN X, YU N, SHANGGUAN X, et al.. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chin Sci. Bull., 2007, 52(13): 1734-1741. |
36 | GUAN X, PANG M, NAH G, et al.. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J/OL]. Nat. Commun., 2014, 5: 3050[2022-03-07]. . |
37 | MA Z, HE S, WANG X, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6): 803-813. |
38 | GENDREAU E, TRAAS J, DESNOS T, et al.. Cellular basis of hypocotyl growth in Arabidopsis thaliana [J]. Plant Physiol., 1997, 114(1): 295-305. |
39 | BORON A K, VISSENBERG K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion [J]. Plant Cell Rep., 2014, 33(5): 697-706. |
40 | 武耀廷,刘进元.棉纤维细胞发育过程中非纤维素多糖的生物合成 [J].棉花学报, 2004, 16(3): 189-192. |
WU Y, LIU J. Noncellulosic polysaccharides biosynthesis in cotton fiber developing [J]. Cotton Sci., 2004, 16(3): 189-193. | |
41 | 喻树迅,朱玉贤,陈晓亚.棉花纤维发育生物学 [M].北京:科学出版社, 2016: 169. |
42 | KROH M, MIKI-HIROSIGE H, ROSEN W, et al.. Incorporation of label into pollen tube walls from myoinositol-labeled Lilium longiflorum pistils [J]. Plant Physiol., 1970, 45(1): 92-94. |
43 | SEITZ B, KLOS C, WURM M, et al.. Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns [J]. Plant J., 2000, 21(6): 537-546. |
[1] | 黄雅婕, 任丹, 李生梅, 崔进鑫, 杨涛, 任姣姣, 高文伟. 陆地棉苗期的耐盐碱性评价及鉴定指标筛选[J]. 中国农业科技导报, 2022, 24(5): 46-55. |
[2] | 周雨青, 杨永飞, 葛常伟, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 刘瑞华, 李士丛, 赵新华, 李存东, 庞朝友. 基于WGCNA的棉花子叶抗冷相关共表达模块鉴定[J]. 中国农业科技导报, 2022, 24(4): 52-62. |
[3] | 刘正文, 王省芬, 孟成生, 张艳, 孙正文, 吴立强, 马峙英, 张桂寅. 海岛棉GH9基因家族成员鉴定及分析[J]. 中国农业科技导报, 2021, 23(9): 30-45. |
[4] | 李生梅, 张大伟, 迪丽拜尔·迪力买买提, 魏鑫, 芮存, 杨涛, 耿世伟, 高文伟. 减量灌溉对转ScALDH21基因棉花农艺性状、产量和品质的影响[J]. 中国农业科技导报, 2021, 23(9): 152-159. |
[5] | 张旭1,何俊峰1,陈佛文1,李继福1*,吴启侠1,谭京红1,邹家龙2. 麦秆还田对直播和移栽棉花产量及氮素吸收的影响[J]. 中国农业科技导报, 2021, 23(3): 122-131. |
[6] | 张特,康正华,赵强*,聂志勇,王蜜蜂,崔延楠. 施氮量及打顶方式对棉花营养积累与分配及产量的影响[J]. 中国农业科技导报, 2021, 23(3): 139-147. |
[7] | 马盼盼1,2,赵曾强1,2,祝建波2,孙国清3*. 棉花耐旱耐盐碱生理和分子机制研究进展[J]. 中国农业科技导报, 2021, 23(2): 27-36. |
[8] | 王国宁, 张艳, 宋俊丽, 杨君, 王省芬, 吴立强, 张桂寅. 黄萎病胁迫下抗病陆地棉茎组织lncRNA的鉴定与分析[J]. 中国农业科技导报, 2021, 23(12): 29-41. |
[9] | 吴雪琴, 崔延楠, 赵强. 化学打顶后使用外源物质对棉花脱叶催熟及产量品质的影响[J]. 中国农业科技导报, 2021, 23(12): 151-160. |
[10] | 李憬霖, 刘绍东, 张思平, 陈静, 刘瑞华, 沈倩, 李阳, 马慧娟, 赵新华, 庞朝友. 棉花品种资源全生育期抗旱性评价及抗旱指标筛选[J]. 中国农业科技导报, 2021, 23(10): 52-65. |
[11] | 刘梦丽1,李进2,张军高2,周小云2,杜鹏程1,郭庆元1*,雷斌2*. 棉花红腐病菌不同致病力菌株间毒素活性差异[J]. 中国农业科技导报, 2020, 22(7): 99-105. |
[12] | 刘松涛1,田春丽1,曹雯梅1,郑贝贝1,李鹏程2,董合林2. 基于不同土壤质地棉花根际微生物和酶活性特征分析[J]. 中国农业科技导报, 2020, 22(2): 73-79. |
[13] | 段怡红,阎媛媛,陈丽婷,李青,张冬梅,孙正文,张艳,马峙英,王省芬*. 陆地棉开花时间相关基因GhMYB44的克隆与功能验证[J]. 中国农业科技导报, 2020, 22(12): 29-38. |
[14] | 王潭刚1§,马丽1§,李克富1,王冀川2*,李慧琴1,吉光鹏1,郝全有1,崔建强1,胡宝1. 不同密度下封顶方式对南疆棉花生长及产量性状的影响[J]. 中国农业科技导报, 2019, 21(6): 110-116. |
[15] | 赵婧文,张庆伟,李政,张文太*. 膜下滴灌施用生物有机肥对土壤盐分及棉花产量的影响[J]. 中国农业科技导报, 2019, 21(3): 102-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||