中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (5): 39-48.DOI: 10.13304/j.nykjdb.2023.0889
张文婷1,2(), 李阳2, 裘实2, 路光明3, 郭冬姝2, 张保龙1,2, 王金彦1,2(
)
收稿日期:
2023-12-04
接受日期:
2024-02-06
出版日期:
2025-05-15
发布日期:
2025-05-20
通讯作者:
王金彦
作者简介:
张文婷 E-mail:1124081253@qq.com;
基金资助:
Wenting ZHANG1,2(), Yang LI2, Shi QIU2, Guangming LU3, Dongshu GUO2, Baolong ZHANG1,2, Jinyan WANG1,2(
)
Received:
2023-12-04
Accepted:
2024-02-06
Online:
2025-05-15
Published:
2025-05-20
Contact:
Jinyan WANG
摘要:
水稻Badh2基因的功能丧失能提高稻米中香味物质2-乙酰-1-吡咯啉(2-acetyl-1-pyrroline,2-AP)的含量,对稻米品质的改善具有重要意义。为了探究Badh2基因对稻米品质的影响,利用CRISPR/Cas9基因编辑技术以无香水稻日本晴为背景构建了Badh2基因的敲除株系,获得45 bp片段缺失的突变体badh2-1和1 bp插入的突变体badh2-2,对野生型和突变体的2-AP含量、挥发性风味物质、农艺性状、加工及外观品质、食味营养品质与食味值、RVA谱特征值进行测定分析。结果表明,与野生型相比,突变体badh2-1和badh2-2的2-AP含量显著提高;结实率、每穗粒数显著增加,但有效分蘖显著降低;外观品质有所下降,但未改变稻米品质等级;蛋白质含量、营养品质显著降低,直链淀粉含量和食味值等综合食味评分显著提高;消减值和糊化温度显著降低,使蒸煮食味变好。且2个突变体间的主要挥发性风味物质、有效分蘖、千粒重、株高、糙米率、峰值黏度也存在显著差异,突变体badh2-1的蒸煮食味品质优于突变体badh2-2。综上所述,利用CRISPR/Cas9基因编辑技术成功创制了香稻种质新资源,Badh2基因的突变会对稻米品质产生重要影响,且不同的突变方式会产生不同的影响。以上结果为后续优质香稻选育提供了参考。
中图分类号:
张文婷, 李阳, 裘实, 路光明, 郭冬姝, 张保龙, 王金彦. 基于CRISPR/Cas9基因编辑技术研究Badh2基因对稻米品质的影响[J]. 中国农业科技导报, 2025, 27(5): 39-48.
Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48.
用途Purpose | 正向引物序列 Forward primer sequence(5’-3’) | 反向引物序列 Reverse primer sequence(5’-3’) |
---|---|---|
Badh2扩增 Badh2 amplification | GGCATATGGCTTCAGCTGCTCCTA | AAACTAGGAGCAGCTGAAGCCATA |
Badh2-CRISPR鉴定 Badh2-CRISPR identification | GGAACTATCCTCTCCTGATGGCA | ATTTTCTTGCATCCTGCTCGTCT |
Badh2定量 Badh2 qPCR | CTGAGCTGGCTAGACTAGAG | CCAACTACACCGATAGGCTC |
Actin定量 Actin qPCR | GGACCCAAGAATGCTAAGCC | TGGTACCCTCATCAGGCATC |
潮霉素鉴定 Hygromycin identification | ACAATCCCACTATCCTTCGCAAG | GTACTTCTACACAGCCATCGGTC |
Cas9鉴定 Cas9 identification | TTTCCCCAACCTCGTGTTGTTC | GAGGTTCTTCTTGATGGAGTGG |
表 1 引物信息
Table 1 Information of primers
用途Purpose | 正向引物序列 Forward primer sequence(5’-3’) | 反向引物序列 Reverse primer sequence(5’-3’) |
---|---|---|
Badh2扩增 Badh2 amplification | GGCATATGGCTTCAGCTGCTCCTA | AAACTAGGAGCAGCTGAAGCCATA |
Badh2-CRISPR鉴定 Badh2-CRISPR identification | GGAACTATCCTCTCCTGATGGCA | ATTTTCTTGCATCCTGCTCGTCT |
Badh2定量 Badh2 qPCR | CTGAGCTGGCTAGACTAGAG | CCAACTACACCGATAGGCTC |
Actin定量 Actin qPCR | GGACCCAAGAATGCTAAGCC | TGGTACCCTCATCAGGCATC |
潮霉素鉴定 Hygromycin identification | ACAATCCCACTATCCTTCGCAAG | GTACTTCTACACAGCCATCGGTC |
Cas9鉴定 Cas9 identification | TTTCCCCAACCTCGTGTTGTTC | GAGGTTCTTCTTGATGGAGTGG |
图 1 Badh2基因编辑和T-DNA-free植株鉴定A:Badh2基因结构图;B:Badh2基因编辑靶标序列;C:Badh2基因表达量,**表示在P<0.01水平差异显著;D:潮霉素和Cas9琼脂糖凝胶电泳图,M—5 000 bp的DNA Marker,+ —阳性对照,- —阴性对照,1—badh2-1,2—badh2-2
Fig. 1 Badh2 gene editing and identification ofT-DNA-free plantsA: Badh2 gene structure map; B: Badh2 gene editing target site sequences; C: Badh2 gene expression, ** indicates significant difference at P<0.01 level;D: Hygromycin and Cas9 agarose gel electrophoresis,M—5 000 bp DNA marker,+ —Positive control,- —Negative control,1—badh2-1,2—badh2-2
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
1 | 邻苯二甲酸二丁酯 Dibutyl phthalate | C16H22O4 | — | 26.29 | 15.73 |
2 | 棕榈酸 Hexadecanoic acid | C16H32O2 | 27.55 | — | — |
3 | 壬醛 Nonanal | C9H18O | 4.81 | 9.58 | 14.27 |
4 | 邻苯二甲酸二异丁酯 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 17.53 | 11.72 | 8.44 |
5 | 7,9-二叔丁基-1-氧杂螺(4.5)癸-6,9-二烯-2,8-二酮 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | — | 5.50 | 7.48 |
6 | 碳酸,二十烷基乙烯基酯 Carbonic acid, eicosyl vinyl ester | C23H44O3 | 7.91 | — | — |
7 | 十二烷 Dodecane | C12H26 | 2.75 | 4.75 | 2.54 |
8 | 2,6,10-三甲基十三烷 2,6,10-trimethyltridecane | C16H34 | 1.92 | 3.81 | 6.05 |
9 | 癸酸乙酯 Decanoic acid, ethyl ester | C12H24O2 | — | 5.38 | — |
10 | 植酮 6,10,14-trimethyl-2-pentadecanone | C18H36O | 4.37 | 4.39 | 5.75 |
11 | 5-乙基间二甲苯 1,2,3,5-tetramethyl-benzene | C10H14 | 2.74 | 1.86 | 5.11 |
12 | 癸酸 Decanoic acid | C10H20O2 | 1.16 | 4.48 | 3.73 |
13 | 癸醛 Decanal | C10H20O | 1.46 | 1.93 | 4.28 |
14 | 亚油酸 (Z,Z)-9,12-octadecadienoic acid | C18H36O2 | 5.19 | — | — |
15 | 乙酸硬脂基酯 Acetic acid n-octadecyl ester | C20H40O2 | 5.13 | — | — |
16 | 十八烷 Octadecane | C18H38 | 4.57 | — | — |
17 | 十四烷 Tetradecane | C14H30 | 2.01 | 5.38 | 3.54 |
18 | 2,6,10-三甲基十四烷 2,6,10-trimethyl-tetradecane | C17H36 | 3.81 | — | — |
19 | 顺-菖蒲烯 Cis-calamenene | C15H22 | 0.88 | 1.56 | 2.95 |
20 | 十二醛 Dodecanal | C12H24O | 0.69 | 1.15 | 2.54 |
21 | 1-辛醇 1-octanol | C8H18O | — | 1.28 | 2.53 |
22 | 2,3-二甲基环己醇 2,3-dimethyl-cyclohexanol | C8H16O | 0.47 | 1.19 | 2.51 |
表2 野生型突变体的主要挥发性风味物质
Table 2 Main volatile flavor compounds of WT and mutants
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
1 | 邻苯二甲酸二丁酯 Dibutyl phthalate | C16H22O4 | — | 26.29 | 15.73 |
2 | 棕榈酸 Hexadecanoic acid | C16H32O2 | 27.55 | — | — |
3 | 壬醛 Nonanal | C9H18O | 4.81 | 9.58 | 14.27 |
4 | 邻苯二甲酸二异丁酯 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 17.53 | 11.72 | 8.44 |
5 | 7,9-二叔丁基-1-氧杂螺(4.5)癸-6,9-二烯-2,8-二酮 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | C17H24O3 | — | 5.50 | 7.48 |
6 | 碳酸,二十烷基乙烯基酯 Carbonic acid, eicosyl vinyl ester | C23H44O3 | 7.91 | — | — |
7 | 十二烷 Dodecane | C12H26 | 2.75 | 4.75 | 2.54 |
8 | 2,6,10-三甲基十三烷 2,6,10-trimethyltridecane | C16H34 | 1.92 | 3.81 | 6.05 |
9 | 癸酸乙酯 Decanoic acid, ethyl ester | C12H24O2 | — | 5.38 | — |
10 | 植酮 6,10,14-trimethyl-2-pentadecanone | C18H36O | 4.37 | 4.39 | 5.75 |
11 | 5-乙基间二甲苯 1,2,3,5-tetramethyl-benzene | C10H14 | 2.74 | 1.86 | 5.11 |
12 | 癸酸 Decanoic acid | C10H20O2 | 1.16 | 4.48 | 3.73 |
13 | 癸醛 Decanal | C10H20O | 1.46 | 1.93 | 4.28 |
14 | 亚油酸 (Z,Z)-9,12-octadecadienoic acid | C18H36O2 | 5.19 | — | — |
15 | 乙酸硬脂基酯 Acetic acid n-octadecyl ester | C20H40O2 | 5.13 | — | — |
16 | 十八烷 Octadecane | C18H38 | 4.57 | — | — |
17 | 十四烷 Tetradecane | C14H30 | 2.01 | 5.38 | 3.54 |
18 | 2,6,10-三甲基十四烷 2,6,10-trimethyl-tetradecane | C17H36 | 3.81 | — | — |
19 | 顺-菖蒲烯 Cis-calamenene | C15H22 | 0.88 | 1.56 | 2.95 |
20 | 十二醛 Dodecanal | C12H24O | 0.69 | 1.15 | 2.54 |
21 | 1-辛醇 1-octanol | C8H18O | — | 1.28 | 2.53 |
22 | 2,3-二甲基环己醇 2,3-dimethyl-cyclohexanol | C8H16O | 0.47 | 1.19 | 2.51 |
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
23 | 3-甲基十三烷 3-methyl-tridecane | C14H30 | 1.82 | 1.18 | 1.45 |
24 | 壬酸 Nonanoic acid | C9H18O2 | 1.06 | — | — |
25 | 十六烷基硫醇 Tert-hexadecanethiol | C16H34S | 0.98 | — | — |
26 | 甲基 2-乙基己基邻苯二甲酸酯 Methyl 2-ethylhexyl phthalate | C17H24O4 | — | 1.69 | — |
27 | 棕榈酸异丁酯 Hexadecanoic acid, 2-methylpropyl ester | C20H40O2 | — | 1.53 | 0.87 |
28 | 十六醇 1-hexadecanol | C16H34O | — | 1.44 | 1.38 |
29 | 香叶基丙酮 Geranylacetone | C13H22O | — | 1.33 | 1.93 |
30 | 十一醛 Undecanal | C11H22O | 0.47 | — | 1.81 |
31 | 十九烷 Nonadecane | C19H40 | 0.70 | 0.86 | 1.75 |
32 | 2-甲基-1-十六烷醇 2-methyl-1-hexadecanol | C17H36O | — | 0.61 | 1.71 |
33 | 三(1-氯-2-丙基)磷酸酯 1-chloro-, 2-propanol, phosphate (3:1) | C9H18Cl3O4P | — | 1.10 | 1.64 |
续表2 野生型突变体的主要挥发性风味物质
Continued Table 2 Main volatile flavor compounds of WT and mutants
序号 Number | 化合物 Compound | 分子式 Molecular formula | 相对含量 Relative content/% | ||
---|---|---|---|---|---|
WT | badh2-1 | badh2-2 | |||
23 | 3-甲基十三烷 3-methyl-tridecane | C14H30 | 1.82 | 1.18 | 1.45 |
24 | 壬酸 Nonanoic acid | C9H18O2 | 1.06 | — | — |
25 | 十六烷基硫醇 Tert-hexadecanethiol | C16H34S | 0.98 | — | — |
26 | 甲基 2-乙基己基邻苯二甲酸酯 Methyl 2-ethylhexyl phthalate | C17H24O4 | — | 1.69 | — |
27 | 棕榈酸异丁酯 Hexadecanoic acid, 2-methylpropyl ester | C20H40O2 | — | 1.53 | 0.87 |
28 | 十六醇 1-hexadecanol | C16H34O | — | 1.44 | 1.38 |
29 | 香叶基丙酮 Geranylacetone | C13H22O | — | 1.33 | 1.93 |
30 | 十一醛 Undecanal | C11H22O | 0.47 | — | 1.81 |
31 | 十九烷 Nonadecane | C19H40 | 0.70 | 0.86 | 1.75 |
32 | 2-甲基-1-十六烷醇 2-methyl-1-hexadecanol | C17H36O | — | 0.61 | 1.71 |
33 | 三(1-氯-2-丙基)磷酸酯 1-chloro-, 2-propanol, phosphate (3:1) | C9H18Cl3O4P | — | 1.10 | 1.64 |
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 每穗粒数 Grain number per panicle | 有效分蘖 Effective tillers | 株高 Plant heigh/cm |
---|---|---|---|---|---|---|---|
WT | 7.55±0.12 a | 3.45±0.07 a | 24.72±0.19 ab | 79.71±1.65 b | 95.85±3.36 b | 13±2 a | 96.67±2.83 a |
badh2-1 | 7.60±0.14 a | 3.46±0.11 a | 24.64±0.09 b | 84.38±2.53 a | 100.89±4.41 a | 12±2 a | 89.00±4.14 b |
badh2-2 | 7.58±0.22 a | 3.45±0.09 a | 24.85±0.10 a | 83.10±3.45 ab | 104.00±2.41 a | 11±2 b | 97.24±5.34 a |
表 3 野生型和突变体的农艺性状
Table 3 Agronomic traits of WT and mutants
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 每穗粒数 Grain number per panicle | 有效分蘖 Effective tillers | 株高 Plant heigh/cm |
---|---|---|---|---|---|---|---|
WT | 7.55±0.12 a | 3.45±0.07 a | 24.72±0.19 ab | 79.71±1.65 b | 95.85±3.36 b | 13±2 a | 96.67±2.83 a |
badh2-1 | 7.60±0.14 a | 3.46±0.11 a | 24.64±0.09 b | 84.38±2.53 a | 100.89±4.41 a | 12±2 a | 89.00±4.14 b |
badh2-2 | 7.58±0.22 a | 3.45±0.09 a | 24.85±0.10 a | 83.10±3.45 ab | 104.00±2.41 a | 11±2 b | 97.24±5.34 a |
材料 Material | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白度 Chalkiness degree | 垩白粒率 Chalkiness rate/% |
---|---|---|---|---|---|
WT | 83.38±0.12 b | 75.87±0.51 a | 74.29±0.69 a | 0.04±0.03 b | 0.25±0.14 b |
badh2-1 | 83.85±0.09 a | 75.50±0.70 a | 73.50±1.10 a | 0.15±0.07 a | 0.88±0.25 a |
Badh2-2 | 82.82±0.21 c | 75.49±0.45 a | 73.98±0.69 a | 0.06±0.05 ab | 0.44±0.32 ab |
表4 野生型和突变体的加工和外观品质
Table 4 Milling and appearance quality of WT and mutants
材料 Material | 糙米率 Brown rice rate/% | 精米率 Milled rice rate/% | 整精米率 Head milled rice rate/% | 垩白度 Chalkiness degree | 垩白粒率 Chalkiness rate/% |
---|---|---|---|---|---|
WT | 83.38±0.12 b | 75.87±0.51 a | 74.29±0.69 a | 0.04±0.03 b | 0.25±0.14 b |
badh2-1 | 83.85±0.09 a | 75.50±0.70 a | 73.50±1.10 a | 0.15±0.07 a | 0.88±0.25 a |
Badh2-2 | 82.82±0.21 c | 75.49±0.45 a | 73.98±0.69 a | 0.06±0.05 ab | 0.44±0.32 ab |
材料 Material | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味值 Taste value | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance degree |
---|---|---|---|---|---|---|---|
WT | 9.50±0.10 a | 18.03±0.12 b | 61.00±2.65 b | 4.87±0.38 b | 8.13±0.15 a | 6.90±0.56 b | 5.13±0.42 b |
badh2-1 | 9.00±0.10 b | 19.30±0.17 a | 74.67±9.29 a | 6.87±1.29 a | 7.93±0.32 ab | 9.07±0.67 a | 7.20±1.35 a |
badh2-2 | 9.20±0.17 b | 19.43±0.32 a | 72.67±2.52 a | 6.67±0.31 ab | 7.57±0.06 b | 8.37±1.01 ab | 6.20±0.79 ab |
表5 野生型和突变体的直链淀粉、蛋白质含量和食味值
Table 5 Amylose content, protein content and taste value of WT and mutants
材料 Material | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味值 Taste value | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance degree |
---|---|---|---|---|---|---|---|
WT | 9.50±0.10 a | 18.03±0.12 b | 61.00±2.65 b | 4.87±0.38 b | 8.13±0.15 a | 6.90±0.56 b | 5.13±0.42 b |
badh2-1 | 9.00±0.10 b | 19.30±0.17 a | 74.67±9.29 a | 6.87±1.29 a | 7.93±0.32 ab | 9.07±0.67 a | 7.20±1.35 a |
badh2-2 | 9.20±0.17 b | 19.43±0.32 a | 72.67±2.52 a | 6.67±0.31 ab | 7.57±0.06 b | 8.37±1.01 ab | 6.20±0.79 ab |
材料 Material | 峰值黏度 Peak viscosity/cP | 保持黏度 Through viscosity/cP | 崩解值 Break-down/cP | 最终黏度 Final viscosity/cP | 消减值 Setback/cP | 糊化温度 Pasting temperature/℃ |
---|---|---|---|---|---|---|
WT | 2 715.00±15.87 a | 2 084.00±240.42 a | 725.67±61.89 a | 3 088.33±47.69 a | 373.33±35.08 a | 74.70±0.35 a |
badh2-1 | 2 683.67±6.03 b | 1 954.67±64.81 a | 726.00±67.00 a | 2 967.67±19.55 b | 284.00±23.07 b | 73.67±0.29 b |
badh2-2 | 2 621.67±14.98 c | 2 135.75±327.30 a | 649.33±15.70 a | 2 919.67±15.88 b | 298.33±19.66 b | 73.30±0.43 b |
表6 野生型和突变体的大米淀粉RVA谱特征值
Table 6 Characteristic value of RVA parameters of WT and mutants
材料 Material | 峰值黏度 Peak viscosity/cP | 保持黏度 Through viscosity/cP | 崩解值 Break-down/cP | 最终黏度 Final viscosity/cP | 消减值 Setback/cP | 糊化温度 Pasting temperature/℃ |
---|---|---|---|---|---|---|
WT | 2 715.00±15.87 a | 2 084.00±240.42 a | 725.67±61.89 a | 3 088.33±47.69 a | 373.33±35.08 a | 74.70±0.35 a |
badh2-1 | 2 683.67±6.03 b | 1 954.67±64.81 a | 726.00±67.00 a | 2 967.67±19.55 b | 284.00±23.07 b | 73.67±0.29 b |
badh2-2 | 2 621.67±14.98 c | 2 135.75±327.30 a | 649.33±15.70 a | 2 919.67±15.88 b | 298.33±19.66 b | 73.30±0.43 b |
1 | 季新,李猛,杨阳,等.基于CRISPR/Cas9技术创制宜直播香型水稻[J].分子植物育种,2023,21(19):6381-6389. |
JI X, LI M, YANG Y, et al.. Production of adapted direct-seeding fragrant rice based on CRISPR/Cas9 technology [J]. Mol. Plant Breed., 2023, 21(19):6381-6389. | |
2 | 吴明基,林艳,刘华清,等.CRISPR/Cas9编辑Badh2基因改良优质粳稻品种香味性状[J].福建农业学报,2020,35(5):465-473. |
WU M J, LIN Y, LIU H Q, et al.. Development of fragrant japonica rice by CRISPR/Cas9-targeted editing on Badh2 [J]. Fujian J. Agric. Sci., 2020, 35(5):465-473. | |
3 | 彭凯雄,唐群勇,郑钰涵,等.大米中挥发性风味物质的研究进展[J].食品安全质量检测学报,2022,13(15):4794-4801. |
PENG K X, TANG Q Y, ZHENG Y H, et al.. Research progress of volatile flavor substances in rice [J]. J. Food Saf. Food Qual., 2022, 13(15):4794-4801. | |
4 | ASHRAF U, HUSSAIN S, NAVEED SHAHID M, et al.. Alternate wetting and drying modulated physio-biochemical attributes, grain yield, quality, and aroma volatile in fragrant rice [J/OL]. Physiol. Plant, 2022, 174(6):e13833 [2023-11-23]. . |
5 | DU P, LUO H, HE J, et al.. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice [J/OL]. BMC Plant Biol., 2019, 19(1):30810 [2023-11-23]. . |
6 | 姚祥滨,罗昊文,韦剑娇,等.不同增香施肥处理对香稻产量、品质和香气风味挥发物的影响[J].中国稻米,2023,29(5):66-70. |
YAO X B, LUO H W, WEI J J, et al.. Effects of different fragrance-enhancing fertilization treatments on yield, quality, and aroma volatile compounds of fragrant rice [J]. China Rice, 2023, 29(5):66-70. | |
7 | PRODHAN Z H, QINGYAO S. Rice aroma: a natural gift comes with price and the way forward [J]. Rice Sci., 2020, 27(2):86-100. |
8 | PACHAURI V, SINGH M K, SINGH A K, et al.. Origin and genetic diversity of aromatic rice varieties, molecular breeding and chemical and genetic basis of rice aroma [J]. J. Plant Biochem. Biotechnol., 2010, 19(2):127-143. |
9 | HUI S, LI H, MAWIA A M, et al.. Production of aromatic three-line hybrid rice using novel alleles of BADH2 [J]. Plant Biotechnol. J., 2022, 20(1):59-74. |
10 | OKPALA N E, MO Z, DUAN M, et al.. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice [J]. Plant Physiol. Biochem., 2019, 135:272-276. |
11 | 刘之熙,闵军,刘三雄,等.水稻香味基因Badh2的功能和效应分析[J].湖南农业科学,2023(10):1-6. |
LIU Z X, MIN J, LIU S X, et al.. Function and effect analysis of Badh2 gene in rice [J]. Hunan Agric. Sci., 2023(10):1-6. | |
12 | TANG Y, ABDELRAHMAN M, LI J, et al.. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice [J]. Plant Biotechnol. J., 2021, 19(4):642-654. |
13 | 韦新宇,曾跃辉,杨旺兴,等.利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J].作物学报,2023,49(8):2144-2159. |
WEI X Y, ZENG Y H, YANG W X, et al.. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agron. Sin., 2023, 49(8):2144-2159. | |
14 | 李景芳,温舒越,赵利君,等.基于CRISPR/Cas9技术创制耐盐香稻[J].中国水稻科学,2023,37(5):478-85. |
LI J F, WEN S Y, ZHAO L J, et al.. Development of aromatic salt-tolerant rice based on CRISPR/Cas9 technology [J]. Chin. J. Rice Sci., 2023, 37(5):478-485. | |
15 | MA X, ZHANG Q, ZHU Q, et al.. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol. Plant, 2015, 8(8):1274-1284. |
16 | MÄDE D, DEGNER C, GROHMANN L. Detection of genetically modified rice:a construct-specific real-time PCR method based on DNA sequences from transgenic Bt rice [J]. Eur. Food Res. Technol., 2006, 224(2):271-8. |
17 | 唐瑞明,龙伶俐,朱之光,等. 优质稻谷: [S].北京:中国标准出版社,2017. |
18 | 安红周,陈会会,尹文婷,等.加工精度对大米食用品质及风味的影响[J].中国粮油学报,2021,36(1):1-7. |
AN H Z, CHEN H H, YIN W T, et al.. Effect of milling degree on the edible quality and flavor of rice [J]. J. Chin. Cereals Oils Assoc., 2021, 36(1):1-7. | |
19 | 潘阳阳,黄道强,王重荣,等.香稻Badh2基因单倍型及香气成分2-乙酰-1-吡咯啉代谢通路的研究进展[J].广东农业科学,2021,48(7):9-16. |
PAN Y Y, HUANG D Q, WANG C R, et al.. Research advances of haplotype variation at Badh2 gene and 2-acetyl-1-pyrroline biosynthetic pathway in aromatic rice [J]. Guangdong Agric. Sci., 2021, 48(7):9-16. | |
20 | CHEN M, WEI X, SHAO G, et al.. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2 [J]. Plant Breed., 2012, 131(5):584-590. |
21 | IMRAN M, SHAFIQ S, TANG X. CRISPR-Cas9-mediated editing of BADH2 gene triggered fragrance revolution in rice [J]. Physiol. Plant., 2023, 175(1):3871-3892. |
22 | XIE W, ASHRAF U, ZHONG D, et al.. Application of gamma-aminobutyric acid (GABA) and nitrogen regulates aroma biochemistry in fragrant rice [J]. Food Sci. Nutr., 2019, 7(11):3784-3896. |
23 | SHUOCHEN J, LIHE Z, FENQIN H, et al.. Zinc supplementation and light intensity affect 2-acetyl-1-pyrroline (2AP) formation in fragrant rice [J/OL]. BMC Plant Biol.,2023,23(1):19410 [2023-11-23]. . |
24 | 张楠,麦一鸣,王在满,等.γ-氨基丁酸和光照对香稻稻米品质和干物质积累的影响[J].作物研究,2023,37(5):435-442. |
ZHANG N, MAI Y M, WANG Z M, et al.. Effects of γ-aminobutyric acid and light on grain quality and dry matter accumulation of fragrant rice [J]. Crop Res., 2023, 37(5):435-442. | |
25 | 唐秀英,龙起樟,王会民,等.利用CRISPR/Cas9技术创制香稻[J].江西农业大学学报,2021,43(1):18-24. |
TANG X Y, LONG Q Z, WANG H M, et al.. Creation of fragrant rice by means of CRISPR/Cas9 technology [J]. Acta Agric. Univ. Jiangxiensis, 2021, 43(1):18-24. | |
26 | 胡培松,邵雅芳,朱智伟,等. 食用稻品种品质: [S].北京:中国标准出版社,2021. |
27 | 姜树坤,王立志,杨贤莉,等.不同生育时期增温对寒地水稻产量和品质的影响[J].中国农业科技导报,2021,23(6):130-139. |
JIANG S K, WANG L Z, YANG X L, et al.. Effect of increasing temperature in different growth stages on rice yield and quality in cold regions [J]. J. Agric. Sci. Technol., 2021, 23(6):130-139. | |
28 | 车阳,程爽,田晋钰 等.不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J].作物学报,2021,47(10):1953-1965. |
CHE Y, CHENG S, TIAN J Y, et al.. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields [J]. Acta Agron. Sin., 2021, 47(10):1953-1965. | |
29 | 叶全宝,张洪程,李华,等.施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响[J].作物学报,2005(1):124-130. |
YE Q B, ZHANG H C, LI H, et al.. Effects of amount of nitrogen applied and planting density on RVA profile characteristic of Japonica rice [J]. Acta Agron. Sin., 2005(1):124-130. | |
30 | 张诚信,郭保卫,唐健,等.灌浆结实期低温弱光复合胁迫对稻米品质的影响[J].作物学报,2019,45(8):1208-1220. |
ZHANG C X, GUO B W, TANG J, et al.. Combined effects of low temperature and weak light at grain-filling stageon rice grain quality [J]. Acta Agron. Sin., 2019, 45(8):1208-1220. | |
31 | 徐善斌,郑洪亮,刘利锋,等.利用CRISPR/Cas9技术高效创制长粒香型水稻[J].中国水稻科学,2020,34(5):406-412. |
XU S B, ZHENG H L, LIU L F, et al.. lmprovement of grain shape and fragrance by using CRISPR/Cas9 system [J]. Chin. J. Rice Sci., 2020, 34(5):406-412. | |
32 | 王石光,陆展华,刘维,等.应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J].中国水稻科学,2023,37(1):29-36. |
WANG S G, LU Z H, LIU W, et al.. Generating guangdong simiao rice germplasms by applying CRISPR/Cas9 gene editing and marker-assisted selection technology [J]. Chin. J. Rice Sci., 2023, 37(1):29-36. |
[1] | 袁嘉良, 连润楠, 张吴平. 黄花菜花蕾的精准识别与分级方法[J]. 中国农业科技导报, 2025, 27(5): 103-112. |
[2] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
[3] | 赵德轩, 高朋, 温晓蕾, 母时风, 高素红, 冯丽娜, 孙伟明, 齐慧霞. 板栗黄化皱缩病对板栗坚果品质的影响[J]. 中国农业科技导报, 2025, 27(2): 136-140. |
[4] | 王如月, 虎海防, 罗莎莎, 甄紫怡, 徐业勇, 胡晓静. 杏李不同采收成熟度果实品质分析[J]. 中国农业科技导报, 2025, 27(2): 158-169. |
[5] | 吴强, 吴聪连, 吴小云, 吴剑, 徐选美, 赖俊声, 胡伟云, 龚榜初, 江锡兵. 不同施肥处理对锥栗产量及果实品质的影响[J]. 中国农业科技导报, 2025, 27(2): 228-237. |
[6] | 曾宝珍, 成永娟, 杨娟博, 车莉莉, 梁靖, 卢世雄, 梁国平, 马宗桓, 毛娟. 甘肃民勤地区‘慕合怀特’葡萄最佳采收期的确定[J]. 中国农业科技导报, 2025, 27(2): 70-79. |
[7] | 王婷, 杜婧含, 张光弟, 王江龙, 贾毅男, 王玉, 包文毅. 宁南山区新优甘蓝品种品质及挥发性物质研究[J]. 中国农业科技导报, 2025, 27(1): 165-180. |
[8] | 赵雅雯, 李绍稳. 农产品质量安全可信追溯体系构建与建议[J]. 中国农业科技导报, 2025, 27(1): 17-24. |
[9] | 向兰婷, 宋曙辉, 刘立娟, 佘小玲, 周家华, 王宝刚, 常虹, 张超, 傅达奇, 王云香. 不同贮藏温度对京彩1号西瓜品质的影响[J]. 中国农业科技导报, 2024, 26(9): 137-145. |
[10] | 纪蕾, 刘天红, 王颖, 李晓, 李红艳, 姜晓东, 孙元芹, 张帅中. 糖基化对虹鳟鱼鱼松品质和挥发性风味特征的影响[J]. 中国农业科技导报, 2024, 26(9): 159-172. |
[11] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
[12] | 白世践, 户金鸽, 李超, 蔡军社. 3种架式对‘新郁’葡萄栽培性状及果实品质的影响[J]. 中国农业科技导报, 2024, 26(8): 63-73. |
[13] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[14] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[15] | 岳伟, 王晖, 陈曦, 占新春, 阮新民. 安徽省稻米品质综合评价方法研究[J]. 中国农业科技导报, 2024, 26(6): 141-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||