中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (7): 37-49.DOI: 10.13304/j.nykjdb.2023.0183
张永芳1,2(), 董世妍1, 王佳轩1, 郭绪虎1, 张畅3, 王艳星1, 王钰烨1, 吴静凤1, 鲍甜芳1, 张宏发2, 于萍2, 李富恒2(
)
收稿日期:
2023-03-14
接受日期:
2023-05-05
出版日期:
2024-07-15
发布日期:
2024-07-12
通讯作者:
李富恒
作者简介:
张永芳 E-mail:zyf_208@163.com;
基金资助:
Yongfang ZHANG1,2(), Shiyan DONG1, Jiaxuan WANG1, Xuhu GUO1, Chang ZHANG3, Yanxing WANG1, Yuye WANG1, Jingfeng WU1, Tianfang BAO1, Hongfa ZHANG2, Ping YU2, Fuheng LI2(
)
Received:
2023-03-14
Accepted:
2023-05-05
Online:
2024-07-15
Published:
2024-07-12
Contact:
Fuheng LI
摘要:
为深入探索老山芹种子休眠机理,以老山芹层积前后种子为研究对象,采用气相色谱-飞行时间质谱联用技术 (gas chromatography-time of flight mass spectrometry,GC-TOF/MS)对其非层积种子(non-lamellarized seeds, NS)和层积后达到发芽状态种子(germination seeds, GS)的差异代谢物进行分析。结果表明,共检测到995种代谢产物,NS和GS的代谢物存在明显分离,差异代谢物有126种,其中极显著差异代谢物75种,包括35种上调,40种下调。对极显著差异代谢物所在代谢通路分析表明,涉及10条关键代谢通路。和弦图分析表明,差异代谢物中脂质类化合物(含类脂分子)与苯类化合物呈极显著正相关;苯丙烷类化合物(含聚酮类化合物)与有机氧类化合物呈极显著负相关。以上研究结果为探索老山芹种子成熟后萌发提供了代谢组学理论基础,为更好地研究老山芹种子后成熟及休眠机制提供了依据和支撑。
中图分类号:
张永芳, 董世妍, 王佳轩, 郭绪虎, 张畅, 王艳星, 王钰烨, 吴静凤, 鲍甜芳, 张宏发, 于萍, 李富恒. 老山芹层积前后种子差异代谢物分析[J]. 中国农业科技导报, 2024, 26(7): 37-49.
Yongfang ZHANG, Shiyan DONG, Jiaxuan WANG, Xuhu GUO, Chang ZHANG, Yanxing WANG, Yuye WANG, Jingfeng WU, Tianfang BAO, Hongfa ZHANG, Ping YU, Fuheng LI. Analysis of Differential Seed Metabolites Before and After Stratification of Heracleum moellendorffii Hance[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 37-49.
项目Item | 参数Parameter | |
---|---|---|
进样量Sample volume/μL | 1 | |
分流模式Front inlet mode | 不分流模式Splitless mode | |
隔垫吹扫流速Front inlet septum purge flow/(mL·min-1) | 3 | |
载气Carrier gas | 氦气Helium | |
色谱柱Column | DB-5MS(30 m×250 μm×0.25 μm) | |
柱流速Column flow/(mL·min-1) | 1 | |
柱箱升温程序Oven temperature ramp | 50 ℃保持1 min;以10 ℃·min-1升至310 ℃,保持8 min Hold on 1 min at 50 ℃, raise to 310 ℃ with a rate of 10 ℃·min-1, hold on 8 min | |
前进样口温度Front injection temperature/℃ | 280 | |
传输线温度Transfer line temperature/℃ | 280 | |
离子源温度Ion source temperature/℃ | 250 | |
质量范围Mass range (m/z) | 50~500 | |
电离电压Electron energy/eV | -70 | |
扫描速率Acquisition rate | 每秒20个光谱20 spectra per second | |
溶剂延迟Solvent delay/min | 6.27 |
表1 GC-TOF/MS仪器参数
Table 1 Gas chromatography mobile phasec onditions
项目Item | 参数Parameter | |
---|---|---|
进样量Sample volume/μL | 1 | |
分流模式Front inlet mode | 不分流模式Splitless mode | |
隔垫吹扫流速Front inlet septum purge flow/(mL·min-1) | 3 | |
载气Carrier gas | 氦气Helium | |
色谱柱Column | DB-5MS(30 m×250 μm×0.25 μm) | |
柱流速Column flow/(mL·min-1) | 1 | |
柱箱升温程序Oven temperature ramp | 50 ℃保持1 min;以10 ℃·min-1升至310 ℃,保持8 min Hold on 1 min at 50 ℃, raise to 310 ℃ with a rate of 10 ℃·min-1, hold on 8 min | |
前进样口温度Front injection temperature/℃ | 280 | |
传输线温度Transfer line temperature/℃ | 280 | |
离子源温度Ion source temperature/℃ | 250 | |
质量范围Mass range (m/z) | 50~500 | |
电离电压Electron energy/eV | -70 | |
扫描速率Acquisition rate | 每秒20个光谱20 spectra per second | |
溶剂延迟Solvent delay/min | 6.27 |
图1 层积前后种子GC-TOF/MS样本重叠总离子流色谱图注:NS-1~NS-6和GS-1~GS-6分别表示NS和GS的6个重复。
Fig. 1 Overlapping total ion current chromatogram of seed GC-TOF/MS samples before and after layeringNote: NS-1~NS-6 and GS-1~GS-6 indicate 6 repetitions of NS and GS, respectively.
种类 Type | 名称 Name | P值 P value | 倍数变化 Fold change | Log2 倍数变化 Log2 fold change |
---|---|---|---|---|
苯丙烷类化合物和聚酮类化合物类Phenylpropanoids and polyketides | 新橙皮苷Neohesperidin | 0.014 6 | 8.47×100 | 3.08 |
酪氨酸1 Tyrosine 1 | 0.005 1 | 2.10×10-2 | -5.57 | |
4-甲基伞形酮4-methylumbelliferone | 0.026 2 | 4.32×10-6 | -17.80 | |
苯类化合物类 Benzenoids | 3,4-二羟基苯甲酸3,4-dihydroxybenzoic acid | 0.006 6 | 5.18×106 | 22.30 |
间苯三酚Phloroglucinol | 0.004 8 | 1.29×106 | 20.30 | |
4-羟基苯甲酸4-hydroxybenzoic acid | 0.026 6 | 6.69×105 | 19.40 | |
对苯二甲酸Terephthalic acid | 0.004 2 | 3.62×105 | 18.50 | |
3-羟基苯甲酸3-hydroxybenzoic acid | 0.030 0 | 1.89×105 | 17.50 | |
苯乙醛2 Phenylacetaldehyde 2 | 0.015 9 | 2.57×100 | 1.36 | |
3,4-二羟基扁桃酸3,4-dihydroxymandelic acid | 0.000 0 | 2.48×100 | 1.31 | |
对苯二酚Hydroquinone | 0.008 9 | 6.42×10-7 | -20.60 | |
核苷、核苷酸和类似物类Nucleosides, nucleotides, and analogues | 尿苷1Uridine 1 | 0.010 7 | 1.47×101 | 3.87 |
胞苷一磷酸脱胶产物Cytidine-monophosphate degr prod | 0.000 6 | 7.13×100 | 2.83 | |
单磷酸胞苷1 Cytidine-monophosphate 1 | 0.000 1 | 1.99×10-5 | -15.60 | |
有机氮化合物类 Organonitrogen compounds | 乙醇胺Ethanolamine | 0.000 0 | 3.16×10-1 | -1.66 |
1,3-二氨基丙烷1,3-diaminopropane | 0.000 0 | 1.05×10-1 | -3.25 | |
3-氨基丙腈1 3-aminopropionitrile 1 | 0.000 9 | 3.36×10-2 | -4.90 | |
有机酸及其衍生物类 Organic acids and derivatives | 谷氨酸L-glutamic acid | 0.003 9 | 4.12×108 | 28.60 |
环己基氨基磺酸1 Cyclohexylsulfamic acid 1 | 0.000 0 | 1.18×106 | 20.20 | |
2-酮丁酸2 2-ketobutyric acid 2 | 0.002 5 | 2.58×100 | 1.37 | |
5-氨基戊酸3 5-aminovaleric acid 3 | 0.000 0 | 2.48×100 | 1.31 | |
3-氨基异丁酸1 3-aminoisobutyric acid 1 | 0.000 0 | 2.66×10-1 | -1.91 | |
4-氨基丁酸1 4-aminobutyric acid 1 | 0.000 3 | 2.31×10-1 | -2.12 | |
甘氨酸2 Glycine 2 | 0.000 2 | 1.52×10-1 | -2.72 | |
3-氰基苯胺3-cyanoalanine | 0.001 2 | 2.61×10-2 | -5.26 | |
丝氨酸1 Serine 1 | 0.000 3 | 2.30×10-2 | -5.44 | |
尿素Urea | 0.030 6 | 2.52×10-5 | -15.30 | |
α-酮异己酸1 α-ketoisocaproic acid 1 | 0.001 1 | 1.26×10-5 | -16.30 | |
邻磷酸丝氨酸1 O-phosphoserine 1 | 0.007 7 | 2.19×10-6 | -18.80 | |
邻乙酰丝氨酸1 O-acetylserine 1 | 0.019 7 | 2.13×10-6 | -18.80 | |
L-高丝氨酸1 L-homoserine 1 | 0.001 4 | 7.00×10-7 | -20.40 | |
邻苯三酚Pyrogallol | 0.000 5 | 5.21×10-7 | -20.90 | |
L-半胱氨酸L-cysteine | 0.004 3 | 2.36×10-7 | -22.00 | |
邻磷酸苏氨酸3 O-phosphonothreonine 3 | 0.026 1 | 2.07×10-7 | -22.20 | |
牛磺酸Taurine | 0.001 1 | 1.96×10-7 | -22.30 | |
α-氨基己二酸α-aminoadipic acid | 0.005 1 | 1.55×10-7 | -22.60 | |
柠檬酸Citric acid | 0.006 3 | 4.88×10-8 | -24.30 | |
瓜氨酸1 Citrulline 1 | 0.006 7 | 1.03×10-8 | -26.50 | |
有机氧化合物类 Organooxygen compounds | 利比醇Ribitol | 0.025 0 | 3.59×108 | 28.40 |
麦角糖Melezitose | 0.048 0 | 9.70×106 | 23.20 | |
莽草酸Shikimic acid | 0.047 7 | 4.46×106 | 22.10 | |
1,2-环己烷二酮4 1,2-cyclohexanedione 4 | 0.001 8 | 1.70×106 | 20.70 | |
戊二醛2 Glutaraldehyde 2 | 0.027 4 | 1.18×106 | 20.20 | |
丙酮3 Acetol 3 | 0.001 9 | 5.00×101 | 5.64 | |
半乳醇3 Galactinol 3 | 0.010 2 | 3.44×100 | 1.78 | |
二羟丙酮Dihydroxyacetone | 0.004 8 | 2.64×100 | 1.40 | |
葡萄糖酸1 Gluconic acid 1 | 0.003 0 | 2.37×10-1 | -2.08 | |
D-甘油酸D-glyceric acid | 0.000 0 | 2.11×10-1 | -2.24 | |
蔗糖酸Saccharic acid | 0.006 8 | 4.25×10-2 | -4.55 | |
木糖醇Xylitol | 0.013 8 | 7.61×10-4 | -10.40 | |
5’-甲基硫代腺苷1 5’-methylthioadenosine 1 | 0.036 8 | 6.65×10-6 | -17.20 | |
绿原酸1 Chlorogenic acid 1 | 0.012 6 | 1.29×10-6 | -19.60 | |
1,5-脱水葡萄糖醇1,5-anhydroglucitol | 0.039 9 | 3.23×10-7 | -21.60 | |
葡萄糖1 Glucose 1 | 0.039 7 | 4.76×10-8 | -24.30 | |
有机杂环化合物类Organoheterocyclic compounds | 5,6-二氢尿嘧啶1 5,6-dihydrouracil 1 | 0.042 5 | 2.24×106 | 21.10 |
吡咯-2-羧酸Pyrrole-2-carboxylic acid | 0.008 8 | 2.10×106 | 21.00 | |
硫辛酰胺2 Thioctamide 2 | 0.002 6 | 9.76×100 | 3.29 | |
生物素Biotin | 0.008 7 | 4.41×100 | 2.14 | |
2-羟基吡啶2-hydroxypyridine | 0.000 0 | 2.44×100 | 1.29 | |
有机杂环化合物类Organoheterocyclic compounds | 去甲烟碱Nornicotine | 0.020 4 | 2.95×10-2 | -5.08 |
乳清酸Orotic acid | 0.001 9 | 2.64×10-2 | -5.24 | |
3-吲哚丙酮酸3-indolepyruvic acid | 0.000 1 | 8.43×10-3 | -6.89 | |
抗坏血酸Ascorbate | 0.003 3 | 8.46×10-7 | -20.20 | |
脂质和类脂分子类 Lipids and lipid-like molecules | 癸酸Capric acid | 0.012 7 | 7.10×106 | 22.80 |
天竺葵酸Pelargonic acid | 0.000 3 | 3.05×106 | 21.50 | |
棕榈油酸Palmitoleic acid | 0.022 0 | 2.61×106 | 21.30 | |
月桂酸Lauric acid | 0.000 3 | 1.10×106 | 20.10 | |
麦芽糖醇Maltitol | 0.021 1 | 1.58×102 | 7.30 | |
氢化可的松Hydrocortisone | 0.000 1 | 1.16×101 | 3.53 | |
十五酸Pentadecanoic acid | 0.003 7 | 5.77×100 | 2.53 | |
己二酸Adipic acid | 0.000 0 | 2.48×100 | 1.31 | |
苹果酸L-malic acid | 0.001 3 | 3.16×10-1 | -1.66 | |
别苏氨酸1 L-allothreonine 1 | 0.000 2 | 3.68×10-2 | -4.76 | |
十二醇Dodecanol | 0.000 3 | 1.19×10-6 | -19.70 | |
3-羟基-3-甲基戊二酸3-hydroxy-3-methylglutaric acid | 0.031 0 | 6.10×10-7 | -20.60 |
表2 差异表达代谢物的筛选结果
Table 2 Screening results of differentially expressed metabolites
种类 Type | 名称 Name | P值 P value | 倍数变化 Fold change | Log2 倍数变化 Log2 fold change |
---|---|---|---|---|
苯丙烷类化合物和聚酮类化合物类Phenylpropanoids and polyketides | 新橙皮苷Neohesperidin | 0.014 6 | 8.47×100 | 3.08 |
酪氨酸1 Tyrosine 1 | 0.005 1 | 2.10×10-2 | -5.57 | |
4-甲基伞形酮4-methylumbelliferone | 0.026 2 | 4.32×10-6 | -17.80 | |
苯类化合物类 Benzenoids | 3,4-二羟基苯甲酸3,4-dihydroxybenzoic acid | 0.006 6 | 5.18×106 | 22.30 |
间苯三酚Phloroglucinol | 0.004 8 | 1.29×106 | 20.30 | |
4-羟基苯甲酸4-hydroxybenzoic acid | 0.026 6 | 6.69×105 | 19.40 | |
对苯二甲酸Terephthalic acid | 0.004 2 | 3.62×105 | 18.50 | |
3-羟基苯甲酸3-hydroxybenzoic acid | 0.030 0 | 1.89×105 | 17.50 | |
苯乙醛2 Phenylacetaldehyde 2 | 0.015 9 | 2.57×100 | 1.36 | |
3,4-二羟基扁桃酸3,4-dihydroxymandelic acid | 0.000 0 | 2.48×100 | 1.31 | |
对苯二酚Hydroquinone | 0.008 9 | 6.42×10-7 | -20.60 | |
核苷、核苷酸和类似物类Nucleosides, nucleotides, and analogues | 尿苷1Uridine 1 | 0.010 7 | 1.47×101 | 3.87 |
胞苷一磷酸脱胶产物Cytidine-monophosphate degr prod | 0.000 6 | 7.13×100 | 2.83 | |
单磷酸胞苷1 Cytidine-monophosphate 1 | 0.000 1 | 1.99×10-5 | -15.60 | |
有机氮化合物类 Organonitrogen compounds | 乙醇胺Ethanolamine | 0.000 0 | 3.16×10-1 | -1.66 |
1,3-二氨基丙烷1,3-diaminopropane | 0.000 0 | 1.05×10-1 | -3.25 | |
3-氨基丙腈1 3-aminopropionitrile 1 | 0.000 9 | 3.36×10-2 | -4.90 | |
有机酸及其衍生物类 Organic acids and derivatives | 谷氨酸L-glutamic acid | 0.003 9 | 4.12×108 | 28.60 |
环己基氨基磺酸1 Cyclohexylsulfamic acid 1 | 0.000 0 | 1.18×106 | 20.20 | |
2-酮丁酸2 2-ketobutyric acid 2 | 0.002 5 | 2.58×100 | 1.37 | |
5-氨基戊酸3 5-aminovaleric acid 3 | 0.000 0 | 2.48×100 | 1.31 | |
3-氨基异丁酸1 3-aminoisobutyric acid 1 | 0.000 0 | 2.66×10-1 | -1.91 | |
4-氨基丁酸1 4-aminobutyric acid 1 | 0.000 3 | 2.31×10-1 | -2.12 | |
甘氨酸2 Glycine 2 | 0.000 2 | 1.52×10-1 | -2.72 | |
3-氰基苯胺3-cyanoalanine | 0.001 2 | 2.61×10-2 | -5.26 | |
丝氨酸1 Serine 1 | 0.000 3 | 2.30×10-2 | -5.44 | |
尿素Urea | 0.030 6 | 2.52×10-5 | -15.30 | |
α-酮异己酸1 α-ketoisocaproic acid 1 | 0.001 1 | 1.26×10-5 | -16.30 | |
邻磷酸丝氨酸1 O-phosphoserine 1 | 0.007 7 | 2.19×10-6 | -18.80 | |
邻乙酰丝氨酸1 O-acetylserine 1 | 0.019 7 | 2.13×10-6 | -18.80 | |
L-高丝氨酸1 L-homoserine 1 | 0.001 4 | 7.00×10-7 | -20.40 | |
邻苯三酚Pyrogallol | 0.000 5 | 5.21×10-7 | -20.90 | |
L-半胱氨酸L-cysteine | 0.004 3 | 2.36×10-7 | -22.00 | |
邻磷酸苏氨酸3 O-phosphonothreonine 3 | 0.026 1 | 2.07×10-7 | -22.20 | |
牛磺酸Taurine | 0.001 1 | 1.96×10-7 | -22.30 | |
α-氨基己二酸α-aminoadipic acid | 0.005 1 | 1.55×10-7 | -22.60 | |
柠檬酸Citric acid | 0.006 3 | 4.88×10-8 | -24.30 | |
瓜氨酸1 Citrulline 1 | 0.006 7 | 1.03×10-8 | -26.50 | |
有机氧化合物类 Organooxygen compounds | 利比醇Ribitol | 0.025 0 | 3.59×108 | 28.40 |
麦角糖Melezitose | 0.048 0 | 9.70×106 | 23.20 | |
莽草酸Shikimic acid | 0.047 7 | 4.46×106 | 22.10 | |
1,2-环己烷二酮4 1,2-cyclohexanedione 4 | 0.001 8 | 1.70×106 | 20.70 | |
戊二醛2 Glutaraldehyde 2 | 0.027 4 | 1.18×106 | 20.20 | |
丙酮3 Acetol 3 | 0.001 9 | 5.00×101 | 5.64 | |
半乳醇3 Galactinol 3 | 0.010 2 | 3.44×100 | 1.78 | |
二羟丙酮Dihydroxyacetone | 0.004 8 | 2.64×100 | 1.40 | |
葡萄糖酸1 Gluconic acid 1 | 0.003 0 | 2.37×10-1 | -2.08 | |
D-甘油酸D-glyceric acid | 0.000 0 | 2.11×10-1 | -2.24 | |
蔗糖酸Saccharic acid | 0.006 8 | 4.25×10-2 | -4.55 | |
木糖醇Xylitol | 0.013 8 | 7.61×10-4 | -10.40 | |
5’-甲基硫代腺苷1 5’-methylthioadenosine 1 | 0.036 8 | 6.65×10-6 | -17.20 | |
绿原酸1 Chlorogenic acid 1 | 0.012 6 | 1.29×10-6 | -19.60 | |
1,5-脱水葡萄糖醇1,5-anhydroglucitol | 0.039 9 | 3.23×10-7 | -21.60 | |
葡萄糖1 Glucose 1 | 0.039 7 | 4.76×10-8 | -24.30 | |
有机杂环化合物类Organoheterocyclic compounds | 5,6-二氢尿嘧啶1 5,6-dihydrouracil 1 | 0.042 5 | 2.24×106 | 21.10 |
吡咯-2-羧酸Pyrrole-2-carboxylic acid | 0.008 8 | 2.10×106 | 21.00 | |
硫辛酰胺2 Thioctamide 2 | 0.002 6 | 9.76×100 | 3.29 | |
生物素Biotin | 0.008 7 | 4.41×100 | 2.14 | |
2-羟基吡啶2-hydroxypyridine | 0.000 0 | 2.44×100 | 1.29 | |
有机杂环化合物类Organoheterocyclic compounds | 去甲烟碱Nornicotine | 0.020 4 | 2.95×10-2 | -5.08 |
乳清酸Orotic acid | 0.001 9 | 2.64×10-2 | -5.24 | |
3-吲哚丙酮酸3-indolepyruvic acid | 0.000 1 | 8.43×10-3 | -6.89 | |
抗坏血酸Ascorbate | 0.003 3 | 8.46×10-7 | -20.20 | |
脂质和类脂分子类 Lipids and lipid-like molecules | 癸酸Capric acid | 0.012 7 | 7.10×106 | 22.80 |
天竺葵酸Pelargonic acid | 0.000 3 | 3.05×106 | 21.50 | |
棕榈油酸Palmitoleic acid | 0.022 0 | 2.61×106 | 21.30 | |
月桂酸Lauric acid | 0.000 3 | 1.10×106 | 20.10 | |
麦芽糖醇Maltitol | 0.021 1 | 1.58×102 | 7.30 | |
氢化可的松Hydrocortisone | 0.000 1 | 1.16×101 | 3.53 | |
十五酸Pentadecanoic acid | 0.003 7 | 5.77×100 | 2.53 | |
己二酸Adipic acid | 0.000 0 | 2.48×100 | 1.31 | |
苹果酸L-malic acid | 0.001 3 | 3.16×10-1 | -1.66 | |
别苏氨酸1 L-allothreonine 1 | 0.000 2 | 3.68×10-2 | -4.76 | |
十二醇Dodecanol | 0.000 3 | 1.19×10-6 | -19.70 | |
3-羟基-3-甲基戊二酸3-hydroxy-3-methylglutaric acid | 0.031 0 | 6.10×10-7 | -20.60 |
种类Type | 上调Up-regulation | 下调Down-regulation |
---|---|---|
有机酸及其衍生物类Organic acids and derivatives | 4 | 17 |
脂质和类脂分子类Lipids and lipid-like molecules | 8 | 4 |
有机杂环化合物类Organoheterocyclic compounds | 5 | 4 |
苯类化合物类Benzenoids | 7 | 1 |
核苷、核苷酸和类似物类Nucleosides, nucleotides, and alogues | 2 | 1 |
有机氧化合物类Organooxygen compounds | 8 | 8 |
有机氮化合物类Organonitrogen compounds | 0 | 3 |
苯丙烷类化合物和聚酮类化合物类Phenylpropanoids and polyketides | 1 | 2 |
其他类Others | 21 | 29 |
表3 差异表达代谢物
Table 3 Differential expression metabolic
种类Type | 上调Up-regulation | 下调Down-regulation |
---|---|---|
有机酸及其衍生物类Organic acids and derivatives | 4 | 17 |
脂质和类脂分子类Lipids and lipid-like molecules | 8 | 4 |
有机杂环化合物类Organoheterocyclic compounds | 5 | 4 |
苯类化合物类Benzenoids | 7 | 1 |
核苷、核苷酸和类似物类Nucleosides, nucleotides, and alogues | 2 | 1 |
有机氧化合物类Organooxygen compounds | 8 | 8 |
有机氮化合物类Organonitrogen compounds | 0 | 3 |
苯丙烷类化合物和聚酮类化合物类Phenylpropanoids and polyketides | 1 | 2 |
其他类Others | 21 | 29 |
1 | 刘继德,谭玉琴.老山芹人工栽培及食用方法[J].中国农学通报,1997,13(2):46-47. |
2 | 杨慧洁,高箭,王铁.山芹菜生物学特性的调查研究[J].人参研究,2000(2):19-20. |
3 | 李富恒,张雪霞,赵恒田,等.四种变温层积对老山芹种子胚发育及生理特性的影响[J].东北农业大学学报,2018,49(5):33-44. |
LI F H, ZHANG X X, ZHAO H T, et al.. Effect of four variable temperature stratifications on the embryo development and physiological characteristics of Heracleum moellendorffii Hance seed [J]. J. Northeast Agric. Univ., 2018, 49(5):33-44. | |
4 | 韩和璧,杨博航,曾勇,等.老山芹化学成分研究与开发利用进展[J].粮食与油脂,2022(6):24-29. |
5 | 李富恒,张晓雯,张永芳,等.不同发育阶段老山芹种子多组学联合分析[J].东北农业大学学报,2021,52(10):32-46. |
LI F H, ZHANG X W, ZHANG Y F, et al.. Integration analysis on multiple omics of Heracleum moellendorffii Hance seeds at different developmental stages [J]. J. Northeast Agric. Univ., 2021, 52(10):32-46. | |
6 | 李富恒,刘增兵,崔巍金琦,等.老山芹生长发育规律及主要性状相关性分析[J].东北农业大学学报,2017,48(1 ):15-22, 32. |
LI F H, LIU Z B, CUI-WEI J Q, et al.. Growth and development rule and correlation analysis of main characters of Heracleum moellendorffii Hance [J]. J. Northeast Agric. Univ., 2017, 48(1):15-22, 32. | |
7 | HALL R, BEALE M, FIEHN O, et al.. Plant metabolomics: the missing link in functional genomics strategies [J]. Plant Cell, 2002, 14(7):1437-1440. |
8 | NICHOLSON J K, CONNELLY J, LINDON J C, et al.. Metabonomics: a platform for studying drug toxicity and gene function [J]. Nat. Rev. Drug Discov., 2002, 1(2):153-161. |
9 | 杨军,宋硕林, JOSE C P,等.代谢组学及其应用[J].生物工程学报,2005,21(1):1-5. |
YANG J, SONG S L, JOSE C P, et al.. Metabonomics and its applications [J]. Chin. J. Biotech., 2005, 21(1):1-5. | |
10 | 雷锋杰.人参细菌性软腐病菌对人参三萜皂苷类物质的趋化响应及其致病机制研究[D].沈阳:沈阳农业大学,2018. |
LEI F J. Chemotaxis response of ginseng bacterial soft rot pathogen to three terpenoid saponins from Panax ginseng and its pathogenic mechanism [D]. Shenyang: Shenyang Agricultural University, 2018. | |
11 | SUSANN E, WIKLUN D, ERI K, et al.. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models [J]. Anal. Chem., 2008, 80(1):115-122. |
12 | 吴菲菲,程楚杭,陈廷,等.热带糙海参雌、雄亲参的差异代谢物和差异代谢通路研究[J]..渔业科学进展,2021,42(3):55-67. |
WU F F, CHENG C H, CHEN T, et al.. Study on sex differential metabolites and metabolic pathway of parental tropical sea cucumbers Holothuria scabra [J]. Progress Fish. Sci., 2021, 42(3):55-67. | |
13 | LEE A, WILLCOX B. Minkowski generalizations of ward’s method in hierarchical clustering [J]. J. Classification, 2014, 31(2):194-218. |
14 | REINKE S N, GALINDO-PRIETO B, SKOTARE T, et al.. OnPLS-based multi-block data integration: a multivariate approach to interrogating biological interactions in Asthma [J]. Anal. Chem., 2018, 90(22):13400-13408. |
15 | STACEY N R, BEATRIZ G P, TOMAS S, et al.. OnPLS-based multi-block data integration: a multivariate approach to interrogating biological interactions in Asthma [J]. Anal. Chem., 2018,90(22):13400-13408. |
16 | 薛佳艺.口腔鳞状细胞癌患者的唾液代谢组学研究[D].青岛:青岛大学,2018. |
XUE J Y. Saliva metabolomics study of parients with oral squamous cell [D]. Qingdao: Qingdao University, 2018. | |
17 | XIA J G, SINELNIKOV I V, HAN B, et al.. MetaboAnalyst 3.0—making metabolomics more meaningful [J]. Nucl. Acids Res., 2015, 43(1):251-257. |
18 | PICART-ARMADA S, FERNÁNDEZ-ALBERT F, VINAIXA M, et al.. FELLA: an R package to enrich metabolomics data [J/OL]. BMC Bioinform., 2018, 19(1):538 [2023-02-20]. . |
19 | 刘舒娅.东北牛防风(Heracleum moellendorffii Hance)种胚发育及种子休眠的研究[D].哈尔滨:东北农业大学,2018. |
LIU S Y. Research on embryo development and seed dormancy of Heracleum moellendorffii Hance [D]. Haibin: Northeast Agricultural University, 2018. | |
20 | 赵永华,杨世林,刘惠卿,等.西洋参种子休眠解除与磷酸戊糖途径关系的研究[J].中草药,2001,32(3):259-261. |
ZHAO Y H, YANG S L, LIU H Q, et al.. Relationship between phosphopentose pathway and seed dormancy releasing of Panax quinquef olius [J]. Chin. Trad. Herbal Drugs, 2001, 32(3):259-261. | |
21 | SAUX M, PONNAIAH M, LANGLADE N, et al.. Amultiscale approach reveals regulatory players of water stress responses in seeds during germination [J]. Plant Cell Environ., 2020, 43(5):1300-1313. |
22 | 郝林华,何培青,柳春燕,等.牛磺酸对小麦幼苗生长的生理效应[J].植物生理与分子生物学学报,2004,30(5):595-598. |
HAO L H, HE P Q, LIU C Y, et al.. Physiological effects of taurine on the growth of wheat (Triticum aestivum L.) seedlings [J]. Physiol. Mol. Biol. Plants, 2004, 30(5):595-598. | |
23 | 郝林华,陈靠山,李光友.牛磺酸对黄瓜幼苗生长和生理特性的影响[J].上海交通大学学报(农业科学版),2005,23(1):10-14. |
HAO L H, CHEN K S, LI G Y. Effects of taurine on the growth and physiological properties of cucumber (Cucumis sativus L.) seedlings [J]. J. Shanghai Jiaotong Univ. (Agric. Sci.), 2005, 23(1):10-14. | |
24 | 张彩峡,吴洪新,毕玉芬.多花黑麦草抗旱代谢通路挖掘[J].草业科学,2020,37(8):1528-1536. |
ZHANG C X, WU H X, BI Y F. Mining metabolic pathways in drought tolerance of Lolium multiflorum [J]. Pratac. Sci., 2020, 37(8):1528-1536. | |
25 | 祝山,王一波,李建宇,等.基于转录组探究PacC介导的苹果黑腐皮壳菌致病机制[J].农业生物技术学报, 2020, 28(12):2130-2140. |
ZHU S, WANG Y B, LI J Y, et al.. Exploring PacC mediated pathogenic mechanism of Valsa mali based on transcriptome [J]. J. Agric. Biotech., 2020, 28(12):2130-2140. | |
26 | 王一衡,黄胜楠,刘志勇,等.大白菜倍性变异引起花发育变化的microRNA调控机制研究[J].沈阳农业大学学报,2018,49(5):529-536. |
WANG Y H, HUANG S N, LIU Z Y, et al.. Mechanism of floral development variation resulted from ploidy changes regulated by microRNA in Chinese cabbage [J]. J. Shenyang Agric. Univ., 2018, 49(5):529-536. |
[1] | 姜雪敏, 陈向前, 李红燕, 姜奇彦. 小麦盐胁迫响应的代谢组学分析[J]. 中国农业科技导报, 2023, 25(9): 43-56. |
[2] | 孙玲伟, 何孟纤, 戴建军, 吴彩凤, 张德福, 林月霞. 宫内生长受限湖羊新生羔羊的血浆代谢组学研究[J]. 中国农业科技导报, 2022, 24(7): 123-131. |
[3] | 李文通, 严善英, 吴添文. 代谢组学在动物育种中的应用现状与前景展望[J]. 中国农业科技导报, 2022, 24(7): 39-45. |
[4] | 袁进成, 孟亚轩, 孙颖琦, 赵心月, 王凤霞, 刘颖慧. 基于全基因关联分析的代谢组学在植物中的应用[J]. 中国农业科技导报, 2021, 23(9): 12-18. |
[5] | 刘利佳, 徐志强, 何佳, 丁永乐, 孙聚涛. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91-105. |
[6] | 吴文亮1,2,林勇1,黄浩2,刘仲华1*,黄建安1. 代谢组学在茶叶品质与药理研究中的应用进展[J]. 中国农业科技导报, 2018, 20(10): 44-54. |
[7] | 王晴雨,张建美,赵亚周,彭文君*. 利用LC-MS/MS技术分析蜂毒对大鼠内源性代谢的影响[J]. 中国农业科技导报, 2018, 20(10): 146-153. |
[8] | 雷刚,黄英金*. 代谢组学在水稻研究中的应用进展[J]. 中国农业科技导报, 2017, 19(7): 27-35. |
[9] | 张凤霞,王国栋*. 植物代谢组学应用研究——现状与展望[J]. , 2013, 15(2): 28-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||