中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (5): 203-221.DOI: 10.13304/j.nykjdb.2024.0749
李广瑶1,2(), 杨胜龙2(
), 程田飞2, 崔雪森2, 周为峰2, 张胜茂2
收稿日期:
2024-09-10
接受日期:
2025-02-26
出版日期:
2025-05-15
发布日期:
2025-05-20
通讯作者:
杨胜龙
作者简介:
李广瑶 E-mail: 1637023275@qq.com;
基金资助:
Guangyao LI1,2(), Shenglong YANG2(
), Tianfei CHENG2, Xuesen CUI2, Weifeng ZHOU2, Shengmao ZHANG2
Received:
2024-09-10
Accepted:
2025-02-26
Online:
2025-05-15
Published:
2025-05-20
Contact:
Shenglong YANG
摘要:
综述了中西太平洋金枪鱼渔场的环境特征,包括洋流、热力结构、溶解氧分布以及年际变化等,并系统介绍了从经验预报到基于大数据和人工智能的智能化预报技术的发展过程。重点讨论了统计方法、数值模型方法、遥感和地理信息系统方法以及人工智能和机器学习方法在渔场中的应用和不足之处。展望了综合预报和多学科融合在集成多源数据和遥感技术方面的发展趋势,提出中西太平洋金枪鱼渔场的未来发展方向为智能化预报模型、跨学科研究的深化以及可持续管理策略的创新等,旨在为中西太平洋金枪鱼渔业资源等可持续利用和科学管理提供参考。
中图分类号:
李广瑶, 杨胜龙, 程田飞, 崔雪森, 周为峰, 张胜茂. 中西太平洋金枪鱼渔场环境特征及预报现状分析[J]. 中国农业科技导报, 2025, 27(5): 203-221.
Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221.
技术类型 Type of technology | 优点 Advantage | 缺点 Disadvantage | 准确率 Accuracy |
---|---|---|---|
经验预报 Empirical forecasting | 依赖个人经验,简单易行 Rely on personal experience, simple and easy | 预测精度低,受个人经验限制 Prediction accuracy is low and limited by personal experience | 低 Low |
统计预报 Statistical forecasting | 基于历史数据,简单易行 Based on historical data, simple and easy | 依赖历史数据,预测结果有限 Rely on historical data and have limited predictions | 中等 Medium |
数值模拟与模型预报 Numerical simulation and model forecasting | 处理多变量,精确预测 Handle multivariate and forecast accurately | 需要大量计算资源 Requires a lot of computing resources | 高 High |
遥感与地理信息系统 Remote sensing and GIS | 实时监测,大范围覆盖 Real-time monitoring, large-scale coverage | 受天气影响,数据精度有限 Due to weather conditions, data accuracy is limited | 高 High |
大数据与人工智能 Big data and artificial intelligence | 自动学习,动态预测 Automatic learning, dynamic prediction | 需要大量数据和计算资源 Requires a lot of data and computing resources | 最高 Highest |
综合预报与多学科融合 Integrated forecasting and multidisciplinary integration | 多学科知识整合,全面预测 Multidisciplinary knowledge integration for comprehensive forecasting | 数据处理复杂,模型构建难度大 Data processing is complex, and model construction is difficult | 高 High |
表1 预报精度分析
Table 1 Forecast accuracy analysis
技术类型 Type of technology | 优点 Advantage | 缺点 Disadvantage | 准确率 Accuracy |
---|---|---|---|
经验预报 Empirical forecasting | 依赖个人经验,简单易行 Rely on personal experience, simple and easy | 预测精度低,受个人经验限制 Prediction accuracy is low and limited by personal experience | 低 Low |
统计预报 Statistical forecasting | 基于历史数据,简单易行 Based on historical data, simple and easy | 依赖历史数据,预测结果有限 Rely on historical data and have limited predictions | 中等 Medium |
数值模拟与模型预报 Numerical simulation and model forecasting | 处理多变量,精确预测 Handle multivariate and forecast accurately | 需要大量计算资源 Requires a lot of computing resources | 高 High |
遥感与地理信息系统 Remote sensing and GIS | 实时监测,大范围覆盖 Real-time monitoring, large-scale coverage | 受天气影响,数据精度有限 Due to weather conditions, data accuracy is limited | 高 High |
大数据与人工智能 Big data and artificial intelligence | 自动学习,动态预测 Automatic learning, dynamic prediction | 需要大量数据和计算资源 Requires a lot of data and computing resources | 最高 Highest |
综合预报与多学科融合 Integrated forecasting and multidisciplinary integration | 多学科知识整合,全面预测 Multidisciplinary knowledge integration for comprehensive forecasting | 数据处理复杂,模型构建难度大 Data processing is complex, and model construction is difficult | 高 High |
模型名称 Name of model | 优点 Advantage | 缺点 Disadvantage | 预报精度 Forecast accuracy |
---|---|---|---|
广义可加模型 Generalized additive model | 能够较好地拟合和预测金枪鱼的分布,能够捕捉非线性关系,模型解释能力强 It can fit and predict the distribution of tuna well, can capture nonlinear relationships, and has strong model interpretation ability | 计算复杂度较高,对数据量要求较大 The computational complexity is high and the data volume requirements are large | 最高 Highest |
广义线性模型 Generalized linear model | 结构稳定、操作简单,适用于线性关系明显的数据 The structure is stable, the operation is simple, and it is suitable for data with obvious linear relationship | 对数据的线性假设要求较高,实际渔业数据可能不满足,导致效果较差 The linearity assumptions of the data are required, and the actual fishery data may not be satisfied, resulting in poor results | 中等偏上 Upper medium |
贝叶斯模型 Bayesian model | 能够利用先验信息,对不确定性有较好的处理能力 Able to use prior information and have a good ability to deal with uncertainty | 需要较多的先验信息,计算复杂度高,模型构建和计算时间较长 It requires a large amount of prior information, high computational complexity, and takes a long time to build and computation | 中等 Medium |
栖息地指数模型 Habitat suitability index | 基于环境因子构建,直观易懂,可解释性强 It is built based on environmental factors, which is intuitive and easy to understand, and has strong interpretability | 对环境因子的线性假设较强,难以捕捉复杂的非线性关系,预报精度有限 The linearity assumptions of environmental factors are strong, and it is difficult to capture complex nonlinear relationships, and the prediction accuracy is limited | 中等偏下 Medium to low |
灰色关联模型 Grey relational analysis | 对数据的平滑处理较强,适用于数据量较少的情况 It has strong smoothing of data and is suitable for small amounts of data | 难以捕捉细微的变化,对非线性关系的捕捉能力弱,预报精度较低 It is difficult to capture subtle changes, the ability to capture nonlinear relationships is weak, and the prediction accuracy is low | 最低 Minimum |
表2 统计预报相关模型的预报精度分析
Table 2 Forecast accuracy analysis of statistical forecasting models
模型名称 Name of model | 优点 Advantage | 缺点 Disadvantage | 预报精度 Forecast accuracy |
---|---|---|---|
广义可加模型 Generalized additive model | 能够较好地拟合和预测金枪鱼的分布,能够捕捉非线性关系,模型解释能力强 It can fit and predict the distribution of tuna well, can capture nonlinear relationships, and has strong model interpretation ability | 计算复杂度较高,对数据量要求较大 The computational complexity is high and the data volume requirements are large | 最高 Highest |
广义线性模型 Generalized linear model | 结构稳定、操作简单,适用于线性关系明显的数据 The structure is stable, the operation is simple, and it is suitable for data with obvious linear relationship | 对数据的线性假设要求较高,实际渔业数据可能不满足,导致效果较差 The linearity assumptions of the data are required, and the actual fishery data may not be satisfied, resulting in poor results | 中等偏上 Upper medium |
贝叶斯模型 Bayesian model | 能够利用先验信息,对不确定性有较好的处理能力 Able to use prior information and have a good ability to deal with uncertainty | 需要较多的先验信息,计算复杂度高,模型构建和计算时间较长 It requires a large amount of prior information, high computational complexity, and takes a long time to build and computation | 中等 Medium |
栖息地指数模型 Habitat suitability index | 基于环境因子构建,直观易懂,可解释性强 It is built based on environmental factors, which is intuitive and easy to understand, and has strong interpretability | 对环境因子的线性假设较强,难以捕捉复杂的非线性关系,预报精度有限 The linearity assumptions of environmental factors are strong, and it is difficult to capture complex nonlinear relationships, and the prediction accuracy is limited | 中等偏下 Medium to low |
灰色关联模型 Grey relational analysis | 对数据的平滑处理较强,适用于数据量较少的情况 It has strong smoothing of data and is suitable for small amounts of data | 难以捕捉细微的变化,对非线性关系的捕捉能力弱,预报精度较低 It is difficult to capture subtle changes, the ability to capture nonlinear relationships is weak, and the prediction accuracy is low | 最低 Minimum |
鱼种 Species | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
黄鳍金枪鱼 Larvae and Juveniles | GAM模型的优点在于其简单易用和可解释性强,适合处理线性或弱非线性关系的数据 The advantages of the GAM model are that it is easy to use and interpretable, and is suitable for processing data with linear or weak nonlinear relationships | GAM模型的缺点主要在于其拟合能力有限,对复杂数据的适应性较差,且对异常值敏感 The disadvantages of the GAM model are mainly due to its limited fitting ability, poor adaptability to complex data, and sensitivity to outliers | GAM模型 (偏差解释率为29.4%,均方误差为 0.149) 表现较为一般,适合对数据拟合要求不高的场景 The GAM model (deviation interpretation rate of 29.4% and mean square error of 0.149) was relatively average, which was suitable for scenarios with low requirements for data fitting | [ |
长鳍金枪鱼 Albacore tuna | 在处理非线性关系和解释变量影响方面表现出色,适合用于分析环境因子与资源丰度之间的复杂关系 It excels in dealing with nonlinear relationships and the effects of explanatory variables, and is suitable for analyzing complex relationships between environmental factors and resource abundance | 主要体现在模型复杂性、数据量和质量要求、变量选择的局限性、预测精度以及对动态变化和经济因素的考虑不足等方面 It is mainly reflected in the complexity of the model, the amount and quality of data, the limitations of variable selection, the prediction accuracy, and the insufficient consideration of dynamic changes and economic factors | 总偏差解释率为 46.4%,AIC 值为 132.36,表明模型对 CPUE 的解释能力有限,但能够提供一定的预测能力 The total bias interpretation rate was 46.4% and the AIC value was 132.36, indicating that the model has limited explanatory power for CPUE, but can provide some predictive power | [ |
长鳍金枪鱼 Albacore tuna | 体现了其非线性建模能力、变量选择与优化、灵活的误差分布假设、平滑函数处理、强解释性、多变量分析能力以及易于实现与扩展等 It reflects its nonlinear modeling ability, variable selection and optimization, flexible error distribution assumptions, smooth function processing, strong interpretability, multivariate analysis ability, and easy implementation and expansion | 模型对CPUE总偏差的解释率仅为11.34%,相对较低,这可能与数据年份少、捕捞方式单一和环境要素选择不全面有关 The explanation rate of the model for the total deviation of CPUE is only 11.34%, which is relatively low, which may be related to the small number of data years, single fishing methods and incomplete selection of environmental factors | GAM 模型对长鳍金枪鱼CPUE 总偏差解释率为 11.34% , 其中贡献最大的为时间 (周), 贡献率为 6.35% The GAM model explains 11.34% of the total deviation of CPUE for albacore tuna, with time (week) being the largest contributor, accounting for 6.35% | [ |
表3 GAM模型在渔场中的应用
Table 3 Application of GAM model in fisheries
鱼种 Species | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
黄鳍金枪鱼 Larvae and Juveniles | GAM模型的优点在于其简单易用和可解释性强,适合处理线性或弱非线性关系的数据 The advantages of the GAM model are that it is easy to use and interpretable, and is suitable for processing data with linear or weak nonlinear relationships | GAM模型的缺点主要在于其拟合能力有限,对复杂数据的适应性较差,且对异常值敏感 The disadvantages of the GAM model are mainly due to its limited fitting ability, poor adaptability to complex data, and sensitivity to outliers | GAM模型 (偏差解释率为29.4%,均方误差为 0.149) 表现较为一般,适合对数据拟合要求不高的场景 The GAM model (deviation interpretation rate of 29.4% and mean square error of 0.149) was relatively average, which was suitable for scenarios with low requirements for data fitting | [ |
长鳍金枪鱼 Albacore tuna | 在处理非线性关系和解释变量影响方面表现出色,适合用于分析环境因子与资源丰度之间的复杂关系 It excels in dealing with nonlinear relationships and the effects of explanatory variables, and is suitable for analyzing complex relationships between environmental factors and resource abundance | 主要体现在模型复杂性、数据量和质量要求、变量选择的局限性、预测精度以及对动态变化和经济因素的考虑不足等方面 It is mainly reflected in the complexity of the model, the amount and quality of data, the limitations of variable selection, the prediction accuracy, and the insufficient consideration of dynamic changes and economic factors | 总偏差解释率为 46.4%,AIC 值为 132.36,表明模型对 CPUE 的解释能力有限,但能够提供一定的预测能力 The total bias interpretation rate was 46.4% and the AIC value was 132.36, indicating that the model has limited explanatory power for CPUE, but can provide some predictive power | [ |
长鳍金枪鱼 Albacore tuna | 体现了其非线性建模能力、变量选择与优化、灵活的误差分布假设、平滑函数处理、强解释性、多变量分析能力以及易于实现与扩展等 It reflects its nonlinear modeling ability, variable selection and optimization, flexible error distribution assumptions, smooth function processing, strong interpretability, multivariate analysis ability, and easy implementation and expansion | 模型对CPUE总偏差的解释率仅为11.34%,相对较低,这可能与数据年份少、捕捞方式单一和环境要素选择不全面有关 The explanation rate of the model for the total deviation of CPUE is only 11.34%, which is relatively low, which may be related to the small number of data years, single fishing methods and incomplete selection of environmental factors | GAM 模型对长鳍金枪鱼CPUE 总偏差解释率为 11.34% , 其中贡献最大的为时间 (周), 贡献率为 6.35% The GAM model explains 11.34% of the total deviation of CPUE for albacore tuna, with time (week) being the largest contributor, accounting for 6.35% | [ |
方法 Method | 特点 Peculiarity | 优势 Advantage | 局限性 Limitation |
---|---|---|---|
机器学习 Machine learning | 基于数据和算法的自动化学习,模型多样,灵活性高 Automatic learning based on data and algorithms, diverse models and high flexibility | 模型多样,适用于中等规模数据集;训练时间较短,易于理解和解释;鲁棒性较强,不易过拟合 The models are diverse and suitable for medium-sized datasets. The training time is short, easy to understand and explain; It is robust and not easy to overfit | 对高维复杂数据的处理能力有限;需要较多的调参工作;在处理大规模数据时可能表现不足 Limited ability to process high-dimensional and complex data; it requires a lot of parameter tuning work; it can be underperforming when dealing with large-scale data |
深度学习 Deep learning | 多层神经网络,自动提取复杂特征,适合大规模数据 Multi-layer neural network, automatic extraction of complex features, suitable for large-scale data | 强大的特征提取能力,适合高维度数据;预测精度高,能够处理大规模数据;自动学习数据中的复杂模式 Powerful feature extraction capabilities, suitable for high-dimensional data; high prediction accuracy and ability to process large-scale data; automatically learn complex patterns in your data | 需要大量的标注数据进行训练;计算资源需求高,训练时间长;模型解释性较差 A large amount of labeled data is required for training; high demand for computing resources and long training time; the model is poorly interpretable |
人工神经网络 Artificial neural network | 模拟生物神经网络,非线性拟合能力强 Simulating biological neural networks, with strong nonlinear fitting ability | 非线性拟合能力强,能够处理复杂的数据关系;灵活性高,适用于多种数据类型 Strong nonlinear fitting ability, able to deal with complex data relationships; flexibility for a wide range of data types | 需要大量数据进行训练;容易过拟合;训练过程复杂,模型解释性差 Requires a lot of data for training; Easy to overfit; the training process is complex and the model is poorly interpretable |
表4 机器学习和人工智能3种方法的比较
Table 4 Compare of 3 machine learning methods and artificial intelligence
方法 Method | 特点 Peculiarity | 优势 Advantage | 局限性 Limitation |
---|---|---|---|
机器学习 Machine learning | 基于数据和算法的自动化学习,模型多样,灵活性高 Automatic learning based on data and algorithms, diverse models and high flexibility | 模型多样,适用于中等规模数据集;训练时间较短,易于理解和解释;鲁棒性较强,不易过拟合 The models are diverse and suitable for medium-sized datasets. The training time is short, easy to understand and explain; It is robust and not easy to overfit | 对高维复杂数据的处理能力有限;需要较多的调参工作;在处理大规模数据时可能表现不足 Limited ability to process high-dimensional and complex data; it requires a lot of parameter tuning work; it can be underperforming when dealing with large-scale data |
深度学习 Deep learning | 多层神经网络,自动提取复杂特征,适合大规模数据 Multi-layer neural network, automatic extraction of complex features, suitable for large-scale data | 强大的特征提取能力,适合高维度数据;预测精度高,能够处理大规模数据;自动学习数据中的复杂模式 Powerful feature extraction capabilities, suitable for high-dimensional data; high prediction accuracy and ability to process large-scale data; automatically learn complex patterns in your data | 需要大量的标注数据进行训练;计算资源需求高,训练时间长;模型解释性较差 A large amount of labeled data is required for training; high demand for computing resources and long training time; the model is poorly interpretable |
人工神经网络 Artificial neural network | 模拟生物神经网络,非线性拟合能力强 Simulating biological neural networks, with strong nonlinear fitting ability | 非线性拟合能力强,能够处理复杂的数据关系;灵活性高,适用于多种数据类型 Strong nonlinear fitting ability, able to deal with complex data relationships; flexibility for a wide range of data types | 需要大量数据进行训练;容易过拟合;训练过程复杂,模型解释性差 Requires a lot of data for training; Easy to overfit; the training process is complex and the model is poorly interpretable |
模型 Model | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
XGBRF模型 XGBRF model | XGBRF模型通过结合随机森林和XGBoost的优势,显著提高了模型的预测精度、稳定性和泛化能力,适用于复杂的海洋渔业数据建模和渔场预报任务 By combining the advantages of random forest and XGBoost, the XGBRF model significantly improves the prediction accuracy, stability and generalization ability of the model, which is suitable for complex marine fishery data modeling and fishery forecasting tasks | 存在模型复杂度高、数据预处理复杂、解释性不足以及对数据质量和数量要求较高等问题 There are some problems, such as high model complexity, complex data preprocessing, insufficient explanatory ability, and high requirements for data quality and quantity | 准确率:75.39%, 渔场召回率:87.36%, 渔场F1得分:82.64%, 非渔场查准率:66.32%, AUC:79.48%, accuracy:75.39%, recall of fishing ground:87.36%, F1-score of fishing ground:82.64%, precision of non-fishing ground:66.32%, AUC:79.48% | [ |
随机森林模型 Random forest model | 随机森林则以其易用性、泛化能力和稳定性脱颖而出,适合快速建模和特征重要性分析,且对数据的鲁棒性较强 Random forests stand out for their ease of use, generalization ability, and stability, which are suitable for rapid modeling and feature importance analysis, and have strong robustness to data | 模型复杂度高、对数据不平衡敏感、超参数调整复杂,且模型解释性有限 The model is highly complex, sensitive to data imbalance, complex hyperparameter tuning, and has limited explanatory properties | 随机森林(预测准确率:64.8%;Kappa 值:最高为 0.51)在预测长鳍金枪鱼的时空分布时表现最佳,具有最高的准确率和稳定性,能够较好地预测不同等级的渔场分布 Random forest (prediction accuracy: 64.8%; Kappa value: up to 0.51) performed best in predicting the spatial and temporal distribution of albacore tuna, with the highest accuracy and stability, and was able to predict the distribution of different fish grades | [ |
CNN-SA-XGBoost 模型 CNN-SA-XGBoost model | 特征提取能力强、预测精度高、模型适应性强、模型可扩展性强等 Strong feature extraction ability, high prediction accuracy, strong model adaptability, and strong model scalability | 易陷入局部最优解、对初始权重敏感、训练时间长、泛化能力有限等 It is easy to fall into the local optimal solution, sensitive to the initial weight, has a long training time, and has limited generalization ability | CNN-SA-XGBoost 模型预测长鳍金枪鱼资源丰度,均方根误差为 0.486 The CNN-SA-XGBoost model predicted the abundance of albacore tuna with a root mean square error of 0.486 | [ |
CNN-DNN-CCA-RBF融合模型/GBDT-LR模型融合 CNN-DNN-CCA-RBF fusion model/ GBDT-LR model fusion | 2种模型均通过多模型融合的方式,充分发挥了各自子模型的优势,减少了单一模型的局限性 Both models give full play to the advantages of their respective sub-models through multi-model fusion, and reduce the limitations of a single model | CNN-DNN-CCA-RBF模型的主要缺点在于其复杂度高、对数据量要求大以及调参难度大;而GBDT-LR模型则在数据质量依赖性、特征工程依赖性和过拟合风险方面存在挑战 The main disadvantages of the CNN-DNN-CCA-RBF model are its high complexity, large data requirements, and difficulty in parameter tuning. However, the GBDT-LR model has challenges in terms of data quality dependence, feature engineering dependence and overfitting risk | GBDT-LR 模型在所有指标上均优于 CNN-DNN-CCA-RBF 模型,尤其是在中心渔场召回率和总召回率方面,分别高出2.8%和6.2% The GBDT-LR model outperformed the CNN-DNN-CCA-RBF model in all indicators, especially in the central fishery recall and total recall, which were 2.8% and 6.2% higher, respectively | [ |
表5 机器学习预报技术的研究
Table 5 Research on machine learning forecasting techniques
模型 Model | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
XGBRF模型 XGBRF model | XGBRF模型通过结合随机森林和XGBoost的优势,显著提高了模型的预测精度、稳定性和泛化能力,适用于复杂的海洋渔业数据建模和渔场预报任务 By combining the advantages of random forest and XGBoost, the XGBRF model significantly improves the prediction accuracy, stability and generalization ability of the model, which is suitable for complex marine fishery data modeling and fishery forecasting tasks | 存在模型复杂度高、数据预处理复杂、解释性不足以及对数据质量和数量要求较高等问题 There are some problems, such as high model complexity, complex data preprocessing, insufficient explanatory ability, and high requirements for data quality and quantity | 准确率:75.39%, 渔场召回率:87.36%, 渔场F1得分:82.64%, 非渔场查准率:66.32%, AUC:79.48%, accuracy:75.39%, recall of fishing ground:87.36%, F1-score of fishing ground:82.64%, precision of non-fishing ground:66.32%, AUC:79.48% | [ |
随机森林模型 Random forest model | 随机森林则以其易用性、泛化能力和稳定性脱颖而出,适合快速建模和特征重要性分析,且对数据的鲁棒性较强 Random forests stand out for their ease of use, generalization ability, and stability, which are suitable for rapid modeling and feature importance analysis, and have strong robustness to data | 模型复杂度高、对数据不平衡敏感、超参数调整复杂,且模型解释性有限 The model is highly complex, sensitive to data imbalance, complex hyperparameter tuning, and has limited explanatory properties | 随机森林(预测准确率:64.8%;Kappa 值:最高为 0.51)在预测长鳍金枪鱼的时空分布时表现最佳,具有最高的准确率和稳定性,能够较好地预测不同等级的渔场分布 Random forest (prediction accuracy: 64.8%; Kappa value: up to 0.51) performed best in predicting the spatial and temporal distribution of albacore tuna, with the highest accuracy and stability, and was able to predict the distribution of different fish grades | [ |
CNN-SA-XGBoost 模型 CNN-SA-XGBoost model | 特征提取能力强、预测精度高、模型适应性强、模型可扩展性强等 Strong feature extraction ability, high prediction accuracy, strong model adaptability, and strong model scalability | 易陷入局部最优解、对初始权重敏感、训练时间长、泛化能力有限等 It is easy to fall into the local optimal solution, sensitive to the initial weight, has a long training time, and has limited generalization ability | CNN-SA-XGBoost 模型预测长鳍金枪鱼资源丰度,均方根误差为 0.486 The CNN-SA-XGBoost model predicted the abundance of albacore tuna with a root mean square error of 0.486 | [ |
CNN-DNN-CCA-RBF融合模型/GBDT-LR模型融合 CNN-DNN-CCA-RBF fusion model/ GBDT-LR model fusion | 2种模型均通过多模型融合的方式,充分发挥了各自子模型的优势,减少了单一模型的局限性 Both models give full play to the advantages of their respective sub-models through multi-model fusion, and reduce the limitations of a single model | CNN-DNN-CCA-RBF模型的主要缺点在于其复杂度高、对数据量要求大以及调参难度大;而GBDT-LR模型则在数据质量依赖性、特征工程依赖性和过拟合风险方面存在挑战 The main disadvantages of the CNN-DNN-CCA-RBF model are its high complexity, large data requirements, and difficulty in parameter tuning. However, the GBDT-LR model has challenges in terms of data quality dependence, feature engineering dependence and overfitting risk | GBDT-LR 模型在所有指标上均优于 CNN-DNN-CCA-RBF 模型,尤其是在中心渔场召回率和总召回率方面,分别高出2.8%和6.2% The GBDT-LR model outperformed the CNN-DNN-CCA-RBF model in all indicators, especially in the central fishery recall and total recall, which were 2.8% and 6.2% higher, respectively | [ |
模型 Model | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
人工神经网络 Artificial neural network | 在生态信息学中展现了强大的灵活性和适应性,能够处理复杂的非线性关系和不确定性数据 It has demonstrated great flexibility and adaptability in ecoinformatics, and is able to handle complex nonlinear relationships and uncertain data | 模型复杂、数据需求大、计算成本高和结果解释性不足等 Model complexity, large data requirements, high computational costs and insufficient explanatory results | 在可用的时间序列数据中,正确预测的比例达到了61.9%。这表明在该特定案例中,ANNs结合遗传算法的预测模型具有一定的准确性和实用性 Among the available time series data, 61.9 percent of the predictions were correct. This shows that in this particular case, the prediction model of ANNs combined with genetic algorithm has certain accuracy and practicability | [ |
多种BP神经网络预报模型 Backpropagation neural network models | BP神经网络在北太平洋柔鱼渔场预报中的应用,充分发挥了其自适应、非线性拟合、容错性和多因子综合处理等优点 The application of BP neural network in the prediction of soft fish fishery in the North Pacific Ocean gives full play to its advantages of self-adaptation, nonlinear fitting, fault tolerance and multi-factor comprehensive processing | 模型过于复杂,且研究仅研究了单隐层BP神经网络结构模型,对于其他结构(如多隐层)的神经网络是否能在渔情预报中应用,或者进一步提高预报精度,还需要进一步研究 The model is too complex, and the study only studied the structure model of the single-hidden layer BP neural network, and further research is needed on whether the neural network with other structures (such as multiple hidden layers) can be applied in fishing forecasting, or to further improve the prediction accuracy | 经过对13种不同的BP神经网络模型的比较和验证,最优的模型结构为9-7-1,其拟合残差仅为0.008570 After comparing and verifying 13 different BP neural network models, the optimal model structure is 9-7-1, and its fitting residuals are only 0.008570 | [ |
EMD-BiLSTM模型 EMD-BiLSTM model | 该方法有效处理非线性和非平稳数据,充分发挥神经网络优势,降低预测误差,为金枪鱼渔场预报提供新思路,提升渔业资源管理与预测精度 This method effectively processes nonlinear and non-stationary data, gives full play to the advantages of neural networks, reduces prediction errors, provides new ideas for tuna fishery forecasting, and improves the management and prediction accuracy of fishery resources | 在使用EMD分解算法对原始数据序列进行分解时,分解结果中存在模态混叠现象,导致分解分量的平稳性并没有得到彻底的改善 When the EMD decomposition algorithm is used to decompose the original data sequence, there is modal aliasing in the decomposition results, which leads to the stationarity of the decomposition components is not completely improved | 与Bi-LSTM模型相比,EMD-BiLSTM模型的均方根误差降低了0.053,绝对误差降低了0.018;与BP模型相比,均方根误差降低了0.208,绝对误差降低了0.048 Compared with the Bi-LSTM model, the root mean square error of the EMD-BiLSTM model is reduced by 0.053 and the absolute error is reduced by 0.018, and the root mean square error is reduced by 0.208 and the absolute error is reduced by 0.048 compared with the BP model | [ |
表6 人工神经网络相关研究
Table 6 Research on artificial neural networks
模型 Model | 模型算法优点 Advantage of model algorithms | 模型算法缺点 Disadvantage of model algorithms | 准确率 Accuracy | 文献 Reference |
---|---|---|---|---|
人工神经网络 Artificial neural network | 在生态信息学中展现了强大的灵活性和适应性,能够处理复杂的非线性关系和不确定性数据 It has demonstrated great flexibility and adaptability in ecoinformatics, and is able to handle complex nonlinear relationships and uncertain data | 模型复杂、数据需求大、计算成本高和结果解释性不足等 Model complexity, large data requirements, high computational costs and insufficient explanatory results | 在可用的时间序列数据中,正确预测的比例达到了61.9%。这表明在该特定案例中,ANNs结合遗传算法的预测模型具有一定的准确性和实用性 Among the available time series data, 61.9 percent of the predictions were correct. This shows that in this particular case, the prediction model of ANNs combined with genetic algorithm has certain accuracy and practicability | [ |
多种BP神经网络预报模型 Backpropagation neural network models | BP神经网络在北太平洋柔鱼渔场预报中的应用,充分发挥了其自适应、非线性拟合、容错性和多因子综合处理等优点 The application of BP neural network in the prediction of soft fish fishery in the North Pacific Ocean gives full play to its advantages of self-adaptation, nonlinear fitting, fault tolerance and multi-factor comprehensive processing | 模型过于复杂,且研究仅研究了单隐层BP神经网络结构模型,对于其他结构(如多隐层)的神经网络是否能在渔情预报中应用,或者进一步提高预报精度,还需要进一步研究 The model is too complex, and the study only studied the structure model of the single-hidden layer BP neural network, and further research is needed on whether the neural network with other structures (such as multiple hidden layers) can be applied in fishing forecasting, or to further improve the prediction accuracy | 经过对13种不同的BP神经网络模型的比较和验证,最优的模型结构为9-7-1,其拟合残差仅为0.008570 After comparing and verifying 13 different BP neural network models, the optimal model structure is 9-7-1, and its fitting residuals are only 0.008570 | [ |
EMD-BiLSTM模型 EMD-BiLSTM model | 该方法有效处理非线性和非平稳数据,充分发挥神经网络优势,降低预测误差,为金枪鱼渔场预报提供新思路,提升渔业资源管理与预测精度 This method effectively processes nonlinear and non-stationary data, gives full play to the advantages of neural networks, reduces prediction errors, provides new ideas for tuna fishery forecasting, and improves the management and prediction accuracy of fishery resources | 在使用EMD分解算法对原始数据序列进行分解时,分解结果中存在模态混叠现象,导致分解分量的平稳性并没有得到彻底的改善 When the EMD decomposition algorithm is used to decompose the original data sequence, there is modal aliasing in the decomposition results, which leads to the stationarity of the decomposition components is not completely improved | 与Bi-LSTM模型相比,EMD-BiLSTM模型的均方根误差降低了0.053,绝对误差降低了0.018;与BP模型相比,均方根误差降低了0.208,绝对误差降低了0.048 Compared with the Bi-LSTM model, the root mean square error of the EMD-BiLSTM model is reduced by 0.053 and the absolute error is reduced by 0.018, and the root mean square error is reduced by 0.208 and the absolute error is reduced by 0.048 compared with the BP model | [ |
1 | Food Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture [M]. Rome: Fisheries Department, 2022:11-12. |
2 | BOUR W, MARCILLE J, REBERT J P. Pêche thonière et conditions hydrologiques dans le Pacifique tropical Ouest [J]. La Pêche Maritime, 1981, 1245: 2-7. |
3 | LEHODEY P, CHAI F, HAMPTON J. Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model [J]. Fish. Oceanogr., 2003, 12(4-5): 483-494. |
4 | TRIGUEROS-SALMERON J A, ORTEGA-GARCIA S. Spatial and seasonal variation of relative abundance of the skipjack tuna Katsuwonus pelamis (Linnaeus, 1758) in the Eastern Pacific Ocean (EPO) during 1970—1995 [J]. Fish. Res., 2001, 49(3): 227-232. |
5 | 王宇.世界金枪鱼渔业资源开发利用研究[M].北京:海洋出版社,2000:1-211. |
6 | BARCLAY K, CARTWRIGHT I. Governance of tuna industries: the key to economic viability and sustainability in the Western and Central Pacific Ocean [J]. Mar. Policy, 2007, 31(3): 348-358. |
7 | 杨胜龙,张忭忭,靳少非,等.中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J].海洋学报,2015,37(6):78-87. |
YANG S L, ZHANG B B, JIN S F, et al.. Relationship between the temporal-spatial distribution of longline fishing grounds of yellowfin tuna (Thunnus albadares) and the thermocline characteristics in the Western and Central Pacific Ocean [J]. Haiyang Xuebao, 2015, 37(6): 78-87. | |
8 | 宋函欣.我国中西太平洋金枪鱼围网渔业发展研究[D].上海:上海海洋大学,2022. |
SONG H X. Study on the development of China tuna purse seine fishery in the Western and Central Pacific Ocean [D]. Shanghai: Shanghai Ocean University, 2022. | |
9 | 沈卉卉.金枪鱼渔业资源管理制度研究——兼论中国金枪鱼远洋渔业的发展[D].上海:上海海洋大学,2019. |
SHENG H H. A study on the management system of tuna fishery resources—with a look into the development of China’s tuna distant water fisheries [D]. Shanghai: Shanghai Ocean University, 2019. | |
10 | 冯虎年.中西太平洋岛国专属经济区内鲣鱼围网渔场分布及其与海洋环境因子的关系研究[D].上海:上海海洋大学,2023. |
FENG H N. Skipjack tuna purse seine fishing ground distribution in the exclusive economic zone of Western and Central Pacific Island countries and relationship with marine environmental factors [D]. Shanghai: Shanghai Ocean University, 2023. | |
11 | 吴隆杰.基于渔业生态足迹指数的渔业资源可持续利用测度研究[D].青岛:中国海洋大学,2006. |
WU L J. A study of measurement on sustainable utilization of fisheries resource based on ecological footprint index in fisheries [D]. Qingdao: China Ocean University, 2006. | |
12 | 许振琦,汪金涛,雷林,等.中西太平洋长鳍金枪鱼渔场重心时空分布研究[J].水产科学,2023,42(4):604-612. |
XU Z Q, WANG J T, LEI L, et al.. Spatial and temporal distribution of the fishing ground gravity of Thunnus alalunga in Western and Central Pacific [J]. Fish. Sci., 2023, 42(4): 604-612. | |
13 | TOOLE J M, MILLARD R C, WANG Z, et al.. Observations of the Pacific North equatorial current bifurcation at the Philippine coast [J]. J. Physical Oceanography, 1990, 20,2: 307-318. |
14 | NICOL S. Oceanographic characterisation of the Pacific Ocean and the potential impact of climate variability on tuna stocks and tuna fisheries [J]. SPC Fisheries Newsletter, 2014, 145: 37-48. |
15 | CHAVEZ F P, BARBER R T. An estimate of new production in the equatorial Pacific [J]. Deep Sea Res. Part A Oceanogr. Res. Pap., 1987, 34(7): 1229-1243. |
16 | LEHODEY P, BERTIGNAC M, HAMPTON J, et al.. El Niño southern oscillation and tuna in the Western Pacific [J]. Nature, 1997, 389: 715-718. |
17 | LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO [J]. Prog. Oceanogr., 2001, 49(1-4): 439-468. |
18 | YANG S L, ZHANG Y, ZHANG H, et al.. The relationship between the temporal-spatial distribution of fishing ground of yellowfin tuna (Thunnus albacares) and themocline characteristics in the tropic Indian Ocean [J]. Acta Ecol. Sin., 2012, 32(3): 671-679. |
19 | YANG S L, ZHANG Y, WANG F, et al.. Relationship between the temporal-spatial distribution of fish in bigeye tuna fishing grounds and the thermocline characteristics in the tropical Indian Ocean [J]. J. Fishery Sci. China, 2012, 19(4): 679-689. |
20 | LI Y W, SONG L M, NISHIDA T, et al.. Development of integrated habitat indices for bigeye tuna, Thunnus obesus, in waters near Palau [J]. Mar. Freshwater Res., 2012, 63: 1244-1254. |
21 | 王学昉,许柳雄,周成,等.中西太平洋金枪鱼围网鲣鱼自由鱼群捕获成功率与温跃层特性的关系[J].上海海洋大学学报,2013,22(5):763-769. |
WANG X F, XU L X, ZHOU C, et al.. The relationship between the thermocline features and the rate of fishing success for free school caught by the tuna purse seiner in the Western and Central Pacific Ocean [J]. J. Shanghai Ocean. Univ., 2013, 22(5): 763-769. | |
22 | CLARK P U, SHAKUN J D, BARTLEIN K P J, et al.. Bartlein, global and regional temperature change over the past 4.5 million years [J]. Science, 2024, 383(6685): 884-890. |
23 | NICOL S. Oceanographic characterisation of the Pacific Ocean and the potential impact of climate variability on tuna stocks and tuna fisheries [J]. SPC Fisheries Newsletter, 2014, 145: 37-48. |
24 | ATKINSON D. Marine ecosystems and climate variation: the North Atlantic-a comparative perspective [J/OL]. Freshwater Biol., 2006, 1:586 [2024-08-10]. . |
25 | LU H J, LEE K T, LIAO C H, et al.. On the relationship between El Nino/southern oscillation and South Pacific albacore [J]. Fisheries Res., 1998, 39.1: 1-7. |
26 | KIRBY D S, LANGLEY A, ALLAIN V, et al.. Regime shifts and recruitment in the Western and Central Pacific Ocean [J]. Pelagic Fisheries Res. Program Newsletter, 2007, 12: 1-3. |
27 | LEHODEY P, ALHEIT J, BARANGE M, et al.. Climate variability, fish, and fisheries [J]. J. Climate, 2006, 19,20: 5009-5030. |
28 | BRIAND K, KIRBY D. Multivariate indicators for ecosystem regime shifts and links with longterm recruitment variability for target species [R]. WCPFC-SC2-EB-WP02. Western and Central Pacific Fisheries Commission, 2006. |
29 | 郝日栩,赵玉新,何忠杰,等.基于EOF-NAR神经网络混合模型的海温预报方法研究[C]//中国海洋学会,三亚市政府.中国海洋学会2019海洋学术(国际)双年会论文集.海洋出版社,2019:15. |
30 | ALFATINAH A, CHU H J, TATAS S R, et al.. Fishing area prediction using scene-based ensemble models [J/OL]. J. Mar. Sci. Eng., 2023, 11(7): 1398 [2024-08-10]. . |
31 | LI X, WANG X, GUO Y, et al.. Factors influencing the at-haulback mortality of striped marlin Tetrapturus audax caught by tuna longline fishery in the western Indian Ocean [J/OL]. Aquatic Conserv. Mar. Freshwater Ecosystems, 2024, 34(4): e4135 [2024-08-10]. |
32 | ZHOU S, CAMPBELL R A, HOYLE S D. Catch per unit effort standardization using spatio-temporal models for Australia’s eastern tuna and billfish fishery [J]. ICES J. Mar. Sci., 2019, 76(6): 1489-1504. |
33 | CHANG S K, LIU H I, FUKUDA H, et al.. Data reconstruction can improve abundance index estimation: an example using Taiwanese longline data for Pacific bluefin tuna [J/OL]. PLoS One, 2017, 12(10): e0185784 [2024-08-10]. . |
34 | HASTIE T, TIBSHIRANI R. Generalized Additive Models [M]. London: Chapman and Hall, 1990: 14-14. |
35 | WOOD S N. Generalized Additive Models: An Introduction with R [M]. Boca Raton, FL: Chapman & Hall/CRC, 2006: 1-2. |
36 | SWARTZMAN G, HUANG C, KALUZNY S. Spatial analysis of Bering sea groundfish survey data using generalized additive models [J]. Can. J. Fish. Aquat. Sci., 1992, 49(7): 1366-1378. |
37 | MARAVELIAS C D. Trends in abundance and geographic distribution of North Sea herring in relation to environmental factors [J]. Mar. Ecol. Prog. Ser., 1997, 159: 151-164. |
38 | 李东旭,邹晓荣,周淑婷.中太平洋黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J].南方水产科学,2024,20(4):68-76. |
LI D X, ZOU X R, ZHOU S T. Spatio-temporal distribution of Thunnus albacares CPUE and its relation-ship with environmental factors in Central Pacific Ocean [J]. South China Fish. Sci., 2024, 20(4): 68-76. | |
39 | 林铭.基于广义可加模型和灰色系统理论的瓦努阿图海域长鳍金枪鱼延绳钓渔场与环境因子关系研究[D].上海:上海海洋大学,2022. |
LIN M. Relationship between fishing grounds of longline albacore and environmental factors in Vanuatu based on generalized additive model and gray system theory [D]. Shanghai: Shanghai Ocean University, 2022. | |
40 | 闫敏,张衡,伍玉梅,等.基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J].大连海洋大学学报,2015,30(6):681-685. |
YAN M, ZHANG H, WU Y M, et al.. Effects of spatio-temporal and environmental factors on fishing grounds of albacore tuna Thunnus alalunga in the South Pacific Ocean based on generalized additive model [J]. J. Dalian Ocean. Univ., 2015, 30(6): 681-685. | |
41 | 樊伟,陈雪忠,沈新强.基于贝叶斯原理的大洋金枪鱼渔场速预报模型研究[J].中国水产科学,2006,13(3):426-431. |
FAN W, CHEN X Z, SHEN X Q. Tuna fishing grounds prediction model based on Bayes probability [J]. J. Fish. Sci. China, 2006, 13(3): 426-431. | |
42 | 周为峰,黎安舟,纪世建,等.基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J].海洋湖沼通报,2018(1):116-122. |
ZHOU W F, LI A Z, JI S J, et al.. Forecasting model for yellowfin tuna (Thunnus albacares) fishing ground in the South China Sea based on Bayes classifier [J]. Trans. Oceanol. Limnol., 2018(1): 116-122. | |
43 | ZHANG Y N, GUAN W J, LI Y D, et al.. Construction and verification of a habitat suitability index model for the Indian Ocean albacore tuna [J]. J. Shanghai Ocean Univ., 2020, 29(2): 268-279. |
44 | 朱若雅,许子安,汪金涛,等.基于捕捞努力量的中西太平洋鲣鱼栖息地适宜性指数模型优化[J].广东海洋大学学报,2022,42(6):81-87. |
ZHU R Y, XU Z A, WANG J T, et al.. Optimization of habitat suitability index models of skipjack tuna based on fishing effort in the western and central Pacific Ocean [J]. J. Guangdong Ocean. Univ., 2022, 42(6): 81-87. | |
45 | 张亚男,官文江,李阳东.印度洋长鳍金枪鱼栖息地指数模型的构建与验证[J].上海海洋大学学报,2020,29(2):268-279. |
ZHANG Y N, GUAN W J, LI Y D. Construction and verification of a habitat suitability index model for the Indian Ocean albacore tuna [J]. J. Shanghai Ocean. Univ., 2020, 29(2): 268-279. | |
46 | 马孟磊,陈新军,陈作志,等.南太平洋长鳍金枪鱼栖息地指数模型的比较研究[J].广东海洋大学学报,2017,37(3):59-66. |
MA M L, CHEN X J, CHEN Z Z, et al.. A comparative study on habitat suitability index of Thunnus alalunga in the South Pacific Ocean [J]. J. Guangdong Ocean. Univ., 2017, 37(3): 59-66. | |
47 | 解明阳,陈新军.基于灰色系统理论的西北太平洋柔鱼CPUE关联聚类分析[J].上海海洋大学学报,2021,30(3):536-545. |
XIE M Y, CHEN X J. Correlation clustering analysis of CPUE of Neon flying squid (Ommastrephes bartramii) in the northwest Pacific based on grey system theory [J]. J. Shanghai Ocean. Univ., 2021, 30(3): 536-545. | |
48 | 蒋明峰,陈新军,许子安,等.中西太平洋鲣鱼空间聚类特征及其与ENSO的关系[J].中国海洋大学学报(自然科学版),2023,53(11):47-54. |
JIANG M F, CHEN X J, XU Z A, et al.. Spatial clustering characteristics of Katsuwonus pelamis in west and Central Pacific Ocean and its relationship with ENSO [J]. Period. Ocean. Univ. China, 2023, 53(11): 47-54. | |
49 | 张忠,余为,陈新军,等.基于灰色关联的全球海洋渔业资源开发状况评价[J].上海海洋大学学报,2022,31(3):812-820. |
ZHANG Z, YU W, CHEN X J, et al.. Evaluation on exploitation of global marine fisheries resources based on grey theory system [J]. J. Shanghai Ocean. Univ., 2022, 31(3): 812-820. | |
50 | TSENG C T, SUN C L, YEH S Z, et al.. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data [J]. Int. J. Remote Sens., 2010, 31(17-18): 4543-4558. |
51 | 汪伟松,唐未,龚一赫,等.基于MaxEnt模型模拟中西太平洋鲣自由鱼群栖息地的研究[J].南方水产科学,2023,19(5):11-21. |
WANG W S, TANG W, GONG Y H, et al.. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model [J]. South China Fish. Sci., 2023, 19(5): 11-21. | |
52 | TURNER S M, HARE J A, MANDERSON J P, et al.. Evaluation of species distribution forecasts: a potential predictive tool for reducing incidental catch in pelagic fisheries [J]. Canadian J. Fisheries Aqua. Sci., 2017, 74(11): 1717-1731. |
53 | KLOSER R J, RYAN T E, YOUNG J W, et al.. Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges [J]. ICES J. Mar. Sci., 2009, 66(6): 998-1006. |
54 | OCHOA N E, EMURUA H, ECHUST G, et al.. Present and future potential habitat distribution of Carcharhinus falciformis and Canthidermis maculata by-catch species in the tropical tuna purse-seine fishery under climate change [J]. Front. Mar. Sci., 2016, 3: 132-142. |
55 | 崔雪森,陈雪冬,樊伟.金枪鱼渔场分析预报模型及系统的开发[J].高技术通讯,2007,17(1):100-103. |
56 | 徐海龙,马志华,乔秀亭,等.我国海洋渔业地理信息系统发展现状[J].海洋通报,2012,31(1):113-119. |
XU H L, MA Z H, QIAO X T, et al.. Status of research and application of geographic information system (GIS) in Chinese marine fishery [J]. Mar. Sci. Bull., 2012, 31(1): 113-119. | |
57 | 胡奎伟,许柳雄,陈新军,等.海洋遥感在渔场分析中的研究进展[J].中国水产科学,2012,19(6):1078-1087. |
HU K W, XU L X, CHEN X J, et al.. Application of ocean remote sensing on fishing ground analysis: a review [J]. J. Fish. Sci. China, 2012, 19(6): 1078-1087. | |
58 | 杨铭霞,陈新军,冯永玖,等.利用多种空间插值法分析西北太平洋柔鱼渔场[J].南方水产科学,2015,11(2):79-84. |
YANG M X, CHEN X J, FENG Y J, et al.. Analysis of fishing ground for Ommastrephes bartramii in the Northwest Pacific based on different statistical interpolation methods [J]. South China Fish. Sci., 2015, 11(2): 79-84. | |
59 | 张春玲,蒋逸,王冰洋,等.中西太平洋黄鳍金枪鱼随附鱼群区域温度垂直结构的构建与初步分析[J].上海海洋大学学报,2022,31(1):233-241. |
ZHANG C L, JIANG Y, WANG B Y, et al.. Construction and analysis of vertical temperature structure for FAD yellowfin tuna in the central and Western Pacific Ocean [J]. J. Shanghai Ocean. Univ., 2022, 31(1): 233-241. | |
60 | 张聪,周为峰,唐峰华,等.基于机器学习的中西太平洋黄鳍金枪鱼渔场预报模型[J].农业工程学报,2022,38(15):330-338. |
ZHANG C, ZHOU W F, TANG F H, et al.. Forecasting models for yellowfin tuna fishing ground in the Central and Western Pacific based on machine learning [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(15): 330-338. | |
61 | 程懿麒.基于机器学习的中西太平洋长鳍金枪鱼栖息地时空分布模型的构建和评价[D].上海:上海海洋大学,2022. |
CHENG Y Q. Construction and evaluation of model for the spatial and temporal distribution of albacore tuna (Thunnus alalunga) habitats in the western and central Pacific Ocean based on machine learning [D]. Shanghai: Shanghai Ocean University, 2022. | |
62 | 高子玥.基于机器学习的南太平洋长鳍金枪鱼资源丰度预测与渔场分布研究[D].上海:上海海洋大学,2021. |
GAO Z Y. Research on the resource abundance forecast and fishing ground distribution of South Pacific albacore based on machine learning [D]. Shanghai: Shanghai Ocean University, 2021. | |
63 | 刘慧.基于多模型融合的南太平洋长鳍金枪鱼渔场预报方法研究[D].上海:上海海洋大学,2022. |
LIU H. Research on prediction methods of South Pacific albacore tuna fishery based on multi model fusion [D]. Shanghai: Shanghai Ocean University, 2022. | |
64 | SPARK Y, SCHON T. Biologically-inspired machine learning implemented to ecological informatics [J]. Ecol. Model., 2007, 203(1-2): 1-7. |
65 | 徐洁,陈新军,杨铭霞.基于神经网络的北太平洋柔鱼渔场预报[J].上海海洋大学学报,2013,22(3):432-438. |
XU J, CHEN X J, YANG M X. Forecasting on fishing ground of red flying squid (Ommastrephes bartramii) in the North Pacific Ocean based on artificial neural net [J]. J. Shanghai Ocean. Univ., 2013, 22(3): 432-438. | |
66 | 张永.基于EMD-BiLSTM模型的金枪鱼渔情预测研究[D].上海:上海海洋大学,2021. |
ZHANG Y. Research on tuna fishing forecast based on EMD-BiLSTM model [D]. Shanghai: Shanghai Ocean University, 2021. | |
67 | 丁鹏,邹晓荣,丁淑仪,等.基于CNN-BiLSTM模型的黄鳍金枪鱼渔获量与气候因子关系研究[J].南方水产科学,2024,20(2):19-26. |
DING P, ZOU X R, DING S Y, et al.. Study on relationship between Thunnus albacares catches and climatic factors based on CNN-BiLSTM model [J]. South China Fish. Sci., 2024, 20(2): 19-26. |
[1] | 陈自立, 林卫, 贺佳, 王来刚, 郑国清, 彭一龙, 焦家东, 郭燕. 基于卷积神经网络的农作物病害识别研究[J]. 中国农业科技导报, 2025, 27(4): 99-109. |
[2] | 邢卓冉, 丁松爽, 张凯, 马明, 郭文龙, 刘旭东, 时向东. 计算机视觉与深度学习技术在烟叶生产上的研究进展[J]. 中国农业科技导报, 2025, 27(1): 96-106. |
[3] | 胡国玉, 董娅兰, 古丽巴哈尔·托乎提, 刘广, 周建平. 基于机器视觉的葡萄藤结构分割方法研究[J]. 中国农业科技导报, 2024, 26(9): 105-111. |
[4] | 熊晓菲, 王秀琴, 庄翠珍, 郭家贤, 谢新锐, 吴建伟, 李奇峰. 基于ROI融合特征的柑橘炭疽病诊断方法[J]. 中国农业科技导报, 2024, 26(9): 83-92. |
[5] | 金慧萍, 牟海雯, 刘腾, 于佳琳, 金小俊. 基于深度卷积神经网络的青菜和杂草识别[J]. 中国农业科技导报, 2024, 26(8): 122-130. |
[6] | 宋丽芳, 廖桂平, 陈敏, 何罗驭阳. 基于机器学习的油菜叶片水分含量高光谱估测[J]. 中国农业科技导报, 2024, 26(5): 110-119. |
[7] | 朱芷芫, 王海峰, 李斌, 赵文文, 朱君, 贾楠, 赵宇亮. 深度学习在畜禽典型行为识别中的研究进展[J]. 中国农业科技导报, 2024, 26(10): 110-124. |
[8] | 郑果, 姜玉松. 基于多任务学习农作物叶片病害诊断方法[J]. 中国农业科技导报, 2024, 26(1): 89-98. |
[9] | 边凤霞, 刘凯歌, 容新民. 基于机器学习构建葡萄霜霉病预测模型及验证[J]. 中国农业科技导报, 2023, 25(8): 126-137. |
[10] | 林开颜, 梅飞, 吴军辉, 郭文刚, 陈杰, 司慧萍. 基于计算机视觉的作物病害监测服务平台设计与研究[J]. 中国农业科技导报, 2023, 25(6): 89-96. |
[11] | 杨超, 韩海斌, 韦波, 张衡, 商宸, 苏冰, 刘思源, 蒋沛雯, 相德龙. 北太平洋远东拟沙丁鱼年龄鉴定方法的构建[J]. 中国农业科技导报, 2023, 25(4): 225-233. |
[12] | 赵越, 卫勇, 单慧勇, 穆志民, 张健欣, 吴海云, 赵辉, 胡建龙. 基于深度学习的高分辨率麦穗图像检测方法[J]. 中国农业科技导报, 2022, 24(9): 96-105. |
[13] | 刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108. |
[14] | 吴建伟, 黄杰, 熊晓菲, 高晗, 秦向阳. 基于AI的桃树病害智能识别方法研究与应用[J]. 中国农业科技导报, 2022, 24(5): 111-118. |
[15] | 高姻燕, 孙义, 李葆春. 基于无人机RGB影像估测田间小麦穗数[J]. 中国农业科技导报, 2022, 24(3): 103-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||