Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (11): 208-217.DOI: 10.13304/j.nykjdb.2021.0718
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Yu MENG(), Gang TAO(
), Deqi HUANG, Xiajun YAO
Received:
2021-08-19
Accepted:
2021-11-22
Online:
2022-11-15
Published:
2022-11-29
Contact:
Gang TAO
通讯作者:
陶刚
作者简介:
孟玉E-mail:2742400194 @qq.com;
基金资助:
CLC Number:
Yu MENG, Gang TAO, Deqi HUANG, Xiajun YAO. Diversity of Phosphate⁃solubilizing Fungi and Their Applications in Agriculture and Ecology[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 208-217.
孟玉, 陶刚, 黄德棋, 姚遐俊. 溶磷真菌的多样性及其在农业与生态中的应用[J]. 中国农业科技导报, 2022, 24(11): 208-217.
真菌种类 Fungal species | 宿主植物 Host plant | 功能概述 Functional summary | 文献来源 Literatures |
---|---|---|---|
黑曲霉 A. niger | 牡丹Paeonia suffruticosa Andr. | 显著提高牡丹植株的株高、根长、叶面积和生物量 Significantly increase plant height, root length, leaf area and biomass of peony | [ |
土曲霉 A. terreu | 苦参种子 Sophora flavescens seed | 抑制辣椒疫霉菌和番茄炭疽菌等病原菌的生长 Inhibit the growth of Phytophthora capsici and Colletotrichum atramentarium | [ |
草酸青霉 P. oxalicum | 白刺Nitraria tangutorum Bobr. | 增加番茄的株高、根长、干重及鲜重 Increase the plant height, root length, dry weight and fresh weight of tomato | [ |
棘孢木霉 T. asperellum | 番茄Solanum lycopersicum | 增加番茄的叶片数、叶面积以及茎干重 Increase the number of leaves, leaf area and stem dry weight of tomato | [ |
哈茨木霉 T. harzianum | 水稻 Oryza sativa L. | 通过调节水稻丙二醛、脯氨酸和超氧化物歧化酶的含量,提高水稻对干旱胁迫的抗性 Improve the resistance of rice to drought stress by regulating the contents of malondialdehyde, proline and superoxide dismutase in rice | [ |
金黄篮状菌 T. aurantiacus | 杜鹃 Rhododendron simsii | 提高杜鹃对养分的吸收,并增加其株高与生物量 Improve the nutrient absorption of R. simsii Planch, and increase its plant height and biomass | [ |
丝核菌属、盘多毛孢属Rhizoctonia spp., Pestalotia spp. | 五唇兰Doritis pulcherrima | 分解羧甲基纤维素钠并增加五唇兰的鲜重 Decompose sodium carboxymethyl cellulose and increase the fresh weight of D. pulcherrima | [ |
烧瓶状霉属、枝顶孢属Lecythophora spp., Acremonium spp. | 美花石斛Dendrobium loddigesii | 提高美花石斛的存活率和整体长势 Improve the survival rate and overall growth of D. loddigesii | [ |
印度梨形孢Piriformospora indica | 拟南芥Arabidopsis thaliana | 增加拟南芥幼苗的叶绿素含量与鲜重,并提高其在干旱胁迫下的抗性 Increase the chlorophyll content and fresh weight of A. thaliana, and improve their resistance to drought stress | [ |
撕裂蜡孔菌 Ceriporia lacerata | 蘑菇的担子果Basidiocarp | 促进茄子对磷的吸收并增加果实的产量 Promote the absorption of phosphorus by egg plant and increase the fruit yield | [ |
轮枝镰刀菌 Fusarium verticillioides | 大豆根Glycine max (Linn.) Merr root | 降低大豆的脂质过氧化水平,提高大豆对盐胁迫的抗性 Reduce the level of lipid peroxidation and improve the resistance of soybean to salt stress | [ |
毛霉菌属 Mucor spp. | 党参Codonopsis pilosula (Franch.) Nannf root | 产生吲哚乙酸(IAA)和ACC脱氨酶,促进重金属污染地油菜的生长Produce indoleacetic acid (IAA) and ACC deaminase and promote the growth of rape in polluted areas by heavy metal | [ |
Table 1 Types and functions of PSF
真菌种类 Fungal species | 宿主植物 Host plant | 功能概述 Functional summary | 文献来源 Literatures |
---|---|---|---|
黑曲霉 A. niger | 牡丹Paeonia suffruticosa Andr. | 显著提高牡丹植株的株高、根长、叶面积和生物量 Significantly increase plant height, root length, leaf area and biomass of peony | [ |
土曲霉 A. terreu | 苦参种子 Sophora flavescens seed | 抑制辣椒疫霉菌和番茄炭疽菌等病原菌的生长 Inhibit the growth of Phytophthora capsici and Colletotrichum atramentarium | [ |
草酸青霉 P. oxalicum | 白刺Nitraria tangutorum Bobr. | 增加番茄的株高、根长、干重及鲜重 Increase the plant height, root length, dry weight and fresh weight of tomato | [ |
棘孢木霉 T. asperellum | 番茄Solanum lycopersicum | 增加番茄的叶片数、叶面积以及茎干重 Increase the number of leaves, leaf area and stem dry weight of tomato | [ |
哈茨木霉 T. harzianum | 水稻 Oryza sativa L. | 通过调节水稻丙二醛、脯氨酸和超氧化物歧化酶的含量,提高水稻对干旱胁迫的抗性 Improve the resistance of rice to drought stress by regulating the contents of malondialdehyde, proline and superoxide dismutase in rice | [ |
金黄篮状菌 T. aurantiacus | 杜鹃 Rhododendron simsii | 提高杜鹃对养分的吸收,并增加其株高与生物量 Improve the nutrient absorption of R. simsii Planch, and increase its plant height and biomass | [ |
丝核菌属、盘多毛孢属Rhizoctonia spp., Pestalotia spp. | 五唇兰Doritis pulcherrima | 分解羧甲基纤维素钠并增加五唇兰的鲜重 Decompose sodium carboxymethyl cellulose and increase the fresh weight of D. pulcherrima | [ |
烧瓶状霉属、枝顶孢属Lecythophora spp., Acremonium spp. | 美花石斛Dendrobium loddigesii | 提高美花石斛的存活率和整体长势 Improve the survival rate and overall growth of D. loddigesii | [ |
印度梨形孢Piriformospora indica | 拟南芥Arabidopsis thaliana | 增加拟南芥幼苗的叶绿素含量与鲜重,并提高其在干旱胁迫下的抗性 Increase the chlorophyll content and fresh weight of A. thaliana, and improve their resistance to drought stress | [ |
撕裂蜡孔菌 Ceriporia lacerata | 蘑菇的担子果Basidiocarp | 促进茄子对磷的吸收并增加果实的产量 Promote the absorption of phosphorus by egg plant and increase the fruit yield | [ |
轮枝镰刀菌 Fusarium verticillioides | 大豆根Glycine max (Linn.) Merr root | 降低大豆的脂质过氧化水平,提高大豆对盐胁迫的抗性 Reduce the level of lipid peroxidation and improve the resistance of soybean to salt stress | [ |
毛霉菌属 Mucor spp. | 党参Codonopsis pilosula (Franch.) Nannf root | 产生吲哚乙酸(IAA)和ACC脱氨酶,促进重金属污染地油菜的生长Produce indoleacetic acid (IAA) and ACC deaminase and promote the growth of rape in polluted areas by heavy metal | [ |
1 | 魏伟,吴小芹,乔欢.马尾松根际高效解磷真菌的筛选鉴定及其促生效应[J].林业科学,2014,50(9):82-88. |
WEI W, WU X Q, QIAO H. Screening and identification of phosphate-solubilizing fungi of Pinus massoniana rhizosphere and its application [J]. Sci. Silvae Sin., 2014, 50(9):82-88. | |
2 | 朗明.长期施用磷肥土壤微生物的群落结构特征及适应性探究[D].北京:中国农业大学,2018. |
LANG M. Community structure and adaptation of soil microbiome after long-term phosphorus fertilization [D]. Beijing: China Agricultural University, 2018. | |
3 | WANG L J, SHENG M Y, LI S, et al.. Patterns and dynamics of plant diversity and soil physical-chemical properties of the Karst rocky desertification ecosystem, SW China [J]. Polish J. Environ. Studies, 2021, 30(2):1393-1408. |
4 | TALLAPRAGADA P, SESHACHALA U. Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India [J]. Turkish J. Biol., 2014, 36(1):25-35. |
5 | GAUR A C, ARORA D, PRAKASH N. Electron microscopy of some rock phosphate dissolving bacteria and fungi [J]. Folia Microbiol., 1979, 24(4):314-317. |
6 | 薛冬,黄向冬,杨瑞先,等.牡丹根际溶磷真菌的筛选及其促生效应[J].生态环境学报,2018,27(9):1639-1645. |
XUE D, HUANG X D, YANG R X, et al.. Screening and growth-promoting effect of phosphate-solubilizing fungi in the rhizosphere of Paeonia suffruticosa [J]. Ecol. Environ. Sci., 2018, 27(9):1639-1645. | |
7 | 薛应钰,叶巍,杨树,等.一株溶磷菌的分离鉴定及溶磷促生作用[J].干旱地区农业研究,2019,37(4):253-262. |
XUE Y J, YE W, YANG S, et al.. Isolation and identification of P-dissolving fungi strain and its effects on phosphate-solubilizing and plant growth promotion [J]. Agric. Res. Arid Areas, 2019, 37(4):253-262. | |
8 | FRANA C D V, KUPPER C K, MAGRI R M M, et al.. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato [J]. Pesqu. Agropecu. Tropical, 2017, 47(4): 360-368. |
9 | WU A Q, ZHANG Y, WAN S Z, et al.. Phosphate solubilizing characteristics of Talaromyces aurantiacus and its growth-promoting effect on Phyllostachys edulis seedlings [J]. J. Appl. Ecol., 2019, 30(1):173-179. |
10 | SHERAMETI I A, TRIPATHI S B, VARMA A B, et al.. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves [J]. Mol. Plant-Microbe Interact., 2008, 21(6):799-807. |
11 | RADHAKRISHNAN R, KHAN A L, KANG S M. A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress [J]. Ann. Microbiol., 2015, 65(1):585-593. |
12 | RUANGSANKA S. Identification of phosphate-solubilizing fungi from the Asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum [J]. Sci. Asia, 2014, 40(1):16-20. |
13 | 陈金花,朱国鹏,宋希强,等.五唇兰非致病真菌的特性及对组培苗生长的影响[J].北方园艺,2010(7):81-85. |
CHEN J H, ZHU G P, SONG X Q, et al.. The characteristic of D. Pulcherrima no-pathogens and effection to seedlings in vitro [J]. Northern Hortic., 2010(7):81-85. | |
14 | ZHANG H S, WU X H, LI G, et al.. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities [J]. Biol. Fert. Soils, 2011, 47(5):543-554. |
15 | MAHWISH Z, MUHAMMAD I, HAZIR R, et al.. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7 [J]. Ecotoxicol. Environ. Safety, 2017, 142(1):139-149. |
16 | 何璐,纪明山,王勇,等.一株苦参内生真菌的抑菌特性及活性成分的结构鉴定[J].中国农业科学,2011,44(15):3127-3133. |
HE L, JI M S, WANG Y, et al.. Antimicrobial action of an endophytic fungus from Sophora flavescens and structure identification of its active constituents [J]. Sci. Agric. Sin., 2011, 44(15):3127-3133. | |
17 | PANDEY V, ANSARI M W, TULA S, et al.. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes [J]. Planta, 2016, 243(5):1251-1264. |
18 | 陈宝玲.濒危植物美花石斛基于菌根真菌的再引入技术初步研究[D].海口:海南大学,2010. |
CHEN B L. Re-introduction technology based on mycorrhizalfungi in the conservation of an endangered orchid: Dendrobium loddigesii [D]. Haikou: Hainan University, 2010. | |
19 | YIN J, SUI Z M, HUANG J G. Mobilization of soil inorganic phosphorus and stimulation of crop phosphorus uptake and growth induced by Ceriporia lacerate HG2011 [J]. Geoderma, 2021, 383:1-8. |
20 | KUCEY R M N. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils [J]. Can. J. Soil Sci., 1983, 63(4):671-678. |
21 | 易艳梅,黄为一.不同生态区土壤溶磷微生物的分布特征及影响因子[J].生态与农村环境学报,2010,26(5):448-453. |
YI Y M, HUANG W Y. Distribution of phosphate-solubilizing microbes in soils of different ecological zones and its affecting factors [J]. J. Ecol. Rural Environ., 2010, 26(5):448-453. | |
22 | NARSIAN V T, PATEL H H. Relationship of physicochemical properties of rhizosphere soils with native population of mineral phosphate solubilizing fungi [J]. Ind. J. Microbiol., 2009, 49(1):60-67. |
23 | ZHANG J, FENG L F, HUA R, et al.. Phosphate-solubilizing bacteria and fungi in relation to phosphorus vailability under different land uses for some latosols from Guangdong, China [J]. Catena, 2020, 195:1-7. |
24 | PAUL R, SINGH R D, BISWAS D R, et al.. Phosphorus dynamics and solubilizing microorganisms in acid soils under different land uses of Lesser Himalayas of India [J]. Agroforestry Syst., 2018, 92(2):449-461. |
25 | 赵飞,刘畅,朱昌玲,等.功能微生物与生物炭对海滨锦葵生长及滨海盐土地力的影响[J].中国土壤与肥料,2020(5):161-168. |
ZHAO F, LIU C, ZHU C L, et al.. Effects of functional microorganisms and biochar on the growth of seashore mallow and its rhizosphere soil fertility in coastal saline soil [J]. Soil Fert. Sci. China, 2020(5):161-168. | |
26 | KAUR G, REDDY M S. Improvement of crop yield by phosphate-solubilizing Aspergillus species in organic farming [J]. Arch. Agron. Soil Sci., 2017, 63(1):24-34. |
27 | ALAN E R, ANN M M, CLAIRE P C, et al.. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [J]. Plant Soil., 2009, 321(1):305-339. |
28 | SCERVINO J M, MESA M P, DELLA MÓNICA I, et al.. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization [J]. Biol. Fert. Soils, 2010, 46(7):755-763. |
29 | 王莉晶,高晓蓉,吕军,等.溶磷真菌C2的分离鉴定及其在土壤中实际解磷效果的研究[J].土壤通报,2009,40(4):771-775. |
WANG L J, GAO X R, LU J, et al.. Phosphate-solubilizing mechanism of C2 and its actual phosphate-solubilizing effect in soil [J]. Chin. J. Soil Sci., 2009, 40(4):771-775. | |
30 | ISLAM M K, SANO A, MAJUMDER M S I, et al.. Evaluation of organic acid production potential of phosphate solubilizing fungi isolated from soils in Okinawa, Japan [J]. Appl. Ecol. Enuiron. Res., 2019, 17(6):15191-15201. |
31 | GAIND S. Phosphate dissolving fungi: mechanism and application in alleviation of salt stress in wheat [J]. Microbiol. Res., 2016, 193:94-102. |
32 | ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates- solubilization mechanisms[J]. Soil Biol. Biochem., 1995, 27(3):257-263. |
33 | HAMDALI H, LEBRIHI A, MONJE M C, et al.. A molecule of the viridomycin family originating from a Streptomyces griseus-related strain has the ability to solubilize rock phosphate and to inhibit microbial growth [J]. Antibiotics, 2021, 10(1):1-9. |
34 | YADAV B K, TARAFDAR J C. Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems [J]. Arid Soil Res. Rehabilit., 2011, 25(1):87-99. |
35 | SONI S, MAGDUM A, KHIRE J. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563 [J]. World J. Microbiol. Biotechnol., 2010, 26(11):2009-2018. |
36 | GAIND S, Production SINGH S., purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720 [J]. Int. Biodeterior. Biodegrad., 2015, 99:15-22. |
37 | MUKHAMETZYNOVA A D, AKHMETOVA A I, SHARIPOVA M R. Microorganisms as phytase producers [J]. Microbiology, 2012, 81(3):267-275. |
38 | 高兆建,杨培玲,杨芳,等.构巢曲霉产植酸酶的酶学特性分析[J].食品工业科技,2020, 41(23):57-62, 77. |
GAO Z J, YANG P L, YANG F, et al.. Enzymatic characterization of a novel acid and thermostable phytase from Aspergillus nidulans [J]. Sci. Technol. Food Ind., 2020, 41(23):57-62, 77. | |
39 | NEIRA-VIELMA A A, AGUILAR C N, ILYINA A, et al.. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate [J]. Biotechnol. Rep., 2018, 17: 49-54. |
40 | SINGH H, REDDY M S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrientuptake of wheat and maize plants fertilized with rock phosphate in alkaline soils [J]. Eur. J. Soil Biol., 2011, 47(1):30-34. |
41 | SHARKEY T D, CORNIC G, BOTA J, et al.. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C-3 plants [J]. Plant Biol., 2004, 6(3):269-279. |
42 | KHOSHMANZAR E, ALIASGHARZAD N, NEYSHABOURI M R, et al.. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress [J]. Int. J. Environ. Sci. Technol., 2020, 17(2):869-878. |
43 | CHAI B, WU Y, LIU P M, et al.. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil ofan alum mine [J]. J. Basicmicrobiol., 2011, 51(1):5-14. |
44 | MOHD S, KUSHWAHA A S, SHUKLA J, et al.. Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant [J]. Ecotoxicol. Environ. Safety, 2019, 176:108-118. |
45 | LI T, LIU M J, ZHANG X T, et al.. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila [J]. Sci. Total Environ., 2011, 409(6):1069-1074. |
46 | XU R, LI T, SHEN M, et al.. Evidence for a dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings [J]. Plant Soil, 2020, 452(1):249-266. |
47 | 刘非凡,白建峰,顾卫华,等.烟曲霉f4对黑麦草修复电子废物拆解场地土壤重金属的影响[J].环境工程学报,2020,14(7):1886-1893. |
LIU F F, BAI J F, GU W H, et al.. Effects of Aspergillus fumigatus f4 on the soil heavy metal remediation in e-waste dismantling site by ryegrass [J]. Chin. J. Environ. Eng., 2020, 14(7):1886-1893. | |
48 | WANG X H, WANG C D, SUI J K, et al.. Isolation and characterization of phosphorfungi, and screening of their plant growth-promoting activities [J]. AMB Express, 2018, 8(1):1-12. |
49 | KHAN M R, KHAN S M. Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms [J]. Int. J. Pest Manage., 2001, 47(3):227-231. |
50 | BADERA A N, SALERNOA G L, COVACEVICHAB F, et al.. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.) [J]. J. King Saud Univ-Sci., 2020, 32(1):867-873. |
51 | 彭德良.植物线虫病害:我国粮食安全面临的重大挑战[J].生物技术通报,2021,37(7):1-2. |
PENG D L. Plant nematode diseases: serious challenges to China's food security [J]. Biotechnol. Bull., 2021, 37(7):1-2. | |
52 | 李婷,黄文坤,彭德良,等.3株生防真菌发酵液对大豆孢囊线虫的防治效果[J].华中农业大学学报,2017,36(1):42-46. |
LI T, HUANG W K, PENG D L, et al.. Control efficiency of three fungal strains' fermentation broth on soybean cyst nematode (Heterodera glycines) [J]. J. Huazhong Agric.Univ., 2017, 36(1):42-46. | |
53 | ATIA M A M, ABDELDAYM E A, ABDELSATTAR M, et al.. Piriformospora indica promotes cucumber tolerance against root-knot nematode by modulating photosynthesis and innate responsive genes [J]. Saudi J. Biol. Sci., 2020, 27(1):279-287. |
54 | JOGAIAH S, ABDELRAHMAN M, TRAN L S P, et al.. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease [J]. J. Exp. Bot., 2013, 64(12):3829-3842. |
55 | 江红梅,殷中伟,史发超,等.一株耐盐日本曲霉的筛选及其溶磷促生作用[J].微生物学报,2018,58(5):862-881. |
JIANG H M, YIN Z W, SHI F C, et al.. Isolation, identification of a salt-tolerant, phosphate-solubilizing and crop-growth promoting Aspergillus japonicas [J]. Acta Microbiol. Sin., 2018, 58(5):862-881. | |
56 | BABU A G, REDDY M S. Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds [J]. Water Air Soil Pollut., 2011, 219(1-4):3-10. |
57 | 郝振萍,王欢,司逸茹,等.解磷真菌对竹柳扦插苗生长和矿质元素吸收的影响[J].江苏农业科学,2015,43(3):169-171. |
HAO Z P, WANG H, SI Y R, et al.. Effects of phosphate-solubilizing fungi on growth and mineral elements absorption of bamboo willow cutting seedlings [J]. Jiangsu Agric. Sci., 2015, 43(3):169-171. | |
58 | 侯姣姣,布芳芳,余仲东,等.古国槐叶片溶磷内生真菌的筛选及其促生潜力初探[J].西北植物学报,2016,36(7):1456-1463. |
HOU J J, BU F F, YU Z D, et al.. Screening of phosphate-solubilizing endophytic fungi from ancient Sophora japonica leaves and their potential for plant growth-promoting [J]. Acta Bot. Bor-Occid. Sin., 2016, 36(7):1456-1463. | |
59 | MEDINA A, ROLDN A, AZCN R. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil [J]. J. Environ. Manage., 2010, 91(12):2547-2553. |
60 | KHAN A L, HAMAYUN M, KIM Y H, et al.. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. [J]. Plant Physiol. Biochem., 2011, 49(8):852-861. |
61 | 武美燕,蒿若超,张文英.印度梨形孢真菌对干旱胁迫下紫花苜蓿生长及抗旱性的影响[J].草业学报,2016,25(5):78-86. |
WU M Y, HAO R C, ZHANG W Y. Effects of Piriformospora indica fungus on growth and drought resistance in alfalfa under water deficit stress [J]. Acta Pratac. Sin., 2016, 25(5):78-86. | |
62 | RADHAKRISHNAN R, LEELAPRIYA T, RANJITHAKUMARI B D. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress [J]. Bioelectromagnetics, 2012, 33(8):670-681. |
63 | BILAL S, SHAHZAD R, IMRAN M, et al.. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress [J]. Ind. Crops Prod., 2020, 143:1-10. |
64 | LI X N, HAN S J, WANG J Y, et al.. The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass [J]. Front. Microbiol., 2017, 8:1-13. |
65 | 卢宇浩,程宁,向家荣,等.塔宾曲霉协同磷酸盐钝化土壤有效态重金属[J].环境科技,2018,31(5):1-6. |
LU Y H, CHENG N, XIANG J R, et al.. Passivation of soil available heavy metal by phosphate and EPS excreted from Aspergillus tubingensis [J]. Environ. Sci. Technol., 2018, 31(5):1-6. | |
66 | 林钰栅,王强,刘景春,等.耐铅解磷真菌联合磷矿粉钝化修复重金属铅[J].厦门大学学报(自然科学版),2020,60(4):767-775. |
LIN Y S, WANG Q, LIU J C, et al.. Immobilization recovery of heavy metal lead by lead-tolerance phosphate-solubilizing fungi combined with phosphate rock [J]. J. Xiamen Univ. (Nat. Sci.), 2020, 60(4):767-775. | |
67 | SALAZAR-RAMÍREZ G, FLORES-VALLEJO R D C, RIVERA-LEYVA J C, et al.. Characterization of fungal endophytes isolated from the metal hyperaccumulator plant Vachellia farnesiana growing in mine tailings [J]. Microorganisms, 2020, 8(2):1-22. |
68 | SUN H Q, WU L R, HAO Y L. Tolerance mechanism of Trichoderma asperellum to Pb2+: response changes of related active ingredients under Pb2+ stress [J]. RSC Adv., 2020, 10(9):5202-5211. |
69 | VARGAS-GARCA M D C, LPEZ M J, SUREZ-ESTRELLA F, et al.. Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection [J]. Sci. Total Environ., 2012, 431:62-67. |
70 | GE W, ZAMRI D, MINEYAMA H, et al.. Bioaccumulation of heavy metals on adapted Aspergillus foetidus [J]. Adsorption, 2011, 17(5):901-910. |
71 | LIAQUAT F, HAROON U, ARIF S, et al.. Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity [J]. Environ. Technol. Innovation, 2021, 21:1-11. |
72 | 申光辉,薛泉宏,张晶,等.草莓根腐病拮抗真菌筛选鉴定及其防病促生作用[J].中国农业科学,2012,45(22):4612-4626. |
SHEN G H, XUE Q H, ZHANG J, et al.. Screening, identification and biocontrol potential of antagonistic fungi against strawberry root rot and plant growth promotion [J]. Sci. Agric. Sin., 2012, 45(22):4612-4626. | |
73 | SEGARRA G, CASANOVA E, AVILS M, et al.. Trichoderma asperellum strain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron [J]. Microbiol. Ecol., 2010, 59(1):141-149. |
74 | 鲁海菊,沈云玫,陶宏征,等.内生木霉P3.9菌株的多功能性及其枇杷根腐病的盆栽防效[J].西北农业学报,2017,26(11):1681-1688. |
LU H J, SHEN Y G, TAO H Z, et al.. Multifunction of endophytic Trichoderma P3.9 strain and control effect on loquat root rot [J]. Acta Agric. Bor-Occid. Sin., 2017, 26(11):1681-1688. | |
75 | BLACHOWICZ A, SINGH N K, DEBIEU M, et al.. Draft genome sequences of Aspergillus and Penicillium species isolated from the international space station and crew resupply vehicle capsule [J]. Microbiol. Resour. Announce., 2021, 10(13):1-4. |
76 | SEN D, PAUL K, SAHA C, et al.. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1-a comparative genomics viewpoint [J]. DNA Res., 2019, 26(2):131-146. |
77 | SINGH R D, BISWAS D R, PAUL R, et al..Phosphorus dynamics and solubilizing microorganisms in acid soils under different land uses of Lesser Himalayas of India [J]. Agrofor. Syst., 2018, 92(2):449-461. |
[1] | Xin PENG, Can FENG, Xiang MA, Hong LI, Yanqiong TANG, Juanjuan LI, Zhu LIU. Screening of Acidic Protease Producing Strains and Its Application in Seed Germination [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 88-95. |
[2] | Congcong MA, Zehua LUO, Bin CAI, Haobao LIU, Yunshan WANG, Rui MA, Jingang GU. Screening of Carbon Sources for Growth and Spore Formation of Bacillus altitudinis YC-9 [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 77-85. |
[3] | Yuhong WU, Rongjun GUO, Guizhen MA, Shidong LI. Characteristics of the Growth of Rhodococcuspyridinivorans Rp3 and Ability to Degrade Skatole [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 82-89. |
[4] | HUANG Liling, LI Yun, WANG Shanshan, LU Chao, YANG Zhimin, LIN Min, YAN Yongliang, CHEN Ming, ZHANG Wei, WANG Jin, ZHOU Zhengfu, KE Xiubin, ZHAN Yuhua, LU Wei. Nitrate Assimilation Gene Distribution and Pathway-specific Regulation in Nitrogen-fixing Pseudomonas stutzeri A1501 [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 72-81. |
[5] | WANG Jin-ling1, LIU Xiao-ping2, GAO Wei-hua1, ZHAO Feng-yan3, LV Chang-shan3. Medium Optimization for Phosphate-solubilizing Bacteria Bacillus Megaterium in Submerged Fermentation [J]. , 2013, 15(2): 185-192. |
[6] | ZHANG Nan, ZHANG Bing-lin, WANG Wan-ru, XU Jun-quan, ZHANG Dong-ming, XUE Lin-gu. Studies on Selecting High-yield Poly-β-hydroxybutyrate Producing Strain by Heavy-ion Irradiation [J]. , 2012, 14(2): 95-100. |
[7] | LU Jian-zhong, LIN Min, QIU De-wen. Development Strategy and Counter Measures for Agricultural Microorganism Industry in China [J]. , 2007, 9(4): 22-25. |
[8] | WANG Xiao-xue, GUO Jun, TIAN Jian|WU Ning-feng, FAN Yun-liu . Expression of a Bacterial Organophosphorus Hydrolase in Transgenic Tobacco Plants [J]. , 2007, 9(4): 108-110. |
[9] | . [J]. , 2002, 4(3): 23-26. |
[10] | . [J]. , 2002, 4(3): 50-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||