Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (10): 161-168.DOI: 10.13304/j.nykjdb.2022.0572
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Yuyong WEI1(), Qingfa ZHANG2, Kuichuan SHENG2(
)
Received:
2022-07-11
Accepted:
2022-08-03
Online:
2022-10-15
Published:
2022-10-25
Contact:
Kuichuan SHENG
通讯作者:
盛奎川
作者简介:
魏俞涌 E-mail: weiyuyong66@sina.com;
基金资助:
CLC Number:
Yuyong WEI, Qingfa ZHANG, Kuichuan SHENG. Effect of Biochar on Mechanical Properties of Zein/Polypropylene Composites[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 161-168.
魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168.
样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
---|---|---|---|---|---|
聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
Table 1 Raw material mass ratio of composites
样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
---|---|---|---|---|---|
聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
---|---|---|---|---|---|---|
弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
Table 2 Flexural properties, tensile properties and impact strength of the composites
力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
---|---|---|---|---|---|---|
弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
1 | 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5): 1074-1082. |
LI J W, ZHANG B M, SUN Y L, et al.. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1074-1082. | |
2 | 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32 (1): 76-84. |
CHI X H, YU L, ZHENG J, et al.. Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene composites [J]. Acta. Mater. Compos. Sin., 2015,32 (1): 76-84. | |
3 | KAYA G G, YILMAZ E, DEVECI H. Sustainable bean pod/calcined kaolin reinforced epoxy hybrid composites with enhanced mechanical, water sorption and corrosion resistance properties [J]. Constr. Build. Mater., 2018, 162: 272-279. |
4 | GOORANORIMI O, SUARIS W, DAUER E, et al.. Microstructural investigation of glass fiber reinforced polymer bars [J]. Compos. Part-B Eng., 2017, 110: 388-395. |
5 | ELGABBAS F, VINCENT P, AHMED E A, et al.. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams [J]. Compos. Part-B Eng., 2016, 91: 205-218. |
6 | ENAYATI M S, BEHZAD T, SAJKIEWICZ P Ł, et al.. Theoretical and experimental study of the stiffness of electrospun composites of poly (vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite [J]. Cellulose, 2018, 25(1): 65-75. |
7 | TREINYTE J, BRIDZIUVIENE D, FATARAITE-URBONIENE E, et al.. Forestry wastes filled polymer composites for agricultural use [J]. J. Clean. Prod., 2018, 205: 388-406. |
8 | SEPE R, BOLLINO F, BOCCARUSSO L, et al.. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites [J]. Compos. Part-B Eng., 2018, 133: 210-217. |
9 | BARCZWSKI M, MATYKIEWICZ D, PIASEKI A, et al.. Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties [J]. Compos. Interface., 2018, 25(4): 287-299. |
10 | JIANG Y, WANG D, LI F, et al.. Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application [J]. Int. J. Boil. Macromol., 2020, 148: 1280-1289. |
11 | 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11): 3044-3050. |
ZHANG Q F, YANG K Y, CAI H Z, et al.. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2018, 35(11): 3044-3050. | |
12 | 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12): 139-142. |
WANG H Y, YU X, LI S Y, et al.. Research progress of thermoplastic/biomass charcoal composites [J]. Eng. Plast. Appl., 2018, 46(12):139-142. | |
13 | 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2): 83-89. |
CHEN W F, ZHANG W M, MENG J, et al.. Researches on biochar application technology [J]. Eng. Sci., 2011, 13(2): 83-89. | |
14 | ZHAO B, O’CONNOR D, ZHANG J, et al.. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar [J]. J. Clean. Prod., 2018, 174: 977-987. |
15 | DAS O, BHATTACHRYYA D, HUI D, et al.. Mechanical and flammability characterisations of biochar/polypropylene biocomposites [J]. Compos. Part-B Eng., 2016, 106: 120-128. |
16 | 张庆法, 徐航, 任夏瑾, 等. 农林废物生物炭/高密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2021, 38(2): 1-8. |
ZHANG Q F, XU H, REN X J, et al.. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites [J]. Acta. Mater. Compos. Sin., 2021, 38(2): 1-8. | |
17 | POULOSE A M, ELNOUR A Y, ANIS A, et al.. Date palm biochar-polymer composites: an investigation of electrical, mechanical, thermal and rheological characteristics [J]. Sci. Total Environ., 2018, 619: 311-318. |
18 | ZHANG Q, ZHANG D, XU H, et al.. Biochar filled high-density polyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes [J/OL]. Ind. Crop. Prod., 2020, 146: 112185 [2022-06-10]. . |
19 | BAZJWA D S, ADHIKARI S, SHOJAEIARANI J, et al.. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer [J]. Constr. Build. Mater., 2019, 204: 193-202. |
20 | 杨荔, 刘洪波, 张东升, 等. 竹炭/酚醛树脂复合导电材料的制备与性能[J]. 复合材料学报, 2011, 28(2): 70-76. |
YANG L, LIU H B, ZHANG D S, et al.. Preparation and properties of bamboo charcoal/phenolic resin conductive composite [J]. Acta. Mater. Compos. Sin., 2011, 28(2): 70-76. | |
21 | OGUNSONA E O, MISRA M, MOHANTY A K. Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites [J]. Polym. Degrad. Stabil., 2017, 139: 76-88. |
22 | GIORCELLI M, KHAN A, PUGNO N M, et al.. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties [J]. Biomass. Bioenergy, 2019, 120: 219-223. |
23 | LIN Y, LIU Y, ZHANG D, et al.. Radiation resistance of polypropylene composites by incorporating reduced graphene oxide and antioxidant: a comparison study [J]. Compos. Sci. Technol., 2017, 146: 83-90. |
24 | ZHANG C, FU Z, LIU Y C, et al.. Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation [J]. Green. Chem., 2012, 14(7): 1928-1934. |
25 | WANG K, WU K, XIAO M, et al.. Structural characterization and properties of konjac glucomannan and zein blend films [J]. Int. J. Boil. Macromol., 2017, 105: 1096-1104. |
26 | RAO J, BAO L, WANG B, et al.. Plasma surface modification and bonding enhancement for bamboo composites[J]. Compos. Part B-Eng., 2018, 138: 157-167. |
27 | 张庆法, 张东红, 雷寒武, 等. 不同炭化温度的稻壳炭对稻壳炭/高密度聚乙烯复合材料的影响[J]. 高分子材料科学与工程, 2020, 36(7): 67-72. |
ZHANG Q F, ZHANG D H, LEI H W, et al.. Effect of rice husk biochar obtained at different carbonized temperatures on rice husk biochar/high density polyethylene composites [J]. Polym. Mater. Sci. Eng., 2020, 36(7): 67-72. | |
28 | DAS O, KIM N K, KALAMKAROV A L, et al.. Biochar to the rescue: balancing the fire performance and mechanical properties of polypropylene composites [J]. Polym. Degrade. Stabil., 2017, 144: 485-496. |
29 | 张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11): 2816-2824. |
ZHANG Q F, REN X J, WU J J, et al.. Mechanical properties of activated carbon/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2020, 37(11): 2816-2824. | |
30 | GEZAHEGN S, LAI R, HUANG L, et al.. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites [J]. Sci. Total Environ., 2019, 664: 363-373. |
31 | HO M P, LAU K T. Enhancement of impact resistance of biodegradable polymer using bamboo charcoal particles [J]. Mater. Lett., 2014, 136: 122-125. |
32 | HILMI A R, FAUZIYAH N A, PRATAPA S. A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites [J/OL]. Compos. Part-B Eng., 2019, 173: 106868 [2022-06-10]. . |
33 | LI S, WANG H, CHEN C, et al.. Size effect of charcoal particles on the properties of bamboo charcoal/ultra‐high molecular weight polyethylene composites [J/OL]. J. Appl. Polym. Sci., 2017, 134(47): 45530 [2022-06-10]. . |
34 | YOU Z, LI D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites [J]. Mater. Lett., 2013, 112: 197-199. |
35 | DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites [J]. Polym. Compos., 2019, 40(1): 132-140. |
36 | OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites [J]. Compos. Sci. Technol., 2018, 161: 85-91. |
37 | IKRAM S, DAS O, BHATTACHARYYA D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites [J]. Compos. Part A-Appl. Sci., 2016, 91: 177-188. |
38 | LI S, LI X, CHEN C, et al.. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network [J]. Compos. Sci. Technol., 2016, 132: 31-37. |
39 | BARTOLI M, ROSSO C, GIORCELLI M, et al.. Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites [J/OL]. J. Appl. Polym. Sci., 2020, 137(27): 48896 [2022-06-10]. . |
[1] | ZHU Lixia, CHEN Jutian, XU Siwei, CHEN Rubing, LI Lili. Dynamics of Soil Microbial Biomass Carbon and Nitrogen After Biochar Application [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 193-200. |
[2] | HU Chaohua, LIU Yueming, PANG Ziqin, YUAN Zhaonian. Research Progress on the Current Status of Reactive Nitrogen Losses from Cropland Soil and the Regulation Pathways of Biochar Amendment [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 120-129. |
[3] | HUANG Qingyang, JIANG Chao, YU Yuanchun, XIE Zubin. Effects of Different Straw Biochar Substrate on the Physiological Properties of Cosmos bipinnatus [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 147-153. |
[4] | HE Tiantian, LIU Tian, YUN Fei, MA Caijuan, FU Yunpeng. Research on the Effect Mechanism of Biochar on Farmland N2O Emissions [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 124-131. |
[5] | WANG Xinyu1,2, ZHANG Xi2, MENG Haibo2, SHEN Yujun2, XIE Hengyan1*, ZHOU Haibin2, CHENG Hongsheng2, SONG Liqiu2. Impact of Temperature on Adsorption Characteristics of Biochar on Heavy Metals [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 150-158. |
[6] | XIAO Shengling1, JING Yong1,2, FENG Jing2, SHEN Ruixia2*, ZHAO Lixin2, WANG Quanliang1, ZHANG Ying2. Effect of Wood Biochar on the Methane Production Performance of Anaerobic Fermentation [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 128-135. |
[7] | YIN Quanyu1, LIU Jianhao1, LIU Guoshun1, YANG Xinling2, LI Xiaofu2, ZHANG Yulan1, LI Yang1,YE Hongchao3*. Effects of Biochar Application for Four Consecutive Years on Microbial Community Structure of Tobacco Cinnamon Soil [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 176-185. |
[8] | LIU Cenwei, YE Jing, LI Yanchun, LIN Yi, WANG Yixiang*. Effects of Biochar on Soil Nitrogen Leaching in Acid Red Loam of Tea Garden [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 181-186. |
[9] | LIU Shidou1, ZHU Xinping1,2*, ZHAO Yi1, WANG Boyan1, HAN Yaoguang1, YANG Beibei1, LU Zhi1, JIA Hongtao1,2. Cotton Stalk Biochar Retarding Stress of Cadmium on Growth of Rice [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 139-146. |
[10] | XIA Hongxia, YU Dayan, ZHU Qihong*, LIU Xidong, LI Qiang, WANG Shumin, DING Wuquan. Effect of Different Biochar Extracts on Seed Germination and Seedling Fluorescence of Brassica campestris [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 31-37. |
[11] | SUN Yunpeng1,2, YANG Jinsong1*, YAO Rongjiang1, CHEN Xiaobing3. Effects of Biochar and Fulvic Acid Application on Soil Properties in Tidal Flat Reclamation Region [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 115-121. |
[12] | LIAO Xionghui1,2, ZHOU Xiaowei1, CAI Dan1, WANG Huiqun1,2, YI Zili1,2, XUE Shuai1,2*. Effects of Application of Miscanthus lutarioriparius-derived Biochar Based-Soil Conditioner on Photosynthetic Characteristics and Yield of Rice (Oryza sativa L.) [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 132-139. |
[13] | ZENG Zhe, LIU Baohua*, ZHANG Wenjun, FANG Liang. Experimental Study on Mechanical Properties of Low-volume Rape Straw Fiber Concrete [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 117-123. |
[14] | YIN Quanyu1, LI Yang1, ZHANG Yulan1, WANG Shengcai2, FANG Ming2,LI Hongguang2, WANG Xinfa3, LIU Guoshun1*. Dynamic Effect of Interaction between Biochar and Soil Texture on Soil Nitrate Nitrogen Amount [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 143-151. |
[15] | PENG Chunhui1, REN Yilin1*, LI Baojun1, ZHOU Guangsheng2, LIU Yonghong3. Process Optimization of Biochar-based Fertilizer Compressing Molding Experiments [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 74-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||