Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (4): 67-76.DOI: 10.13304/j.nykjdb.2021.0794
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Received:
2021-09-08
Accepted:
2021-10-20
Online:
2023-04-01
Published:
2023-06-26
Contact:
Jie TIAN
通讯作者:
田洁
作者简介:
闫艺薇 E-mail: yanyw0102@163.com;
基金资助:
CLC Number:
Yiwei YAN, Jie TIAN. Identification and Expression Analysis of NAC Gene Family Under Low Temperature in Allium sativum L.[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 67-76.
闫艺薇, 田洁. 大蒜NAC基因家族的鉴定与低温表达分析[J]. 中国农业科技导报, 2023, 25(4): 67-76.
基因名称 Gene name | 引物序列 Primer sequence(5’-3’) | 退火温度 Annealing temperature/℃ |
---|---|---|
AsNAC001 | F: CCGAGAAGGCATTATTTG | 52 |
R: ACCCGTCGCTTTCCAGTA | ||
AsNAC010 | F: TCAACCTCTACAAGCACGACC | 56 |
R: GAACCCTTTGGGCACGAT | ||
AsNAC013 | F: CTTCTACAGCCTTCGTG | 50 |
R: AGTCTTCCTCATCCCTAC | ||
AsNAC014 | F: ATCTTGTGATGCCTGGTT | 49 |
R: AATGGCTGCTAATGCTG | ||
AsNAC017 | F: TCCAGCAGGGTTCAGATT | 54 |
R: ACTCCCAAGGCTCACAAG | ||
AsNAC047 | F: AAAATCCTCATACACCGCCTAA | 57 |
R: TCGTCCCGAAGCATCCAC | ||
CYP | F: AAGGACGAGAACTTCATC | — |
R: TCAATATCTCTCACCACTTC |
Table 1 Primer sequences of AsNAC genes for real-time fluorescence quantification
基因名称 Gene name | 引物序列 Primer sequence(5’-3’) | 退火温度 Annealing temperature/℃ |
---|---|---|
AsNAC001 | F: CCGAGAAGGCATTATTTG | 52 |
R: ACCCGTCGCTTTCCAGTA | ||
AsNAC010 | F: TCAACCTCTACAAGCACGACC | 56 |
R: GAACCCTTTGGGCACGAT | ||
AsNAC013 | F: CTTCTACAGCCTTCGTG | 50 |
R: AGTCTTCCTCATCCCTAC | ||
AsNAC014 | F: ATCTTGTGATGCCTGGTT | 49 |
R: AATGGCTGCTAATGCTG | ||
AsNAC017 | F: TCCAGCAGGGTTCAGATT | 54 |
R: ACTCCCAAGGCTCACAAG | ||
AsNAC047 | F: AAAATCCTCATACACCGCCTAA | 57 |
R: TCGTCCCGAAGCATCCAC | ||
CYP | F: AAGGACGAGAACTTCATC | — |
R: TCAATATCTCTCACCACTTC |
基因名称 Gene name | 氨基酸长度 Number of amino acid/aa | 编码区长度 Length of cDNA/bp | 等电点 Theoretical pI | 分子量 Molecular weight/Da | 不稳定指数 Instability index | 脂溶系数 Aliphatic index | 总平均疏水指数Grand average of hydropathicity |
---|---|---|---|---|---|---|---|
AsNAC001 | 317 | 966 | 5.48 | 36 739.14 | 40.50 | 60.60 | -0.939 |
AsNAC002 | 227 | 692 | 9.18 | 25 415.27 | 48.38 | 56.65 | -0.654 |
AsNAC003 | 314 | 966 | 6.22 | 36 414.20 | 35.74 | 67.36 | -0.662 |
AsNAC004 | 299 | 911 | 6.34 | 34 235.70 | 29.90 | 57.06 | -0.716 |
AsNAC005 | 297 | 905 | 4.98 | 34 391.81 | 44.56 | 64.31 | -0.904 |
AsNAC006 | 181 | 555 | 9.86 | 20 697.99 | 25.75 | 77.07 | -0.480 |
AsNAC007 | 284 | 866 | 5.93 | 32 876.85 | 38.61 | 63.84 | -0.816 |
AsNAC008 | 174 | 533 | 9.83 | 19 776.87 | 33.91 | 74.08 | -0.466 |
AsNAC009 | 295 | 899 | 8.61 | 33 523.98 | 39.65 | 65.15 | -0.637 |
AsNAC010 | 220 | 670 | 7.17 | 25 613.94 | 35.54 | 66.45 | -0.780 |
AsNAC011 | 81 | 247 | 9.79 | 9 293.66 | 29.75 | 53.09 | -0.793 |
AsNAC012 | 350 | 1 067 | 4.95 | 40 488.80 | 43.51 | 69.63 | -0.827 |
AsNAC013 | 299 | 914 | 8.07 | 34 120.71 | 37.43 | 63.24 | -0.581 |
AsNAC014 | 311 | 948 | 6.83 | 35 302.75 | 45.96 | 74.63 | -0.591 |
AsNAC015 | 153 | 466 | 9.60 | 17 763.48 | 36.73 | 72.61 | -0.460 |
AsNAC016 | 142 | 433 | 9.54 | 16 467.63 | 30.22 | 68.59 | -0.706 |
AsNAC017 | 241 | 735 | 6.17 | 27 870.55 | 40.27 | 59.83 | -0.651 |
AsNAC018 | 234 | 713 | 5.74 | 27 139.67 | 41.73 | 55.77 | -0.631 |
AsNAC019 | 196 | 597 | 8.62 | 22 554.44 | 21.80 | 61.68 | -0.671 |
AsNAC020 | 256 | 780 | 6.34 | 28 965.66 | 40.18 | 63.52 | -0.550 |
AsNAC021 | 205 | 625 | 8.75 | 23 361.40 | 38.21 | 60.78 | -0.573 |
AsNAC022 | 185 | 567 | 9.45 | 21 445.02 | 20.73 | 72.16 | -0.374 |
AsNAC023 | 159 | 484 | 9.47 | 18 236.02 | 23.81 | 61.95 | -0.664 |
AsNAC024 | 151 | 460 | 9.40 | 17 500.04 | 36.29 | 57.48 | -0.788 |
AsNAC025 | 147 | 448 | 9.70 | 16 631.15 | 31.41 | 69.12 | -0.589 |
AsNAC026 | 322 | 985 | 8.94 | 36 669.70 | 40.31 | 68.17 | -0.567 |
AsNAC027 | 256 | 780 | 8.57 | 29 357.41 | 30.19 | 61.37 | -0.656 |
AsNAC028 | 144 | 439 | 9.10 | 16 917.46 | 34.03 | 56.25 | -0.816 |
AsNAC029 | 156 | 475 | 9.67 | 17 769.38 | 43.29 | 73.78 | -0.574 |
AsNAC030 | 198 | 603 | 5.25 | 22 305.54 | 44.75 | 62.47 | -0.819 |
AsNAC031 | 619 | 1 887 | 4.78 | 70 229.04 | 46.44 | 70.39 | -0.709 |
AsNAC032 | 176 | 542 | 9.19 | 20 419.75 | 38.67 | 73.64 | -0.274 |
AsNAC033 | 238 | 728 | 9.17 | 27 182.77 | 34.76 | 60.21 | -0.607 |
AsNAC034 | 272 | 835 | 7.80 | 31 081.00 | 43.57 | 64.89 | -0.604 |
AsNAC035 | 209 | 637 | 7.00 | 23 813.71 | 30.07 | 73.68 | -0.678 |
AsNAC036 | 276 | 841 | 4.95 | 31 051.17 | 32.52 | 67.50 | -0.791 |
Table 2 Physical and chemical properties of NAC proteins in Allium sativum L.
基因名称 Gene name | 氨基酸长度 Number of amino acid/aa | 编码区长度 Length of cDNA/bp | 等电点 Theoretical pI | 分子量 Molecular weight/Da | 不稳定指数 Instability index | 脂溶系数 Aliphatic index | 总平均疏水指数Grand average of hydropathicity |
---|---|---|---|---|---|---|---|
AsNAC001 | 317 | 966 | 5.48 | 36 739.14 | 40.50 | 60.60 | -0.939 |
AsNAC002 | 227 | 692 | 9.18 | 25 415.27 | 48.38 | 56.65 | -0.654 |
AsNAC003 | 314 | 966 | 6.22 | 36 414.20 | 35.74 | 67.36 | -0.662 |
AsNAC004 | 299 | 911 | 6.34 | 34 235.70 | 29.90 | 57.06 | -0.716 |
AsNAC005 | 297 | 905 | 4.98 | 34 391.81 | 44.56 | 64.31 | -0.904 |
AsNAC006 | 181 | 555 | 9.86 | 20 697.99 | 25.75 | 77.07 | -0.480 |
AsNAC007 | 284 | 866 | 5.93 | 32 876.85 | 38.61 | 63.84 | -0.816 |
AsNAC008 | 174 | 533 | 9.83 | 19 776.87 | 33.91 | 74.08 | -0.466 |
AsNAC009 | 295 | 899 | 8.61 | 33 523.98 | 39.65 | 65.15 | -0.637 |
AsNAC010 | 220 | 670 | 7.17 | 25 613.94 | 35.54 | 66.45 | -0.780 |
AsNAC011 | 81 | 247 | 9.79 | 9 293.66 | 29.75 | 53.09 | -0.793 |
AsNAC012 | 350 | 1 067 | 4.95 | 40 488.80 | 43.51 | 69.63 | -0.827 |
AsNAC013 | 299 | 914 | 8.07 | 34 120.71 | 37.43 | 63.24 | -0.581 |
AsNAC014 | 311 | 948 | 6.83 | 35 302.75 | 45.96 | 74.63 | -0.591 |
AsNAC015 | 153 | 466 | 9.60 | 17 763.48 | 36.73 | 72.61 | -0.460 |
AsNAC016 | 142 | 433 | 9.54 | 16 467.63 | 30.22 | 68.59 | -0.706 |
AsNAC017 | 241 | 735 | 6.17 | 27 870.55 | 40.27 | 59.83 | -0.651 |
AsNAC018 | 234 | 713 | 5.74 | 27 139.67 | 41.73 | 55.77 | -0.631 |
AsNAC019 | 196 | 597 | 8.62 | 22 554.44 | 21.80 | 61.68 | -0.671 |
AsNAC020 | 256 | 780 | 6.34 | 28 965.66 | 40.18 | 63.52 | -0.550 |
AsNAC021 | 205 | 625 | 8.75 | 23 361.40 | 38.21 | 60.78 | -0.573 |
AsNAC022 | 185 | 567 | 9.45 | 21 445.02 | 20.73 | 72.16 | -0.374 |
AsNAC023 | 159 | 484 | 9.47 | 18 236.02 | 23.81 | 61.95 | -0.664 |
AsNAC024 | 151 | 460 | 9.40 | 17 500.04 | 36.29 | 57.48 | -0.788 |
AsNAC025 | 147 | 448 | 9.70 | 16 631.15 | 31.41 | 69.12 | -0.589 |
AsNAC026 | 322 | 985 | 8.94 | 36 669.70 | 40.31 | 68.17 | -0.567 |
AsNAC027 | 256 | 780 | 8.57 | 29 357.41 | 30.19 | 61.37 | -0.656 |
AsNAC028 | 144 | 439 | 9.10 | 16 917.46 | 34.03 | 56.25 | -0.816 |
AsNAC029 | 156 | 475 | 9.67 | 17 769.38 | 43.29 | 73.78 | -0.574 |
AsNAC030 | 198 | 603 | 5.25 | 22 305.54 | 44.75 | 62.47 | -0.819 |
AsNAC031 | 619 | 1 887 | 4.78 | 70 229.04 | 46.44 | 70.39 | -0.709 |
AsNAC032 | 176 | 542 | 9.19 | 20 419.75 | 38.67 | 73.64 | -0.274 |
AsNAC033 | 238 | 728 | 9.17 | 27 182.77 | 34.76 | 60.21 | -0.607 |
AsNAC034 | 272 | 835 | 7.80 | 31 081.00 | 43.57 | 64.89 | -0.604 |
AsNAC035 | 209 | 637 | 7.00 | 23 813.71 | 30.07 | 73.68 | -0.678 |
AsNAC036 | 276 | 841 | 4.95 | 31 051.17 | 32.52 | 67.50 | -0.791 |
基因名称 Gene name | 氨基酸长度 Number of amino acid/aa | 编码区长度 Length of cDNA/bp | 等电点 Theoretical pI | 分子量 Molecular weight/Da | 不稳定指数 Instability index | 脂溶系数 Aliphatic index | 总平均疏水指数Grand average of hydropathicity |
---|---|---|---|---|---|---|---|
AsNAC037 | 290 | 884 | 6.45 | 33 210.39 | 45.73 | 63.59 | -0.694 |
AsNAC038 | 176 | 548 | 9.74 | 20 481.63 | 39.16 | 79.77 | -0.354 |
AsNAC039 | 147 | 448 | 9.72 | 16 705.32 | 31.72 | 70.41 | -0.582 |
AsNAC040 | 179 | 555 | 9.74 | 21 143.43 | 51.78 | 68.60 | -0.450 |
AsNAC041 | 152 | 463 | 7.78 | 17 151.33 | 42.10 | 56.51 | -0.648 |
AsNAC042 | 145 | 442 | 9.46 | 16 896.43 | 38.54 | 62.48 | -0.587 |
AsNAC043 | 149 | 454 | 9.46 | 17 444.08 | 36.77 | 63.42 | -0.533 |
AsNAC044 | 130 | 396 | 9.80 | 15 114.11 | 16.76 | 50.23 | -0.893 |
AsNAC045 | 149 | 454 | 9.39 | 17 409.75 | 35.18 | 66.04 | -0.799 |
AsNAC046 | 140 | 426 | 9.43 | 16 452.80 | 46.91 | 63.36 | -0.699 |
AsNAC047 | 251 | 765 | 5.24 | 28 836.27 | 31.96 | 54.74 | -0.734 |
AsNAC048 | 260 | 792 | 5.04 | 29 891.58 | 47.35 | 94.42 | -0.202 |
AsNAC049 | 261 | 796 | 8.63 | 29 843.57 | 37.33 | 67.59 | -0.593 |
Table 2 Physical and chemical properties of NAC proteins in Allium sativum L.
基因名称 Gene name | 氨基酸长度 Number of amino acid/aa | 编码区长度 Length of cDNA/bp | 等电点 Theoretical pI | 分子量 Molecular weight/Da | 不稳定指数 Instability index | 脂溶系数 Aliphatic index | 总平均疏水指数Grand average of hydropathicity |
---|---|---|---|---|---|---|---|
AsNAC037 | 290 | 884 | 6.45 | 33 210.39 | 45.73 | 63.59 | -0.694 |
AsNAC038 | 176 | 548 | 9.74 | 20 481.63 | 39.16 | 79.77 | -0.354 |
AsNAC039 | 147 | 448 | 9.72 | 16 705.32 | 31.72 | 70.41 | -0.582 |
AsNAC040 | 179 | 555 | 9.74 | 21 143.43 | 51.78 | 68.60 | -0.450 |
AsNAC041 | 152 | 463 | 7.78 | 17 151.33 | 42.10 | 56.51 | -0.648 |
AsNAC042 | 145 | 442 | 9.46 | 16 896.43 | 38.54 | 62.48 | -0.587 |
AsNAC043 | 149 | 454 | 9.46 | 17 444.08 | 36.77 | 63.42 | -0.533 |
AsNAC044 | 130 | 396 | 9.80 | 15 114.11 | 16.76 | 50.23 | -0.893 |
AsNAC045 | 149 | 454 | 9.39 | 17 409.75 | 35.18 | 66.04 | -0.799 |
AsNAC046 | 140 | 426 | 9.43 | 16 452.80 | 46.91 | 63.36 | -0.699 |
AsNAC047 | 251 | 765 | 5.24 | 28 836.27 | 31.96 | 54.74 | -0.734 |
AsNAC048 | 260 | 792 | 5.04 | 29 891.58 | 47.35 | 94.42 | -0.202 |
AsNAC049 | 261 | 796 | 8.63 | 29 843.57 | 37.33 | 67.59 | -0.593 |
Fig. 3 Secondary structure prediction of NAC proteins in Allium sativum L.Note: Blue indicates α-helix; green indicates β-turn; red indicates extended strand; purple indicates random curl.
编号 Code | α-螺旋 Alpha helix | 延长链 Extended strand | 无规卷曲 Random coil | β-转角 Beta turn |
---|---|---|---|---|
AsNAC001 | 31.55 | 9.46 | 54.89 | 4.10 |
AsNAC010 | 32.73 | 15.00 | 48.18 | 4.09 |
AsNAC013 | 16.05 | 15.38 | 64.88 | 3.68 |
AsNAC014 | 24.44 | 13.83 | 58.20 | 3.54 |
AsNAC017 | 13.69 | 20.33 | 62.24 | 3.73 |
AsNAC047 | 17.53 | 19.52 | 58.96 | 3.98 |
Table 3 Secondary structure prediction of NAC proteins in Allium sativum L.
编号 Code | α-螺旋 Alpha helix | 延长链 Extended strand | 无规卷曲 Random coil | β-转角 Beta turn |
---|---|---|---|---|
AsNAC001 | 31.55 | 9.46 | 54.89 | 4.10 |
AsNAC010 | 32.73 | 15.00 | 48.18 | 4.09 |
AsNAC013 | 16.05 | 15.38 | 64.88 | 3.68 |
AsNAC014 | 24.44 | 13.83 | 58.20 | 3.54 |
AsNAC017 | 13.69 | 20.33 | 62.24 | 3.73 |
AsNAC047 | 17.53 | 19.52 | 58.96 | 3.98 |
1 | 王冰.国内外大蒜机械化播种与收获的分析与探讨[J].农业开发与装备,2020(3):159-161. |
2 | 赵洪光,滕文建,姚传峰.国内大蒜收获机械研制现状与对策[J].农业开发与装备,2018(12):80,82. |
3 | 李积善.青海省海东市乐都区现代富硒农业开发现状与发展对策[J].安徽农业科学,2018,46(33):217-220. |
LI J S. Development status and countermeasures of modern selenium-rich agriculture in Ledu district of Haidong city in Qinghai province [J]. J. Anhui Agric. Sci., 2018, 46(33):217-220. | |
4 | 祝存锦.乐都区大蒜栽培技术和紫皮大蒜营养初探[J].现代农业,2017(5):46-47. |
5 | 吴新昌,陈剑雄,闫霞,等.大蒜生育期气候条件分析及种植区划[J].现代农业科技,2019(10):83-84, 86. |
6 | SOUE E, VAN HOUWELINGEN V, KLOOS D, et al.. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1996, 85(2):159-70. |
7 | 张磊,熊欢欢,曹庆,等.瞬时遗传转化长白落叶松NAC基因植株抗旱性的研究[J].植物研究,2020,40(3):394-400. |
ZHANG L, XIONG H H, CAO Q, et al.. Drought resistance of larch NAC gene by transient genetic transformation [J]. Bot. Res., 2020, 40(3):394-400. | |
8 | 卢惠君,李子义,梁瀚予,等.刚毛柽柳NAC24基因的表达及抗逆功能分析[J].林业科学,2019,55(3):54-63. |
LU H J, LI Z Y, LIANG H Y, et al.. Expression and stress tolerance analysis of NAC24 from Tamarix hispida [J]. Sci. Silv. Sin., 2019, 55(3):54-63. | |
9 | 段俊枝,李莹,赵明忠,等.NAC转录因子在水稻抗逆基因工程中的应用进展[J].中国稻米,2017,23(6):37-42, 46. |
DUAN J Z, LI Y, ZHAO M Z, et al.. Progress on application of NAC transcription factors in rice stress tolerance genetic engineering [J]. China Rice, 2017, 23(6):37-42, 46. | |
10 | 张雪梅,姚文静,赵凯,等.杨树NAC7转录因子基因应答盐胁迫表达[J].东北林业大学学报,2017,45(8):6-9, 13. |
ZHANG X M, YAO W J, ZHAO K, et al.. Expression analysis of NAC7 transcription factor gene from Populus simonii×P. nigra in response to salt stress [J]. J. Northeast For. Univ., 2017, 45(8): 6-9, 13. | |
11 | 张丽,张庭,谭登峰,等.玉米ZmNAC99基因的克隆及干旱诱导表达分析[J].西北植物学报,2017,37(4):629-635. |
ZHANG L, ZHANG T, TAN D F, et al.. Isolation and drought induced expression characterization of ZmNAC99 gene from maize [J]. Acta Bot. Bor-Occid. Sin., 2017, 37(4):629-635. | |
12 | SUN Q G, JIANG S H, ZHANG T L, et al.. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB911 [J/OL]. Plant Sci., 2019, 289:110286 [2021-07-15]. . |
13 | HOU X M, ZHANG H F, LIU S Y, et al.. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers [J/OL]. Plant Sci., 2020, 291:110346 [2021-07-15]. . |
14 | ZHENG X, TANG S W, ZHU S Y, et al.. Identification of an NAC transcription factor family by deep transcriptome sequencing in onion (Allium cepa l.) [J/OL]. PloS One, 2016, 11(6): e0157871 [2021-07-15]. . |
15 | 赵艳青,杜建厂,王盼乔,等.哈氏黄瓜NAC转录因子的鉴定及低温表达分析[J].园艺学报,2019,46(7):1303-1319. |
ZHAO Y Q, DU J C, WANG P Q, et al.. Identification and expression analysis of NAC transcription factor gene family under low temperature in Cucumis sativus var. [J]. Acta Hortic. Sin., 2019, 46(7):1303-1319. | |
16 | 宋琴,赵福宽,孙清鹏,等.洋葱AcNAC转录因子基因功能区的克隆与表达分析[C]//First International Conference on Cellular, molecular Biology, Biophysics & Bioengineering. 2010:417-422. |
SONG Q, ZHAO F K, SUN Q P, et al.. Cloning and expression analysis of the functional region of the onion AcNAC transcription factor gene [C]//First International Conference on Cellular, molecular Biology, Biophysics & Bioengineering. 2010:417-422. | |
17 | 雍玉冰.低温胁迫应答转录因子在百合逆境响应中的功能及调控机制研究[D].北京:北京林业大学,2020. |
YONG Y B. Function and transcriptional regulatory mechanism of cold stress responsive transcription factors in lily stress response [D]. Beijing: Beijing Forestry University, 2020. | |
18 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25(4):402-8. |
19 | 权宽章.乐都紫皮大蒜覆膜栽培技术[J].黑龙江农业科学,2009(3):169-170. |
20 | 周秉荣,胡爱军,陈国茜,等.青海省农牧业气候资源综合区划及评价[J].资源科学,2013(1):191-198. |
21 | YUAN P G, YANG T B, POOVAIAH B W. Calcium Signaling-mediated plant response to cold stress [J/OL]. Int. J. Mol. Sci., 2018, 19(12):3896 [2021-07-15]. . |
22 | KAZEMI-SHAHANDASHTI S S, MAALI-AMIRI R. Global insights of protein responses to cold stress in plants: signaling, defence and degradation [J]. J. Plant Physiol., 2018, 226: 123-135. |
23 | DOWD W W, KING F A, Denny M W. Thermal variation, thermal extremes and the physiological performance of individuals [J]. J. Exp. Biol.., 2015, 218(12):1956-1967. |
24 | ZHU T T, EVIATAR N, SUN D F, et al.. Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants [J]. Evolution, 2012, 66(6):1833-1848. |
25 | HUANG D B, WANG S G, ZHANG B C, et al.. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice [J]. Plant Cell, 2015, 27(6):1681-1696. |
26 | MA X M, ZHANG Y J, TUREČKOVÁ V, et al.. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato [J]. Plant Physiol., 2018, 177(3):1286-1302. |
27 | PEI H X, MA N, TIAN J, et al.. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals [J]. Plant Physiol., 2013, 163(2):775-791. |
28 | 周鸿慧,黄红,徐彬磊,等.NAC转录因子在植物对生物和非生物胁迫响应中的功能[J].植物生理学报,2017,53(8):1372-1382. |
ZHOU H H, HUANG H, XU B L, et al.. Biological function of NAC transcription factors in plant abiotic and biotic stress responses [J]. Acta Phytophysiol. Sin., 2017,53(8):1372-1382. | |
29 | LI X L, YANG X, HU Y X, et al.. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance [J]. Plant Cell Rep., 2014, 33(5):767-778. |
30 | MAO X G, CHEN S S, LI A, et al.. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis [J/OL]. PLoS One, 2017, 9(1): e84359 [2021-07-15]. . |
31 | 王营,关春景,崔颖,等.细叶百合LpNAC13基因的克隆及其表达[J].东北林业大学学报,2020,48(4):29-35. |
WANG Y, GUAN C J, CUI Y, et al.. Cloning and expression analysis of LpNAC13 gene from Lilium pumilum . [J]. J. Northeast For. Univ., 2020, 48(4):29-35. | |
32 | OOKA H, SATOH K, DOI K, et al.. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Res., 2003, 10(6):239-247. |
33 | 王洋,柏锡.大豆NAC基因家族生物信息学分析[J].大豆科学,2014,33(3):325-333. |
WANG Y, BAI X. Bioinformatics analysis of NAC gene family in Glycine max L. [J]. Soybean Sci., 2014, 33(3):325-333. | |
34 | 肖姗姗,赵虎,孙叶芳,等.小兰屿蝴蝶兰(Phalaenopsis equestris)NAC转录因子家族的全基因组序列鉴定及其进化分析[J].浙江农业学报,2016,28(7):1156-1163. |
XIAO S S, ZHAO H, SUN Y F, et al.. Identification,characterization and evolution of NAC transcription factors in Phalaenopsis equestris [J]. Acta Agric. Zhejiangensis, 2016, 28(7):1156-1163. | |
35 | 姚丹,倪晓鹏,侍婷,等.果梅NAC基因家族的鉴定及组织表达分析[J].核农学报,2019,33(2):226-239. |
YAO D, NI X P, SHI T, et al.. Identification and tissue expression analysis of NAC gene family in Prunus mume [J]. Acta Agric. Nucl. Sin., 2019, 33(2):226-239. | |
36 | FANG Y J, YOU J, XIE K B, et al.. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J]. Mol. Genet. Genomics, 2008, 280(6):547-563. |
37 | SUN H, HU M L, LI J Y, et al.. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton [J/OL]. BMC. Plant Biol., 2018, 18(1):150 [2021-07-15]. . |
38 | GONG X, ZHAO L Y, SONG X F, et al.. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri) [J/OL]. BMC. Plant Biol., 2019, 19(1):161 [2021-07-15]. . |
39 | ZHUO X K, ZHENG T C, ZHANG Z Y, et al.. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume [J]. Genes, 2018, 9(10):494-508. |
[1] | Ze TENG, Yuxia ZHANG, Weidong CHEN, Baiming CONG, Yonglei TIAN, Qingxin ZHANG, Yongliang ZHANG, Dongru WANG. Effect of Chitosan on Alfalfa’s Cold Resistance and Content of Cold-resistant Protective Substances [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 192-198. |
[2] | Lifang HUANG, Yuzhou LONG, Jinqin LI, Yunping DONG, Xiaoyang WANG, Peng CHEN, Xianwen WANG, Lin YAN. Physiological and Biochemical Characteristics of Coffea arabica Seedling Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 60-67. |
[3] | Hui YAN. Response Mechanism of Chlorophyll Fluorescence to Low Temperature Stress in Brassica napus L. [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 58-64. |
[4] | Ming CHENG, Ying ZHU, Xiaonan WANG, Ping LUO, Yong CHEN, Zhuanfang HAO, Zhangying XI. Drought Resistance Regulated by Allelic Variations of ZmSNAC13 in Maize [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 24-31. |
[5] | Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20. |
[6] | Wei YAN, Yutao WANG, Yonghao ZHANG, Haixia LIU, Dayong HAN, Aiwen ZHU. Study on Expressions of CNR1 and FABP4 Genes in Ovine Intramuscular Preadipocytes [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 95-102. |
[7] | Xiaochun SUN, Wenjing HUANG, Bo LI. Effects of Exogenous Salicylic Acid on Physiological and Biochemical Indexes and Related Gene Expression in Platycodongrandiflorus Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 63-70. |
[8] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, LIU Benshuai, ZHANG Xin, ZHANG Yang, WANG Zhixiu, JIANG Yong, XU Qi, CHANG Guobin, CHEN Guohong, . Mineral Element Depositions and Gene Expression Across Different Tissues of the Runzhou White Crested Ducks [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 63-73. |
[9] | FAN Ningbo1, ZHOU Junxue2, JIANG Kai2, WANG Hong2, SHI Longfei2, GAO Yulong3*, CHEN Yi3*. Membrane Lipid Peroxidation and Its Relationship with Senescence-Related Genes in Main Veins of Flue-Cured Tobacco at Different Maturity Stages#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 66-72. |
[10] | GUAN Sijing, WANG Nan, XU Rongrong, GE Tiantian, GAO Jing, YAN Yonggang, ZHANG Gang, CHEN Ying, ZHANG Mingying. [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 66-75. |
[11] | LUO Yong1, JIAO Guizhen1, LIU Shengbo2*, WEI Yuewei1, SHAO Huifang1, JIA Hongfang1*. Effects of Cadmium with Different Concentrations on Seeding Growth and Auxin-related Gene Expression of Tobacco [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 58-65. |
[12] | ZHANG Jiawen, LU Shaohao, ZHAO Zhe, ZHAO Mingqin*. Influences of Exogenous Melatonin on Physiological Properties of Tobacco Seedlings Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 78-86. |
[13] | ZHOU Lei1,2, ZHANG Yan1,2, ZHANG Juan1,2, WU Xiaoying1,2, MA Xinghua1*. Differences of Morphological Characterization and Key Genes Expression in Tobacco Leaf Shape Mutants [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 38-45. |
[14] | GE Jianzhong1, YIN Yaxin2, JIANG Xiao1, LIU Weina1, YAO Bin1, LUO Huiying1*. Gene Cloning and Characterization of a Novel Glucose Oxidase From Cladosporium tianshanense SL19 [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 49-57. |
[15] | WU Feiyue1, WANG Jianfeng2, GAO Yabei1, DUAN Shijiang2, HU Ronghua2, SHI Wenqiang2, CHENG Xiaoqiang2, XIAO Ronggui2, XU Chensheng1,3*. Effects of Dehydration Stress on Flue-curing Characteristics and Starch Metabolism in Postharvest Tobacco Leaves [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 80-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||