中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (2): 1-12.DOI: 10.13304/j.nykjdb.2022.0923
• 农业创新论坛 •
陈晨(), 程大伟, 李兰, 顾红, 郭西智, 李明(
), 陈锦永(
)
收稿日期:
2022-10-28
接受日期:
2022-12-15
出版日期:
2024-02-15
发布日期:
2024-02-04
通讯作者:
李明,陈锦永
作者简介:
陈晨 E-mail: chenchen031018@163.com
基金资助:
Chen CHEN(), Dawei CHENG, Lan LI, Hong GU, Xizhi GUO, Ming LI(
), Jinyong CHEN(
)
Received:
2022-10-28
Accepted:
2022-12-15
Online:
2024-02-15
Published:
2024-02-04
Contact:
Ming LI,Jinyong CHEN
摘要:
油菜素内酯(brassinosteroid,BR)作为新型、高效的植物激素,广泛参与植物的各种生理过程,可以缓解多种非生物胁迫。阐述了BR处理缓解盐胁迫的生物学功能,总结了拟南芥、农作物水稻以及多种园艺植物的BR信号通路,并通过介绍BR的耐盐机理,进一步分析了植物遭受盐胁迫时的应答信号转导通路,旨在为加强BR在提高植物耐盐方面的应用提供理论依据。
中图分类号:
陈晨, 程大伟, 李兰, 顾红, 郭西智, 李明, 陈锦永. 油菜素内酯调控植物耐盐机理研究进展[J]. 中国农业科技导报, 2024, 26(2): 1-12.
Chen CHEN, Dawei CHENG, Lan LI, Hong GU, Xizhi GUO, Ming LI, Jinyong CHEN. Research Progress on Mechanism of Brassinosteroids Regulating Plant Salt Tolerance[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 1-12.
1 | 赵起越,夏夜,邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119. |
2 | 汤日圣,黄益洪,唐现洪,等. 生物源脱落酸对盐胁迫下辣椒苗生长和某些生理指标的影响[J]. 江苏农业学报,2009,25(4): 856-860. |
TANG R S, HUANG Y H, TANG X H,et al.. Effects of microoraganism-sourced ABA on the growth and some physiological indexes of pepper seedling under salt stress [J]. Jiangsu J. Agric. Sci., 2009, 25(4):856-860. | |
3 | 尚庆茂,宋士清,张志刚,等. 外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性 [J]. 中国农业科学,2006,39(9): 1872-1877. |
SHANG Q M, SONG S Q, ZHANG Z G,et al.. Exogenous brassinosteroid induced the salt resistance of cucumber (Cucumis sativus L.) seedlings [J]. Sci. Agric. Sin., 2006, 39(9):1872-1877. | |
4 | MITCHELL J W, MANDAVA N, WORLEY J F,et al.. Brassins-a new family of plant hormones from rape pollen [J]. Nature, 1970, 225(5237): 1065-1066. |
5 | GROVE M D, SPENCER G F, ROHWEDDER W K. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen [J]. Nature, 1979, 281: 216-217. |
6 | 郑婷,程建徽,魏灵珠,等. 油菜素内酯及其在园艺植物中的研究进展[J/OL]. 分子植物育种,2022 [2022-09-28]. . |
ZHENG T, CHENG J H, WEI L Z,et al.. Progress of brassinosteroids and reasearch advancements on horticultural plants [J/OL]. Mol. Plant Breed., 2022 [2022-09-28]. . | |
7 | WADA K, MARUMO S, IKEKAWA N,et al.. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings [J]. Plant Cell Physiol., 1981, 22(2): 323-325. |
8 | 习世宏,褚祥. 油菜素内酯对花椒幼苗生长和抗旱性影响 [J]. 陕西林业科技,2014(5): 1-4. |
XI S H, CHU X. Effect of natural brassinoide on the growth and drought resistance of Zanthoxylum bungeanum seedlings [J]. Shaanxi For. Sci. Technol., 2014(5):1-4. | |
9 | OGWENO J O, SONG X S, SHI K,et al.. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum [J]. J. Plant Growth Regul., 2008, 27(1): 49-57. |
10 | 董登峰,李杨瑞,江立庚. 油菜素内酯对铝胁迫大豆光合特性的影响[J]. 作物学报,2008,34(9): 1673-1678. |
DONG D F, LI Y R, JIANG L G. Effects of brassinosteroid on photosynthetic characteristics in soybean under aluminum stress [J]. Acta. Agron. Sin., 2008, 34(9):1673-1678. | |
11 | 吴雪霞,查丁石,朱宗文,等. 外源24-表油菜素内酯对盐胁迫下茄子种子萌发和幼苗生理特性的影响[J]. 植物生理学报,2011,47(6): 607-612. |
WU X X, CHA D S, ZHU Z W,et al.. Effects of exogenous 24-epibrassinolide on seed germination, physiological characteristics of eggplant seedlings under NaCl stress [J]. Acta Phytophysiol. Sin., 2011, 47(6):607-612. | |
12 | 范翠枝,吴馨怡,关欣,等. 油菜素内酯浸种对盐胁迫番茄种子萌发的影响及其生理机制[J]. 生态学报,2021,41(5): 1857-1867. |
FAN C Z, WU X Y, GUAN X,et al.. Concentration effects and its physiological mechanism of soaking seeds with brassinolide on tomato seed germination under salt stress [J]. Acta Ecol. Sin., 2021, 41(5):1857-1867. | |
13 | HU Y Q, XIA S T, SU Y,et al.. Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress [J/OL]. Biomed. Res. Int., 2016, 2016:8231873 [2022-09-28]. . |
14 | 张林青. 油菜素内酯对盐胁迫下番茄幼苗生理指标的影响 [J]. 北方园艺,2013(1): 1-3. |
ZHANG L Q. The affection of brassinolide on the physiological indexes of tomato seedlings [J]. Northern Hortic., 2013(1):1-3. | |
15 | 张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响 [J]. 北方园艺,2012(20): 23-25. |
ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress [J]. Northern Hortic., 2012(20):23-25. | |
16 | 宋靓苑,林恬逸,许静雯,等. 盐胁迫下表油菜素内酯对沟叶结缕草愈伤组织生长和再生的影响[J]. 核农学报,2020,34(7): 1440-1446. |
SONG L Y, LIN T Y, XU J W,et al.. Effects of epibrassinolide on callus growth and regeneration of Zoysia matrella (L.) Merr. under salt stress [J]. J. Nucl. Agric. Sci., 2020, 34(7):1440-1446. | |
17 | WANG H J, YANG C J, ZHANG C,et al.. Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors [J]. Dev. Cell, 2011, 21(5): 825-834. |
18 | IMKAMPE J, HALTER T, HUANG S H,et al.. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1 [J]. Plant Cell, 2017, 29(9): 2285-2303. |
19 | SHIMADA S, KOMATSU T, YAMAGAMI A,et al.. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling [J]. Plant Cell, 2015, 27(2): 375-390. |
20 | TIAN Y, FAN M, QIN Z,et al.. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor [J/OL]. Nat. Commun., 2018, 9:3463 [2022-09-28]. . |
21 | WANG Z Y, SETO H, FUJIOKA S,et al.. BRI1 is a critical component of a plasma-membrane receptor for plant steroids [J]. Nature, 2001, 410(6826): 380-383. |
22 | WANG J, JIANG J J, WANG J,et al.. Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1 [J]. Cell Res., 2014, 24(11): 1328-1341. |
23 | WANG X L, CHORY J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane [J]. Science, 2006, 313(5790): 1118-1122. |
24 | WANG X F, KOTA U, HE K,et al.. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling [J]. Dev. Cell, 2008, 15(2): 220-235. |
25 | ZHAO B L, LYU M H, FENG Z X,et al.. TWISTED DWARF 1 associates with BRASSINOSTEROID-INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway [J]. Mol. Plant, 2016, 9(4): 582-592. |
26 | TANG W Q, KIM T W, OSES-PRIETO J A, et al.. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis [J]. Science, 2008, 321(5888): 557-560. |
27 | KIM T W, GUAN S, BURLINGAME A L,et al.. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2 [J]. Mol. Cell, 2011, 43(4): 561-571. |
28 | RYU H, KIM K, CHO H, et al.. Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling [J]. Mol. Cell, 2010, 29(3): 291-296. |
29 | PENG P, YAN Z Y, ZHU Y Y,et al.. Regulation of the Arabidopsis GSK3-like kinase brassinosteroid-insensitive 2 through proteasome-mediated protein degradation [J]. Mol. Plant, 2008, 1(2): 338-346. |
30 | ZHU J Y, LI Y, CAO D M,et al.. The F-box Protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis [J]. Mol. Cell, 2017, 66(5): 648-657. |
31 | TANG W, YUAN M, WANG R,et al.. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 [J]. Nat. Cell Biol., 2011, 13(2): 124-131. |
32 | YIN Y H, WANG Z Y, MORA-GARCIA S,et al.. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell, 2002, 109(2): 181-191. |
33 | WANG Z Y, NAKANO T, GENDRON J,et al.. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis [J]. Dev. Cell, 2002, 2(4): 505-513. |
34 | NOLAN T, CHEN J, YIN Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses [J]. Biochem. J., 2017, 474(16): 2641-2661. |
35 | OH M H, WANG X F, CLOUSE S D,et al.. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(1): 327-332. |
36 | NOLAN T M, VUKASINOVIC N, LIU D,et al.. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses [J]. Plant Cell, 2020, 32(2): 295-318. |
37 | ZHAO X, ZHONG Y, SHI J,et al.. 24-epibrassinolide confers tolerance against deep-seeding stress in Zea mays L. coleoptile development by phytohormones signaling transduction and their interaction network [J/OL]. Plant Signal. Behav., 2021, 16(11):1963583 [2022-09-28]. . |
38 | YAMAMURO C, IHARA Y, WU X, et al.. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell, 2000, 12(9): 1591-1606. |
39 | LI D, WANG L, WANG M, et al.. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield [J]. Plant Biotechnol. J., 2010, 7(8): 791-806. |
40 | BAI M Y, ZHANG L Y, GAMPALA S S,et al.. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(34): 13839-13844. |
41 | TONG H N, JIN Y, LIU W B,et al.. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice [J]. Plant J., 2009, 58(5): 803-816. |
42 | HU X M, QIAN Q, XU T,et al.. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice [J/OL]. PLoS Genet., 2013, 9(3): 1003391 [2022-09-28]. . |
43 | WANG L, XU Y, ZHANG C,et al.. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling [J/OL]. PLoS One, 2008, 3(10): e0003521 [2022-09-28]. . |
44 | GAO X Y, ZHANG J Q, ZHANG X J,et al.. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling [J]. Plant cell, 2019, 31(5): 1077-1093. |
45 | XIAO Y, ZHANG G, LIU D,et al.. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice [J]. Plant J., 2020, 102(6): 1187-1201. |
46 | 沈爱华,罗红兵,邓志平,等. 油菜素内酯信号传递在水稻中的研究进展[J]. 浙江农业学报,2014,26(5): 1399-1404. |
SHEN A H, LUO H B, DENG Z P,et al.. Recent advances in brassinosteriod signaling in rice [J]. Acta Agric. Zhejiangensis, 2014, 26(5):1399-1404. | |
47 | JI Y L, QU Y, JIANG Z Y,et al.. The mechanism for brassinosteroids suppressing climacteric fruit ripening [J]. Plant Physiol., 2021, 185(4): 1875-1893. |
48 | XIA X J, DONG H, YIN Y L,et al.. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(11):384118 [2022-09-28]. . |
49 | AN S M, LIU Y, SANG K Q,et al.. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato [J]. J. Integr. Plant Biol., 2023, 65(1): 10-24. |
50 | WU Z Y, GU S C, GU H, et al.. Physiological and transcriptomic analyses of brassinosteroid function in kiwifruit root [J]. Environ. Exp. Bot., 2022, 194: 104685-104685. |
51 | ZHENG T, DONG T, HAIDER M S,et al.. Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development [J]. J. Agric. Food Chem., 2020, 68(43): 11987-11996. |
52 | 胡文海,黄黎锋,毛伟华,等. 油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究[J]. 园艺学报,2006,33(4): 762-766. |
HU W H, HUANG L F, MAO W H,et al.. Role of brassinosteroids in the regulation of photosynthetic apparatus in cucumber leaves [J]. Acta Hortic. Sin., 2006, 33(4):762-766. | |
53 | 王金平,张金池,岳健敏,等. 油菜素内酯对氯化钠胁迫下樟树幼苗光合色素和叶绿素荧光参数的影响[J]. 浙江农林大学学报,2017,34(1): 20-27. |
WANG J P, ZHANG J C, YUE J M,et al.. BRs, photosynthetic pigment, and chlorophyll fluorescence parameters in Cinnamomum camphora seedlings with NaCl stress [J]. J. Zhejiang A & F Univ., 2017, 34(1):20-27. | |
54 | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol. Biochem., 2010, 48(12): 909-930. |
55 | ÖZDEMIR F,BOR M, DEMIRAL T,et al.. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress [J]. Plant Growth Regul., 2004, 42(3): 203-211. |
56 | LIU J L, YANG R C, JIAN N,et al.. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance [J]. Plant Cell Environ., 2020, 43(6): 1348-1359. |
57 | CHEN H, JIANG J G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity [J]. Environ. Rev., 2010, 18: 309-319. |
58 | 孙珊珊,安勐颍,韩烈保,等. 外源24-表油菜素内酯对多年生黑麦草幼苗耐盐性的影响[J]. 草地学报, 2014, 22(5): 1045-1050. |
SUN S S, AN M Y, HAN L B, et al.. Effects of exogenously applied 24-epibrassinolide on the seedlings perennial ryegrass under NaCl stress [J]. Acta Agrestia Sin.,2014, 22(5): 1045-1050. | |
59 | 郑春芳,范翠枝,郑青松,等. 外施2,4-表油菜素内酯对盐胁迫下番茄幼苗生长及生理特性的影响[J]. 浙江农林科学,2022,63(5): 991-995. |
ZHENG C F, FAN C Z, ZHENG Q S, et al.. Effect of exogenous 2, 4-epibrassinolide on the growth and physiological characteristics of tomato seedlings under salt stress [J]. J. Zhejiang Agric. Sci., 2022, 63(5):991-995. | |
60 | DEMIDCHIK V, MAATHUIS F. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development [J]. New Phytol., 2007, 175(3): 387-404. |
61 | ZHANG M F, WANG D, KANG Y L,et al.. Structure of the mechanosensitive OSCA channels [J]. Nat. Struct. Mol. Biol., 2018, 25(9): 850-858. |
62 | LÄUCHLI A, GRATTAN S R. Plant Growth and Development under Salinity Stress [M]// Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer Netherlands, 2007: 1-32. |
63 | MILLER G, SUZUKI N, CIFTCI-YILMAZ S,et al.. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant, Cell Environ., 2010, 33(4): 453-467. |
64 | SUN J, DAI S X, WANG R G,et al.. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance [J]. Tree Physiol., 2009, 29(9): 1175-1186. |
65 | SHI H Z, ISHITANI M, KIM C,et al.. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Nat. Acad. Sci., 2000, 97(12): 6896-6901. |
66 | MASER P, ECKELMAN B, VAIDYANATHAN R, et al.. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTI1 [J]. FEBS Lett., 2002, 531(2): 157-161. |
67 | HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97(7): 3735-3740. |
68 | QUAN R, LIN H, MENDOZA I,et al.. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell, 2007, 19(4): 1415-1431. |
69 | KIM W Y,ALI Z, PARK H J,et al.. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis [J/OL]. Nat. Commun., 2013, 4:2357 [2022-09-28]. . |
70 | YANG Z J, WANG C W, XUE Y, et al.. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance [J/OL]. Nat. Commun., 2019, 10(1) :09181 [2022-09-28]. . |
71 | FUKUDA A, CHIBA K, MAEDA M,et al.. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley [J]. J. Exp. Bot., 2002, 55(397): 585-594. |
72 | YANG Y Q, GUO Y. Unraveling salt stress signaling in plants [J]. J. Integr. Plant Biol., 2018, 60(9): 796-804. |
73 | PLANAS-RIVEROLA A, GUPTA A, BETEGON-PUTZE I,et al.. Brassinosteroid signaling in plant development and adaptation to stress [J/OL]. Development, 2019, 146(5): 151894 [2022-09-28]. . |
74 | LI J F, ZHOU H P, ZHANG Y,et al.. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana [J]. Dev. Cell, 2020, 55(3): 367-380. |
75 | ZHANG S S, CAI Z Y, WANG X L. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(11): 4543-4548. |
76 | ZHAO X, DOU L R, GONG Z Z, et al.. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis [J]. New Phytol., 2019, 221(2): 908-918. |
77 | CHEN J, YU F, LIU Y,et al.. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(37): 5519-5527. |
78 | KANCHAN V, NEHA U, NITIN K,et al.. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects [J/OL]. Front. Plant Sci., 2017, 8:161 [2022-09-28]. . |
79 | XIA X J, GAO C J, SONG L X, et al.. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum [J]. Plant Cell Environ., 2014, 37(9): 2036-2050. |
80 | HAUBRICK L L, TORSETHAUGEN G, ASSMANN S M, et al.. Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts [J]. Physiol. Plantarum, 2006, 128(1): 134-143. |
81 | LI J G, FAN M, HUA W,et al.. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation [J]. Plant Cell, 2020, 32(4): 984-999. |
82 | ÁBRAHÁM E, RIGÓ G, SZÉKELY G,et al.. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis [J]. Plant Mol. Biol., 2003, 51(3): 363-372. |
83 | HANSEN M, CHAE H S, KIEBER J J. Regulation of ACS protein stability by cytokinin and brassinosteroid [J]. Plant J., 2009, 57(4): 606-614. |
84 | PENG J Y, LI Z H, WEN X, et al.. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis [J/OL]. PLoS Genet., 2014, 10(10): 1004664 [2022-09-28]. . |
85 | CHEN Y, CAO C, GUO Z,et al.. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub [J]. Plant Cell Environ., 2020, 43(2): 400-419. |
86 | BAO F, SHEN J, BRADY S R,et al.. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J]. Plant Physiol., 2004, 134(4): 1624-1631. |
87 | MOUBAYIDIN L, PERILLI S, DELLO IOIO R, et al.. The rate of cell differentiation controls the Arabidopsis root meristem growth phase [J]. Curr. Biol., 2010, 20(12): 1138-1142. |
88 | MOUCHEL C F, OSMONT K S, HARDTKE C S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth [J]. Nature, 2006, 443(7110): 458-461. |
89 | YOSHIMITSU Y, TANAKA K, FUKUDA W,et al.. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana [J/OL]. PLoS One, 2011, 6(8):e0023851 [2022-09-28]. . |
90 | WASTERNACK C, HAUSE B. A bypass in jasmonate biosynthesis-the OPR3-independent formation [J]. Trends Plant Sci., 2018, 23(4): 276-279. |
[1] | 杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34. |
[2] | 崔宏亮, 宋晓晓, 姚庆, 安万刚, 邢宝, 秦培友. 伊犁河谷不同藜麦品种对盐胁迫的生理响应及耐盐评价[J]. 中国农业科技导报, 2022, 24(5): 32-45. |
[3] | 黄雅婕, 任丹, 李生梅, 崔进鑫, 杨涛, 任姣姣, 高文伟. 陆地棉苗期的耐盐碱性评价及鉴定指标筛选[J]. 中国农业科技导报, 2022, 24(5): 46-55. |
[4] | 吴志勇, 顾红, 程大伟, 李兰, 何莎莎, 李明, 陈锦永. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68-76. |
[5] | 万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用[J]. 中国农业科技导报, 2022, 24(12): 59-67. |
[6] | 张志东1,顾美英1,唐琦勇1,楚敏1,朱静1,孙建1,杨蓉1,徐万里2*. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192. |
[7] | 马盼盼1,2,赵曾强1,2,祝建波2,孙国清3*. 棉花耐旱耐盐碱生理和分子机制研究进展[J]. 中国农业科技导报, 2021, 23(2): 27-36. |
[8] | 段敏1,谢留杰1,朱亚军2,黄善军1,潘晓飚1*,徐建龙2,3*. 盐胁迫下水稻幼苗存活率的QTL定位[J]. 中国农业科技导报, 2019, 21(9): 25-35. |
[9] | 郭光艳§,杨亚玲§,曹璐,刘伟,秘彩莉*. 小麦RF2类bZIP转录因子TabZIP3参与植物盐胁迫反应[J]. 中国农业科技导报, 2019, 21(6): 20-27. |
[10] | 孙帆1§,籍东武2§,黄菲1,王银晓1,谢自艳1,王文生1*. DNA甲基化抑制剂对水稻幼苗生长及耐盐性的影响[J]. 中国农业科技导报, 2019, 21(6): 28-35. |
[11] | 任富莉1,2,潘映红3,张笑笑2,蒲伟军2,牟永莹3,李玉斌2,张桦1*,朱莉2*. 基于多重表型的高粱耐盐性综合评价方法[J]. 中国农业科技导报, 2019, 21(6): 152-162. |
[12] | 王俊铎1,曾辉2,龚照龙1,梁亚军1,艾先涛1,郭江平1,莫明1,李雪源1,郑巨云1*. 陆地棉品种资源耐复合盐碱性综合评价分析[J]. 中国农业科技导报, 2019, 21(10): 1-11. |
[13] | 孙晓春1,张惠惠2,黄文静1,杨俊英2,汪荔1,唐志书1*. 干旱胁迫下水杨酸对桔梗种子萌发及植物激素的影响[J]. 中国农业科技导报, 2019, 21(10): 74-79. |
[14] | 景宇鹏1,2,连海飞1,李焕春1,史培1,杜超3,刘梅4,常新娟5. 玉米耐盐碱能力及评价指标筛选研究[J]. 中国农业科技导报, 2018, 20(11): 94-104. |
[15] | 杨正涛1§,辛淑荣1§,王兴杰2,张昌爱1*. 甲壳素类肥料的应用研究进展[J]. 中国农业科技导报, 2018, 20(1): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||