中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (12): 26-34.DOI: 10.13304/j.nykjdb.2022.0283
杨文俊(), 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家(
)
收稿日期:
2022-04-10
接受日期:
2022-05-17
出版日期:
2023-12-15
发布日期:
2023-12-12
通讯作者:
陈全家
作者简介:
杨文俊 E-mail: wenjunyang2022@163.com;
基金资助:
Wenjun YANG(), Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN(
)
Received:
2022-04-10
Accepted:
2022-05-17
Online:
2023-12-15
Published:
2023-12-12
Contact:
Quanjia CHEN
摘要:
为挖掘控制棉花苗期耐盐的重要数量性状位点(quantitative trait loci, QTL),利用BioMercator V4.2.3软件,以棉花高密度遗传连锁图谱作为参考,对来自3个作图群体涉及19个性状的194个QTLs进行图谱整合、映射以及QTL元分析。结果表明,通过建立棉花苗期耐盐相关性状一致性图谱,共挖掘出11个一致性QTL(meta quantitative trait loci, MQTL)位点,各MQTL至少包含3个原始QTLs,置信区间最短缩小至0.92 cM,分布于A03、A06、A11、A12、A13、D01、D03、D06、D07和D08共10条染色体上。通过对A11染色体上MQTL区间进行候选基因预测,挖掘到14个与棉花苗期耐盐相关的候选基因,为棉花苗期耐盐相关性状精细定位及分子辅助选择育种提供理论依据。
中图分类号:
杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34.
Wenjun YANG, Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN. Meta-analysis of QTL for Salt Tolerance-related Traits at Seeding Stage in Cotton[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 26-34.
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
表1 棉花苗期耐盐相关性状QTLs数据整合
Table 1 Integration of QTLs data for the salt tolerance related trait at seeding stage in cotton
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
表2 棉花苗期耐盐相关性状QTL元分析
Table 2 Meta-analysis of QTL for salt tolerance-related traits at seedlings stage of cotton
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
表3 棉花苗期耐盐相关性状MQTL区间内候选基因
Table 3 Candidate genes within the MQTL interval of salt tolerance-related traits at seeding stage in cotton
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
1 | 苏莹,郭安慧,华金平.棉花耐盐性鉴定方法探讨[J].中国农业大学学报,2021,26(12):11-19. |
SU Y, GUO A H, HUA J P. Stratrgies for evaluation the salt tolerance in cotton [J]. J. China Agric. Univ., 2021, 26(12):11-19. | |
2 | 联合国粮食和农业组织.世界盐渍土壤分布图发布[EB/OL].(2021-10-20)[2022-03-05]. . |
3 | 杨真,王宝山.中国盐渍土资源现状及改良利用对策[J].山东农业科学,2015,47(4):125-130. |
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China [J]. Shandong Agric. Sci., 2015, 47(4):125-130. | |
4 | SHARIF I, ALEEM S, FAROOQ J, et al.. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies [J]. Physiol. Mol. Biol. Plant, 2019, 25(4):807-820. |
5 | 彭振,何守朴,孙君灵,等.陆地棉苗期耐盐性的高效鉴定方法[J].作物学报,2014,40(3):476-486. |
PENG Z, HE S P, SUN J L, et al.. An efficient approach to identify salt tolerance of upland cotton at seedling stage [J]. Acta Agron. Sin., 2014, 40(3):476-486. | |
6 | ASHRAF M. Salt tolerance of cotton: some new advances [J]. Crit. Rev. Plant Sci., 2002, 21(1):1-30. |
7 | 刘晨晨.陆地棉重组自交系群体耐盐性鉴评及QTL定位[D].保定:河北农业大学,2021. |
LIU C C. Salt tolerance evaluation and QTL mapping of recombinant upland cotton inbred lines [J]. Baoding: Hebei Agricultural University, 2021. | |
8 | IQBAL M S.陆地棉耐盐性的QTL定位和候选基因鉴定[D].北京:中国农业科学院,2019. |
IQBAL M S. MUHAMMAD S I. QTL mapping and candidate genes conferring to salinity tolerance in upland cotton [J]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
9 | 朱协飞,司占峰.棉花导入系耐盐性鉴定及耐盐基因QTL定位[J].棉花学报,2019,31(1):23-30. |
ZHU X F, SI Z F. Evaluation and QTL mapping of tolerance to salinity using interspecific introgression lines from Gossypium barbadense in G. hirsutum [J]. Cott. Sci., 2019, 31(1):23-30. | |
10 | 王鹏,田甜,张沛沛, 等.小麦粒形QTL元分析及候选基因预测[J].麦类作物学报,2021,41(9):1090-1098. |
WANG P, TIAN T, ZHANG P P, et al.. Mete-analysis of quantitative trait loci and prediction of candidate genes for kernel morphology in wheat [J]. J. Triticeae Crops, 2021, 41(9):1090-1098. | |
11 | ARCADE A, LABOURDETTE A, FALQUE M, et al.. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes [J]. Bioinformatics, 2004, 20(14):2324-2326. |
12 | 冯世超,赵宏伟,王敬国, 等.水稻耐盐QTL图谱整合[J].东北农业大学学报,2013,44(4):24-29. |
FEN S C, ZHAO H W, WANG J G, et al.. Inegrated map of rice salt tolerance QTL [J]. J. Northeast Agric. Univ., 2013, 44(4):24-29. | |
13 | 王晓丽,李新海,王振华.玉米产量因子QTL整合图谱构建与“一致性”QTL确定[J].核农学报,2008,22(6):756-761, 838. |
WANG X L, LI X H, WANG Z H. Construction of integration map and consensus QTL identification for grain yield components in maize [J]. J. Nucl. Agric. Sci., 2008, 22(6):756-761, 838. | |
14 | 杨鑫雷.四倍体棉花纤维品质相关性状QTL定位及元分析[D].保定:河北农业大学,2013. |
YANG X L. Traits in tetraploid cotton QTL mapping and meta-analysis for fiber quality [J]. Baoding: Hebei Agricultural University, 2013. | |
15 | SAID J I, LIN Z, ZHANG X, et al.. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton [J/OL]. BMC Genomics, 2013, 14(1):776 [2022-03005]. . |
16 | ZHANG J, YU J, PEI W, et al.. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton [J/OL]. BMC Genomics, 2015, 16(1):577 [2022-03-05]. . |
17 | DARVASI A, SOLLER M. A simple method to calculate resolving power and confidence interval of QTL map location [J]. Behav. Genet., 1997, 27(2):125-132. |
18 | DIOUF L, PAN Z, HE S P, et al.. High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS) [J]. Int. J. Mol. Sci., 2017, 18(12):2622-2632. |
19 | OLUOCH G, ZHENG J, WANG X, et al.. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum [J]. Euphytica, 2016, 209(1):223-235. |
20 | ABDELRAHEEM A, FANG D D, ZHANG J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of upland cotton under the greenhouse and field conditions [J]. Euphytica, 2018, 214(1):1-20. |
21 | CHARDON F, VIRLON B, MOREAU L, et al.. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome [J]. Genetics, 2004, 168(4):2169-2185. |
22 | 杨鑫雷,周晓栋,王省芬, 等.棉花纤维品质性状QTL的元分析[J].棉花学报,2013,25(6):503-509. |
YANG X L, ZHOU X D, WANG S F, et al.. Quantitative traits locus meta-analysis of fiber quality traits in cotton [J]. Cott. Sci., 2013, 25(6):503-509. | |
23 | GILLANI S F, RASHEED A, YUHONG G, et al.. Assessment of cold stress tolerance in maize through quantitative trait locus, genome-wide association study and transcriptome analysis [J]. Not. Bot. Hortic. Agrobo., 2021, 49(4):12525-12525. |
24 | HUANG G, WU Z, PERCY R G, et al.. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution [J]. Nat. Genet., 2020, 52(5):516-524. |
25 | URAO T, YAKUBOV B, SATOH R, et al.. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. Plant Cell, 1999, 11(9):1743-1754. |
26 | TRAN L P, URAO T, QIN F, et al.. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(51):20623-20628. |
27 | WOHLBACH D J, QUIRINO B F, SUSSMAN M R. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation [J/OL]. Plant Cell, 2008: 055871 [2022-03-05]. . |
28 | DÓCZI R, BRADER G, PETTKÓ-SZANDTNER A, et al.. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling [J]. Plant Cell, 2007, 19(10):3266-3279. |
29 | YAMADA K, YAMAGUCHI K, SHIRAKAWA T, et al.. The Arabidopsis CERK 1‐associated kinase PBL 27 connects chitin perception to MAPK activation [J]. EMBO J., 2016, 35(22):2468-2483. |
30 | GUTIERREZ B E, MOSCHOU P N, SMERTENKO A P, et al.. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis [J]. Plant Cell, 2015, 27(3):926-943. |
31 | ZAREI A, TROBACHER C P, SHELP B J. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production [J]. Sci. Rep., 2016, 6(1):1-11. |
32 | SEIDEL T, SCHNITZER D, GOLLDACK D, et al.. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis [J]. BMC Cell Biol., 2008, 9(1):1-14. |
33 | KAWA D, MEYER A J, DEKKER H L, et al.. SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt [J]. Plant Physiol., 2020, 182(1):361-377. |
[1] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
[2] | 孙亚倩, 陈士亮, 褚佳豪, 李喜焕, 张彩英. 基于BSA-seq结合连锁分析发掘大豆荚粒性状QTLs及候选基因[J]. 中国农业科技导报, 2023, 25(7): 29-42. |
[3] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
[4] | 牛营超, 王星, 郭青云, 戴小华, 袁小勇, 陈琳. 棉花立枯病拮抗细菌的分离鉴定及抑菌活性[J]. 中国农业科技导报, 2023, 25(12): 138-144. |
[5] | 陈炟, 巨吉生, 马麒, 徐守振, 刘娟娟, 袁文敏, 李吉莲, 王彩香, 宿俊吉. FeNPs对苗期棉花根系生长及其对干旱响应的影响[J]. 中国农业科技导报, 2023, 25(11): 49-57. |
[6] | 张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44. |
[7] | 陆国清, 马彩霞, 孙国清, 郭惠明, 程红梅. 抗除草剂棉花GV-2的分子特征和遗传稳定性分析[J]. 中国农业科技导报, 2023, 25(1): 42-49. |
[8] | 刘艳, 鲍红帅, 尚红燕, 王国宁, 张艳, 王省芬, 马峙英, 吴金华. 棉花枯萎病菌及其培养条件筛选[J]. 中国农业科技导报, 2022, 24(8): 124-132. |
[9] | 刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108. |
[10] | 孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38. |
[11] | 闫成川, 曾庆涛, 陈琴, 付锦程, 王婷伟, 陈全家, 曲延英. 陆地棉花铃期抗旱指标筛选及评价[J]. 中国农业科技导报, 2022, 24(7): 46-57. |
[12] | 吴楠, 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬. 过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J]. 中国农业科技导报, 2022, 24(6): 36-46. |
[13] | 崔宏亮, 宋晓晓, 姚庆, 安万刚, 邢宝, 秦培友. 伊犁河谷不同藜麦品种对盐胁迫的生理响应及耐盐评价[J]. 中国农业科技导报, 2022, 24(5): 32-45. |
[14] | 黄雅婕, 任丹, 李生梅, 崔进鑫, 杨涛, 任姣姣, 高文伟. 陆地棉苗期的耐盐碱性评价及鉴定指标筛选[J]. 中国农业科技导报, 2022, 24(5): 46-55. |
[15] | 周雨青, 杨永飞, 葛常伟, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 刘瑞华, 李士丛, 赵新华, 李存东, 庞朝友. 基于WGCNA的棉花子叶抗冷相关共表达模块鉴定[J]. 中国农业科技导报, 2022, 24(4): 52-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||