中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (3): 35-48.DOI: 10.13304/j.nykjdb.2023.0683
贾倩1(), 叶飒2(
), 张辉1, 串丽敏1, 赵静娟1(
)
收稿日期:
2023-09-14
接受日期:
2023-11-07
出版日期:
2025-03-15
发布日期:
2025-03-14
通讯作者:
赵静娟
作者简介:
贾倩 E-mail:jq19880701@163.com基金资助:
Qian JIA1(), Sa YE2(
), Hui ZHANG1, Limin CHUAN1, Jingjuan ZHAO1(
)
Received:
2023-09-14
Accepted:
2023-11-07
Online:
2025-03-15
Published:
2025-03-14
Contact:
Jingjuan ZHAO
摘要:
生物育种是种业创新的核心,是种源核心技术攻关的重要手段。明晰作物生物育种核心技术,对我国战略性部署育种技术研发、破解种源“卡脖子”、实现种业现代化以及建设种业强国具有指导意义。基于Derwent Innovation专利数据库,围绕核心技术特征构建核心特征测度指数,结合专家智慧识别作物生物育种领域核心专利,通过计量分析和文本挖掘,从研发机构、布局区域和技术分布视角分析领域核心专利布局概况,洞察作物生物育种核心技术研发热点和重点演变趋势,经专家研判识别出五大作物生物育种核心技术主题,并结合我国作物生物育种核心技术发展现状,基于转基因技术和基因组编辑技术对我国未来生物育种研发与产业化进行了展望。
中图分类号:
贾倩, 叶飒, 张辉, 串丽敏, 赵静娟. 基于核心专利识别视角的作物生物育种核心技术研究[J]. 中国农业科技导报, 2025, 27(3): 35-48.
Qian JIA, Sa YE, Hui ZHANG, Limin CHUAN, Jingjuan ZHAO. Research on Core Technology of Crop Biological Breeding Based on the Perspective of Core Patent Identification[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 35-48.
测度维度 Measure dimension | 指标名称 Indicator name | 指标定义 Indicator definition | 权重 Weight |
---|---|---|---|
基础性 Fundamentality | 科学关联度 Scientific relevance | 专利引用的科学论文数量 Number of scientific papers cited by patent | 0.166 |
后向引证数量 Backward citations number | 专利引用的专利文献数量 Number of previous patents cited by patents | 0.151 | |
权利要求数 Claims number | 权利要求数量 Number of claims | 0.031 | |
影响性 Influence | 被引次数 Citations number | 引用该专利的专利文献数量 Number of patent literatures citing the patent | 0.202 |
专利合作范围 Patent cooperation | 专利权人数量Number of patentees | 0.140 | |
技术覆盖范围 Technical diversity | IPC分类号数量 Number of IPC classifications | 0.045 | |
竞争性 Competitiveness | 布局国家数量 Layout countries number | INPADOC 同族专利成员国家数量 Country number of INPADOC member | 0.095 |
专利同族数量 Patent families number | INPADOC 同族专利成员总数 Number of INPADOC patent family members | 0.170 |
表1 核心特征测度指标
Table 1 Core feature measurement indicators
测度维度 Measure dimension | 指标名称 Indicator name | 指标定义 Indicator definition | 权重 Weight |
---|---|---|---|
基础性 Fundamentality | 科学关联度 Scientific relevance | 专利引用的科学论文数量 Number of scientific papers cited by patent | 0.166 |
后向引证数量 Backward citations number | 专利引用的专利文献数量 Number of previous patents cited by patents | 0.151 | |
权利要求数 Claims number | 权利要求数量 Number of claims | 0.031 | |
影响性 Influence | 被引次数 Citations number | 引用该专利的专利文献数量 Number of patent literatures citing the patent | 0.202 |
专利合作范围 Patent cooperation | 专利权人数量Number of patentees | 0.140 | |
技术覆盖范围 Technical diversity | IPC分类号数量 Number of IPC classifications | 0.045 | |
竞争性 Competitiveness | 布局国家数量 Layout countries number | INPADOC 同族专利成员国家数量 Country number of INPADOC member | 0.095 |
专利同族数量 Patent families number | INPADOC 同族专利成员总数 Number of INPADOC patent family members | 0.170 |
专利申请 Patent applicant | 专利数量Patent number | 国家 Country | 重要主题词 Key theme word |
---|---|---|---|
陶氏益农 Dow Agrosciences | 31 | 美国 USA | DNA、新转基因植物、防控鳞翅目害虫、转基因、特异性碱基对序列 DNA, new transgenic plant, controlling lepidopteran pests, transgenic, specific base pair sequence |
Broad研究所 Broad Institute | 23 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
麻省理工学院Massachusetts Institute of Technology | 23 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
孟山都 Monsanto | 19 | 德国Germany | 昆虫、转基因植物、防控鳞翅目害虫、防控杂草 Insect, transgenic plant, controlling lepidopteran pests, controlling weeds |
哈佛大学 Harvard University | 15 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
维也纳大学 University of Vienna | 15 | 奥地利Austria | 特异性碱基对序列、新DNA靶标RNA、进行位点特异、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific, site-directed |
加利福尼亚大学 University of California | 15 | 美国 USA | 特异性碱基对序列、新DNA靶标RNA、进行位点特异、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific, site-directed |
科迪华 Corteva | 10 | 美国 USA | DNA、粘虫、转基因、防控鳞翅目害虫、昆虫、新转基因植物 DNA, armyworm insect, transgenic, controlling lepidopteran pests, insect, new transgenic plant |
表2 核心专利申请人分布
Table 2 Distribution of core patent applicants
专利申请 Patent applicant | 专利数量Patent number | 国家 Country | 重要主题词 Key theme word |
---|---|---|---|
陶氏益农 Dow Agrosciences | 31 | 美国 USA | DNA、新转基因植物、防控鳞翅目害虫、转基因、特异性碱基对序列 DNA, new transgenic plant, controlling lepidopteran pests, transgenic, specific base pair sequence |
Broad研究所 Broad Institute | 23 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
麻省理工学院Massachusetts Institute of Technology | 23 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
孟山都 Monsanto | 19 | 德国Germany | 昆虫、转基因植物、防控鳞翅目害虫、防控杂草 Insect, transgenic plant, controlling lepidopteran pests, controlling weeds |
哈佛大学 Harvard University | 15 | 美国 USA | CRISPR酶系统、修改表达、基因产物、间隔短回文重复CRISPR CRISPR enzyme system, altering expression, gene product, interspaced short palindromic repeats (CRISPR)-CRISPR |
维也纳大学 University of Vienna | 15 | 奥地利Austria | 特异性碱基对序列、新DNA靶标RNA、进行位点特异、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific, site-directed |
加利福尼亚大学 University of California | 15 | 美国 USA | 特异性碱基对序列、新DNA靶标RNA、进行位点特异、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific, site-directed |
科迪华 Corteva | 10 | 美国 USA | DNA、粘虫、转基因、防控鳞翅目害虫、昆虫、新转基因植物 DNA, armyworm insect, transgenic, controlling lepidopteran pests, insect, new transgenic plant |
地区 Region | 专利数量Patent number | 重要主题词 Key theme words |
---|---|---|
美国 USA | 57 | 植物、DNA、昆虫、大豆植株、转基因植物、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、玉米 Plant, DNA, insect, soybean plant, transgenic plant, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, corn |
欧盟 European Union | 11 | CRISPR酶系统、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点 CRISPR enzyme system, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed |
日本 Japan | 9 | DNA、CRISPR酶系统、转基因植物、粘虫、防控鳞翅目害虫 DNA, CRISPR enzyme system, transgenic plant, armyworm insect, controlling lepidopteran pests |
中国 China | 6 | DNA、植物、昆虫、转基因植物、粘虫、防控杂草 DNA, plant, insect, transgenic plant, armyworm insect, controlling weeds |
俄罗斯Russia | 2 | CRISPR酶系统 CRISPR enzyme system |
表3 核心专利地区分布
Table 3 Regional distribution of core patents
地区 Region | 专利数量Patent number | 重要主题词 Key theme words |
---|---|---|
美国 USA | 57 | 植物、DNA、昆虫、大豆植株、转基因植物、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、玉米 Plant, DNA, insect, soybean plant, transgenic plant, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, corn |
欧盟 European Union | 11 | CRISPR酶系统、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点 CRISPR enzyme system, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed |
日本 Japan | 9 | DNA、CRISPR酶系统、转基因植物、粘虫、防控鳞翅目害虫 DNA, CRISPR enzyme system, transgenic plant, armyworm insect, controlling lepidopteran pests |
中国 China | 6 | DNA、植物、昆虫、转基因植物、粘虫、防控杂草 DNA, plant, insect, transgenic plant, armyworm insect, controlling weeds |
俄罗斯Russia | 2 | CRISPR酶系统 CRISPR enzyme system |
国际专利分类号 International patent classification | 释义Definition | 专利数量Patents number |
---|---|---|
C12N15 | 突变或遗传工程Mutation or genetic engineering | 91 |
A01H5 | 特征在于其植物部分的被子植物Angiosperms | 44 |
C12N9 | 酶和酶原及其制备、活化、抑制、分离、纯化方法Enzymes and proenzymes, and methods of their preparation, activation, inhibition, separation, and purification | 23 |
A01N63 | 杀生物剂、驱虫剂、引诱剂或植物生长调节剂Biocides, repellents, attractants, or plant growth regulators | 22 |
A01H1 | 基因型改良方法Methods for genotype modification | 19 |
C12N5 | 未分化的细胞、组织及其培养或维持Undifferentiated cells, tissues, and their cultivation or maintenance | 17 |
A61K38 | 含肽的医药配制品Pharmaceutical preparations containing peptide | 15 |
A61K48 | 含有插入到活体细胞中的遗传物质以治疗遗传病的医药配制品;基因治疗Pharmaceutical preparations containing genetic material inserted into living cells for the treatment of genetic diseases; gene therapy | 15 |
A01K67 | 饲养或养殖其他类不包含的动物;动物新品种Raising animals that are not included in other categories; new animal species | 13 |
A01P7 | 杀节肢动物剂Arthrocides | 12 |
表4 核心专利IPC分类分布
Table 4 IPC classification distribution of core patents
国际专利分类号 International patent classification | 释义Definition | 专利数量Patents number |
---|---|---|
C12N15 | 突变或遗传工程Mutation or genetic engineering | 91 |
A01H5 | 特征在于其植物部分的被子植物Angiosperms | 44 |
C12N9 | 酶和酶原及其制备、活化、抑制、分离、纯化方法Enzymes and proenzymes, and methods of their preparation, activation, inhibition, separation, and purification | 23 |
A01N63 | 杀生物剂、驱虫剂、引诱剂或植物生长调节剂Biocides, repellents, attractants, or plant growth regulators | 22 |
A01H1 | 基因型改良方法Methods for genotype modification | 19 |
C12N5 | 未分化的细胞、组织及其培养或维持Undifferentiated cells, tissues, and their cultivation or maintenance | 17 |
A61K38 | 含肽的医药配制品Pharmaceutical preparations containing peptide | 15 |
A61K48 | 含有插入到活体细胞中的遗传物质以治疗遗传病的医药配制品;基因治疗Pharmaceutical preparations containing genetic material inserted into living cells for the treatment of genetic diseases; gene therapy | 15 |
A01K67 | 饲养或养殖其他类不包含的动物;动物新品种Raising animals that are not included in other categories; new animal species | 13 |
A01P7 | 杀节肢动物剂Arthrocides | 12 |
申请年份Application year | 专利数量 Patent number | 重要主题词 Key theme word |
---|---|---|
2006 | 5 | 成分、防控杂草、大豆植株 Composition, controlling weeds, soybean plant |
2008 | 1 | 成分、转基因植物、昆虫、除草剂抗性 Composition, transgenic plant, insect, herbicide resistance |
2009 | 5 | 转基因、玉米、棉花、大豆植株 Transgenic, corn, cotton, soybean plant |
2010 | 34 | DNA、防控鳞翅目害虫、新转基因植物、相应的野生型Cry1Ca、杀虫活性 DNA, controlling lepidopteran pests, new transgenic plant, corresponding wild-type Cry1Ca, insecticidal activity |
2011 | 5 | 转基因植物、玉米、序列 Transgenic plant, corn, sequences |
2012 | 6 | 植物、DNA、成分、防控鳞翅目害虫、昆虫、新转基因植物、DNA编码crystal 1Fa杀虫蛋白、 特异性碱基对序列 Plant, DNA, composition, controlling lepidopteran pests, insect, new transgenic plant, DNA encoding crystal 1Fa insecticidal protein, specific base pair sequence |
2013 | 33 | CRISPR酶系统、植物、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、间隔短回文重复CRISPR CRISPR enzyme system, plant, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, interspaced short palindromic repeats (CRISPR)-CRISPR |
2016 | 9 | CRISPR酶系统、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、间隔短回文重复CRISPR CRISPR enzyme system, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, interspaced short palindromic repeats (CRISPR)-CRISPR |
2017 | 1 | 昆虫、CRISPR酶系统、间隔短回文重复CRISPR Insect, CRISPR enzyme system, interspaced short palindromic repeats (CRISPR)-CRISPR |
2019 | 3 | 特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed |
表5 核心专利重要主题词时间分布
Table 5 Time distribution of key theme words in core patents
申请年份Application year | 专利数量 Patent number | 重要主题词 Key theme word |
---|---|---|
2006 | 5 | 成分、防控杂草、大豆植株 Composition, controlling weeds, soybean plant |
2008 | 1 | 成分、转基因植物、昆虫、除草剂抗性 Composition, transgenic plant, insect, herbicide resistance |
2009 | 5 | 转基因、玉米、棉花、大豆植株 Transgenic, corn, cotton, soybean plant |
2010 | 34 | DNA、防控鳞翅目害虫、新转基因植物、相应的野生型Cry1Ca、杀虫活性 DNA, controlling lepidopteran pests, new transgenic plant, corresponding wild-type Cry1Ca, insecticidal activity |
2011 | 5 | 转基因植物、玉米、序列 Transgenic plant, corn, sequences |
2012 | 6 | 植物、DNA、成分、防控鳞翅目害虫、昆虫、新转基因植物、DNA编码crystal 1Fa杀虫蛋白、 特异性碱基对序列 Plant, DNA, composition, controlling lepidopteran pests, insect, new transgenic plant, DNA encoding crystal 1Fa insecticidal protein, specific base pair sequence |
2013 | 33 | CRISPR酶系统、植物、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、间隔短回文重复CRISPR CRISPR enzyme system, plant, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, interspaced short palindromic repeats (CRISPR)-CRISPR |
2016 | 9 | CRISPR酶系统、特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点、间隔短回文重复CRISPR CRISPR enzyme system, specific base pair sequence, target DNA, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed, interspaced short palindromic repeats (CRISPR)-CRISPR |
2017 | 1 | 昆虫、CRISPR酶系统、间隔短回文重复CRISPR Insect, CRISPR enzyme system, interspaced short palindromic repeats (CRISPR)-CRISPR |
2019 | 3 | 特异性碱基对序列、靶标DNA、新DNA靶标RNA、进行位点特异性修饰、多肽、定点 Specific base pair sequence, new DNA-targeting RNA, performing site-specific modification, polypeptide, site-directed |
序号Order | 核心技术主题 Core technology theme | 核心专利Core patents | 申请时间Application time(y/m) | 核心特征测度指数均值Mean of CCI | 主要申请人 Main applicant |
---|---|---|---|---|---|
1 | 外源基因转化技术体系改进与优化Improvement and optimization of exogenous gene transformation technology system | 4 | 2007 | 0.104 | 孟山都Monsanto |
2 | RNA干扰遗传转化体系构建Construction of RNA interference genetic transformation system | 8 | 2011/8 | 0.095 | 孟山都Monsanto |
3 | CRISPR/Cas基因编辑系统构建 Construction of CRISPR/Cas gene editing system | 41 | 2014/8 | 0.102 | Broad研究所、麻省理工学院、哈佛大学、维也纳大学、加利福尼亚大学Broad Institute, Massachusetts Institute of technology, Harvard University, University of Vienna, University of California |
4 | 抗虫、抗除草剂基因挖掘及转基因品种鉴定 Discovery of insect and herbicide resistance genes and identification of transgenic varieties | 54 | 2010/4 | 0.077 | 陶氏益农、科迪华、孟山都 Dow Agrosciences, Corteva, Monsanto |
5 | 综合性状改良基因挖掘及转基因 品种选育 Comprehensive trait improvement gene mining and transgenic variety breeding | 8 | 2009/4 | 0.090 | 美国无烟烟草公司、孟山都 U.S. Smokeless Tobacco, Monsanto |
表6 作物生物育种领域核心专利分布
Table 6 Distribution of core patents in the field of crop biological breeding
序号Order | 核心技术主题 Core technology theme | 核心专利Core patents | 申请时间Application time(y/m) | 核心特征测度指数均值Mean of CCI | 主要申请人 Main applicant |
---|---|---|---|---|---|
1 | 外源基因转化技术体系改进与优化Improvement and optimization of exogenous gene transformation technology system | 4 | 2007 | 0.104 | 孟山都Monsanto |
2 | RNA干扰遗传转化体系构建Construction of RNA interference genetic transformation system | 8 | 2011/8 | 0.095 | 孟山都Monsanto |
3 | CRISPR/Cas基因编辑系统构建 Construction of CRISPR/Cas gene editing system | 41 | 2014/8 | 0.102 | Broad研究所、麻省理工学院、哈佛大学、维也纳大学、加利福尼亚大学Broad Institute, Massachusetts Institute of technology, Harvard University, University of Vienna, University of California |
4 | 抗虫、抗除草剂基因挖掘及转基因品种鉴定 Discovery of insect and herbicide resistance genes and identification of transgenic varieties | 54 | 2010/4 | 0.077 | 陶氏益农、科迪华、孟山都 Dow Agrosciences, Corteva, Monsanto |
5 | 综合性状改良基因挖掘及转基因 品种选育 Comprehensive trait improvement gene mining and transgenic variety breeding | 8 | 2009/4 | 0.090 | 美国无烟烟草公司、孟山都 U.S. Smokeless Tobacco, Monsanto |
1 | 王玲燕,董兰军,彭东,等.基于DII的十字花科作物育种专利技术全球创新态势分析[J].中国瓜菜,2022,35(9):108-113. |
WANG L Y, DONG L J, PENG D, et al.. Patent technology of cruciferous crop breeding based on DII global innovation situation analysis [J]. China Cucurbits Veget., 2022, 35(9):108-113. | |
2 | 郭剑明,王婧怡,周云峰,等.基于专利网络节点重要性的核心专利识别方法研究[J].情报杂志,2023,42(5):162-168, 191. |
GUO J M, WANG J Y, ZHOU Y F, et al.. Research on the core patents identification method based on node importance of patents network [J]. J. Intell., 2023, 42(5):162-168, 191. | |
3 | 付振康,柳炳祥,鄢春根,等.专利寿命视角下的核心专利识别模型构建[J].图书馆论坛,2023, 3(1):112-120. |
FU Z K, LIU B X, YAN C G, et al.. Building core patent identification models from the lifespan perspective of patents [J]. Library Tribune, 2023, 43(1):112-120. | |
4 | 陈祥,冯佳,穆晓敏,等.技术知识扩散视角下核心专利识别方法研究[J].情报理论与实践,2022, 5(10):132-138. |
CHEN X, FENG J, MU X M, et al.. Study of identification of core patent in the perspective of diffusion of technology knowledge [J]. Inform. Studies Theory Appl., 2022, 45(10):132-138. | |
5 | 王曰芬,张露,张洁逸.产业领域核心专利识别与演化分析——以人工智能领域为例[J].情报科学,2020,38(12):19-26. |
WANG Y F, ZHANG L, ZHANG J Y. Identification and evolution analysis of core patent in the industrial field: taking the field of artificial intelligence as an example [J]. Inf. Sci., 2020, 38(12):19-26. | |
6 | 谢萍,钱过,袁润.基于粗糙集理论的核心专利识别研究[J].情报杂志,2015,34(7):34-38, 46. |
XIE P, QIAN G, YUAN R. Research on core patent identification based on rough set [J]. J. Intell., 2015, 34(7):34-38, 46. | |
7 | 罗立国,林文广.核心专利挖掘指标研究——以新能源汽车装置领域为例[J].科技管理研究,2018,38(18):151-156. |
LUO L G, LIN W G. Research on core patent mining index: taking the field of new energy automotive device as an example [J]. Sci. Tech. Manage. Res., 2018, 38(18):151-156. | |
8 | 巩永强,王超,许海云,等.创新链视角下的核心专利识别方法研究[J].情报理论与实践,2022,45(5):113-122, 164. |
GONG Y Q, WANG C, XU H Y, et al.. Study of identification of core patents in the perspective of innovation chain [J]. Inf. Studies Theory Appl., 2022, 45(5):113-122, 164. | |
9 | 赵蓉英,李新来,李丹阳.专利引证视角下的核心专利研究——以人工智能领域为例[J].情报理论与实践,2019,42(3):78-84. |
ZHAO R Y, LI X L, LI D Y. Core patents research from the perspective of patent citation: taking the field of artificial intelligence as an example [J]. Inf. Studies Theory Appl., 2019, 42(3):78-84. | |
10 | 崔斌,董坤,曾荣强,等.基于多目标优化的核心专利挖掘方法研究——以基因工程疫苗领域为例[J].世界科技研究与发展,2019,41(6):660-675. |
CUI B, DONG K, ZENG R Q, et al.. The core patent mining based on multi-objective optimization in the field of genetic engineering vaccine [J]. World Sci-Tech. R&D, 2019, 41(6):660-675. | |
11 | 崔遵康,李丹阳,徐小婷,等.粮食作物生物育种技术全球创新布局与竞争态势研究——基于核心专利数据挖掘的视角[J].中国农业科技导报,2022,24(5):1-14. |
CUI Z K, LI D Y, XU X T, et al.. Research on the global innovation layout and competition situation of food crop bio-breeding technology: based on the perspective of core patent data mining [J]. J. Agric. Sci. Technol., 2022, 24(5):1-14. | |
12 | 梁翰文,吕慧颖,葛毅强,等.作物育种关键技术发展态势[J].植物遗传资源学报,2018,19(3):390-398. |
LIANG H W, LYU H Y, GE Y Q, et al.. Development of key breeding technology [J]. J. Plant Genet. Resour., 2018, 19(3):390-398. | |
13 | 陈赢男,韦素云,曲冠正,等.现代林木育种关键核心技术研究现状与展望[J].南京林业大学学报(自然科学版),2022,46(6):1-9. |
CHEN Y N, WEI S Y, QUAN G Z, et al.. The key and core technologies for accelerating the tree breeding process [J]. J. Nanjing For. Univ. (Nat. Sci.), 2022, 46(6):1-9. | |
14 | 杨艳萍,董瑜,韩涛.基于专利共被引聚类和组合分析的产业关键技术识别方法研究——以作物育种技术为例[J].图书情报工作,2016,60(19):143-148, 124. |
YANG Y P, DONG Y, HAN T. The method of industrial key technology identification based on co-citation cluster and patent portfolio analysis: a case study on crop breeding technologies [J]. Library Inf. Serv., 2016, 60(19):143-148, 124. | |
15 | 杨武,王爽.特征分析视角下核心技术动态趋势识别——以光刻技术为例[J].情报杂志,2021,40(12):36-44. |
YANG W, WANG S. Dynamic trend identification of core technology from the perspective of characteristic analysis:a case study of lithography [J]. J. Intell., 2021, 40(12):36-44. | |
16 | 杨大飞,杨武,田雪姣,等.基于专利数据的核心技术识别模型构建及实证研究[J].情报杂志,2021,40(2):47-54. |
YANG D F, YANG W, TIAN X J, et al.. Research on construction and empirical study of core technology identification model based on patent data [J]. J. Intell., 2021, 40(2):47-54. | |
17 | 杨武,杨大飞.基于专利数据的产业核心技术识别研究——以5G移动通信产业为例[J].情报杂志,2019,38(3):39-45, 52. |
YANG W, YANG D F. Research on identification of industrial core technology based on patent data—taking the field of fifth generation mobile communication industry as an example [J]. J. Intell., 2019, 38(3):39-45, 52. | |
18 | 张丽雯,刘加兰,王洪,等.基因编辑技术监管现状研究[J].生命科学,2022,34(10):1317-1326. |
ZHANG L W, LIU J L, WANG H, et al.. Current supervision status of gene editing technology [J]. Chin. Bull. Life Sci., 2022, 34(10):1317-1326. | |
19 | 齐茵.中美转基因作物监管法律制度的比较差异[J].分子植物育种,2022,20(6):1850-1855. |
QI Y. Comparative differences in the legal system of supervision of genetically modified crops between China and the USA [J]. Mol. Plant Breed., 2022, 20(6):1850-1855. | |
20 | TANI C. EU agriculture ministers move closer to consensus on gene editing of crops [EB/OL]. (2022-09-20) [2023-07-25].. |
21 | WANG K, SHI L, LIANG X N, et al.. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation [J]. Nat. Plants, 2022, 8(2):110-117. |
22 | CANALES R, TIWARI S, REUBER T L, et al.. Strong activation domain: US10167480B2 [P]. 2019-01-01. |
23 | FINCHER K L, FLASINSKI S, WILKINSON J Q. Plant expression constructs: US6660911B2 [P]. 2003-12-09. |
24 | 伍国强,刘海龙,刘左.RNAi技术及其在植物中的应用[J].分子植物育种,2018,16(19):6299-6307. |
WU G Q, LIU H L, LIU Z. RNAi technology and its application in plants [J]. Mol. Plant Breed., 2018, 16(19):6299-6307. | |
25 | 高沥文,陈世国,张裕,等.基于RNA干扰的生物农药的发展现状与展望[J].中国生物防治学报,2022,38(3):700-715. |
GAO L W, CHEN S G, ZHANG Y, et al.. The development of biological pesticides based on RNA interference [J]. Chin. J. Biol. Control, 2022, 38(3):700-715. | |
26 | HUANG S, IANDOLINO A B, PEEL G J. Methods and compositions for introducing nucleic acids into plants: US10655136B2 [P]. 2020-05-19. |
27 | CRAWFORD M J, EADS B D. Compositions and methods for controlling insect pests: US10378012B2 [P]. 2019-08-13. |
28 | ALLEN E M, GILBERTSON L A, HEISEL S E, et al.. Recombinant DNA constructs and methods for controlling gene expression: US9212370B2 [P]. 2015-12-15. |
29 | JINEK M, CHYLINSKI K, FONFARA I, et al.. programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012(337):816-821. |
30 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013(339):819-823. |
31 | MALI P, YANG L, ESVELT K M, et al.. RNA-guided human genome engineering via Cas9 [J]. Science, 2013(339):823-826. |
32 | LARSON M H, GILBERT LA, WANG X W, et al.. CRISPR interference (CRISPRi) for sequence-specific control of gene expression [J]. Nat. Prot., 2013, 8(11):2180-2196. |
33 | 毛金燕,翟惠,王洁.CRISPR/Cas技术及其作用机理[J].分子植物育种,2022,20(7):2310-2319. |
MAO J Y, ZHAI H, WANG J. CRISPR/Cas technology and its action mechanisms [J]. Mol. Plant Breeding, 2022, 20(7): 2310-2319. | |
34 | 曾秀英,侯学文.CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用[J].植物生理学报,2015,51(9):1351-1358. |
ZENG X Y, HOU X W. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants [J]. Plant Physiol. J., 2015, 51(9):1351-1358. | |
35 | 李树磊,郑红艳,王磊.基因编辑技术在作物育种中的应用与展望[J].生物技术通报,2020,36(11):209-221. |
LI S L, ZHENG H Y, WANG L. Application and prospect of gene editing technology in crop breeding [J]. Biotechnol. Bull., 2020, 36(11):209-221. | |
36 | DOUDNA J A, JINEK M, CHARPENTIER E, et al.. Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription: US10266850B2 [P]. 2019-04-23. |
37 | ZHANG F. CRISPR-Cas systems and methods for altering expression of gene products: US8697359B1 [P]. 2014-04-15. |
38 | 国际农业生物技术应用服务组织.2019年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2021,41(1):114-119. |
39 | 梁晋刚,张旭冬,毕研哲,等.转基因抗虫玉米发展现状与展望[J].中国生物工程杂志,2021,41(6):98-104. |
LIANG J G, ZHANG X D, BI Y Z, et al.. Development status and prospect of genetically modified insect-resistant maize [J]. China Biotechnol., 2021, 41(6):98-104. | |
40 | 贾倩,郑怀国,赵静娟.跨国种企作物育种专利布局及对我国的启示[J].中国生物工程杂志,2022,42(10):112-124. |
JIA Q, ZHENG H G, ZHAO J J. The layout of crop breeding patents of multinational seed companies and its enlightenment to China [J]. China Biotechnol., 2022, 42(10):112-124. | |
41 | MEADE T, NARVA K, STORER N P, et al.. Combined use of CRY 1Ca and CRY1Fa proteins for insect resistance management: US9567602B2 [P]. 2017-02-14. |
42 | MEADE T, BURTON S L, NARVA K, et al.. Modified Cry1Ca insecticial Cry proteins: US9284573B2 [P]. 2016-03-15. |
43 | MEADE T, NARVA K, STORER N P, et al.. Use of Cry 1Ab in combination with Cry1Be for management of resistant insects: US9663795B2 [P]. 2017-05-30. |
44 | MEADE T, NARVA K, STORER N P, et al.. Use of Cry 1Da in combination with Cry1Be for management of resistant insects: US9499835B2 [P]. 2016-11-22. |
45 | MEADE T, NARVA K, STORER N P, et al.. Use of Cry 1Da in combination with Cry1Ca for management of resistant insects: US9796982B2 [P]. 2017-10-24. |
46 | BERMUDEZ E, CONG R, HOU J T, et al.. Synthetic insecticidal proteins active against corn rootworm: US9109231B2 [P]. 2015-08-18. |
47 | MALVEN M, RINEHART J, TAYLOR N, et al.. Soybean event MON89788 and methods for detection thereof: US7632985B2 [P]. 2009-12-15. |
48 | MALVEN M, RINEHART J, TAYLOR N, et al.. Soybean event MON89788 and methods for detection thereof: US8053184B2 [P]. 2011-11-08. |
49 | CLEMENTE T E, DUMITRU R, FENG P C C, et al.. Modified DMO enzyme and methods of its use: US7884262B2 [P]. 2011-02-08. |
50 | FENG P C C, MARIANNE M, STANISLAW F. Chloroplast transit peptides for efficient targeting of DMO and uses thereof: US7838729B2 [P]. 2010-11-23. |
51 | BRINKER R J, BURNS W C, FENG P C C, et al.. Soybean transgenic event MON 87708 and methods of use thereof: US8501407B2 [P]. 2013-08-06. |
52 | JUSTIN M L, ROBERT M C, CARLA Y, et al.. Synthetic brassica-derived chloroplast transit peptides: WO2013116758A1 [P].2013-08-08. |
53 | MASON J T, LETTOW L J, EBY M A, et al.. Elite event ee-gm3 and methods and kits for identifying such event in biological samples: WO2011063411A1 [P]. 2011-05-26. |
54 | WRIGHT T R, LIRA J M, WALSH T A, et al.. Herbicide resistance genes: US8283522B2 [P]. 2012-10-09. |
55 | WRIGHT T R, LIRA J M, WALSH T A, et al.. Herbicide resistance genes: US8916752B2 [P]. 2014-12-23. |
56 | CUI Y X C, THOMAS H, PARKHURST D M, et al.. Insect resistant and herbicide tolerant breeding stack of soybean event pdab9582.814.19.1 and pdab4468.04.16.1: WO2013016516A1 [P]. 2013-01-31. |
57 | CUI Y X, BRYAN J R, MAUM D G, et al.. AAD-1 event DAS-40278- 9, related transgenic corn lines, event-specific identification thereof, and methods of weed control involving AAD-1: US8598413B2 [P]. 2013-12-03. |
58 | WEI S B, LI X, LU Z F, et al.. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice [J]. Science, 2022, 377(6604): abi8455 [2023-07-27]. . |
59 | BROWN J K M, WULFF B B H. Diversifying the menu for crop powdery mildew resistance [J]. Cell, 2022, 185(5):761-763. |
60 | HEARD J E, RIECHMANN J L, RATCLIFFE O, et al.. Transcription factor sequences for conferring advantageous properties to plants: US9447425B2 [P]. 2016-09-20. |
61 | ABAD M, AHRENS J, AUGUSTINE A, et al.. Transgenic plants with enhanced agronomic traits: WO2009009142A3 [P]. 2009-01-15. |
62 | PETRIE J R, MACKENZIE A M, LIU Q, et al.. Enzymes and methods for producing omega-3 fatty acids: US8809559B2 [P]. 2014-08-19. |
63 | XU D M. Cloning of cytochrome p450 genes from nicotiana: US7812227B2 [P]. 2010-10-12. |
64 | XU D M. Tobacco nicotine demethylase genomic clone and uses thereof: US8592663B2 [P]. 2013-11-26. |
65 | 解伟,刘春明.生物育种产业化面临的机遇与政策保障[J].生物技术通报,2023,39(1):16-20. |
XIE W, LIU C M. Commercialization of biological breeding in China: opportunities and policy issues [J]. Biotechnol. Bull., 2023, 39(1):16-20. | |
66 | 赖锦盛,周英思,朱金洁,等.新型CRISPR/Cas12f酶和系统:CN111757889B[P].2021-05-25. |
67 | 赖锦盛,周英思,李英男,等.CRISPR-Cas12j酶和系统:CN113462671B [P].2023-09-12. |
[1] | 杨皓森. 中国大豆生物育种产业化对贸易依存度的影响[J]. 中国农业科技导报, 2024, 26(11): 15-22. |
[2] | 郭静利, 张宇宏, 盛彩娇. 有序推进我国生物育种产业化应用的对策与建议[J]. 中国农业科技导报, 2023, 25(12): 1-5. |
[3] | 崔遵康, 李丹阳, 徐小婷, 朱俊峰, 武拉平, 左文革. 粮食作物生物育种技术全球创新布局与竞争态势研究——基于核心专利数据挖掘的视角[J]. 中国农业科技导报, 2022, 24(5): 1-14. |
[4] | 陈浩, 周菲, 林拥军. 我国作物新种质创制研究进展[J]. 中国农业科技导报, 2022, 24(12): 112-119. |
[5] | 孙永华, 胡炜. 重要养殖鱼类生物育种技术研究[J]. 中国农业科技导报, 2022, 24(12): 120-128. |
[6] | 张健. 中国重要农作物生物育种产业化应用的展望[J]. 中国农业科技导报, 2022, 24(12): 15-24. |
[7] | 徐彤晓, 贺晓云, 黄昆仑. 生物育种产品食用安全评价研究进展[J]. 中国农业科技导报, 2022, 24(12): 153-159. |
[8] | 张文. 加快生物育种研发应用 推进农业科技自立自强[J]. 中国农业科技导报, 2022, 24(12): 8-14. |
[9] | 靳军宝,高峰*,古志文,郑玉荣,田晓阳. 基于DII的生物育种专利技术国际态势分析[J]. , 2015, 17(4): 176-180. |
[10] | 郝心宁,孙巍,张学福*. 1995-2012年生物育种领域知识演化分析[J]. , 2014, 16(2): 174-181. |
[11] | 康乐1,王海洋2*. 我国生物技术育种现状与发展趋势[J]. , 2014, 16(1): 16-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||