中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (5): 203-221.DOI: 10.13304/j.nykjdb.2024.0749

• 海洋农业 淡水渔业 • 上一篇    下一篇

中西太平洋金枪鱼渔场环境特征及预报现状分析

李广瑶1,2(), 杨胜龙2(), 程田飞2, 崔雪森2, 周为峰2, 张胜茂2   

  1. 1.大连海洋大学航海与船舶工程学院,辽宁 大连 116023
    2.中国水产科学研究院东海水产研究所,农业农村部渔业遥感重点试验室,上海 200090
  • 收稿日期:2024-09-10 接受日期:2025-02-26 出版日期:2025-05-15 发布日期:2025-05-20
  • 通讯作者: 杨胜龙
  • 作者简介:李广瑶 E-mail: 1637023275@qq.com
  • 基金资助:
    崂山实验室专项经费项目(LSKJ202201804);国家自然科学基金项目(61936014)

Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific

Guangyao LI1,2(), Shenglong YANG2(), Tianfei CHENG2, Xuesen CUI2, Weifeng ZHOU2, Shengmao ZHANG2   

  1. 1.School of Navigation and Naval Architecture,Dalian Ocean University,Liaoning Dalian 116023,China
    2.Key Laboratory of Fisheries Remote Sensing of Ministry of Agriculture and Rural Affairs,East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090 China
  • Received:2024-09-10 Accepted:2025-02-26 Online:2025-05-15 Published:2025-05-20
  • Contact: Shenglong YANG

摘要:

综述了中西太平洋金枪鱼渔场的环境特征,包括洋流、热力结构、溶解氧分布以及年际变化等,并系统介绍了从经验预报到基于大数据和人工智能的智能化预报技术的发展过程。重点讨论了统计方法、数值模型方法、遥感和地理信息系统方法以及人工智能和机器学习方法在渔场中的应用和不足之处。展望了综合预报和多学科融合在集成多源数据和遥感技术方面的发展趋势,提出中西太平洋金枪鱼渔场的未来发展方向为智能化预报模型、跨学科研究的深化以及可持续管理策略的创新等,旨在为中西太平洋金枪鱼渔业资源等可持续利用和科学管理提供参考。

关键词: 环境特征, 预报技术, 深度学习, 机器学习, 可持续发展

Abstract:

The environmental characteristics of tuna fishing grounds in the Central and Western Pacific were reviewed, including ocean currents, thermal structure, dissolved oxygen distribution and interannual variations. The development process from empirical forecasting to intelligent forecasting technologies were systematically introduced based on big data and artificial intelligence. The applications and shortcomings of statistical methods, numerical model methods, remote sensing and geographic information system methods were focused for discussing, as well as artificial intelligence and machine learning methods in fishing grounds. And the development trend of integrated forecasting and multidisciplinary fusion in integrating multi-source data and remote sensing technology were looked forwar. It proposed that the future development direction of the Central and Western Pacific tuna fishery should be intelligent forecasting models, deepening interdisciplinary research and innovative sustainable management strategies, which provided reference for the sustainable utilization and scientific management of tuna fishery resources in the Central and Western Pacific.

Key words: environmental characteristics, forecasting technology, deep learning, machine learning, sustainable development

中图分类号: