Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 59-67.DOI: 10.13304/j.nykjdb.2022.0970
• INNOVATION BASIS • Previous Articles Next Articles
Heping WAN1,2,3(), Hao ZHANG1(
), Yi YU3, Jingdong CHEN3, Changli ZENG3, Lun ZHAO1,2, Jing WEN1, Jinxiong SHEN1(
), Tingdong FU1(
)
Received:
2022-11-07
Accepted:
2022-11-11
Online:
2022-12-15
Published:
2023-02-06
Contact:
Jinxiong SHEN,Tingdong FU
万何平1,2,3(), 张浩1(
), 余忆3, 陈敬东3, 曾长立3, 赵伦1,2, 文静1, 沈金雄1(
), 傅廷栋1(
)
通讯作者:
沈金雄,傅廷栋
作者简介:
万何平 E-mail:wanheping@jhun.edu.cn基金资助:
CLC Number:
Heping WAN, Hao ZHANG, Yi YU, Jingdong CHEN, Changli ZENG, Lun ZHAO, Jing WEN, Jinxiong SHEN, Tingdong FU. Study and Application of Salt and Alkali Tolerance in Rapeseed[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 59-67.
万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用[J]. 中国农业科技导报, 2022, 24(12): 59-67.
1 | 王雷,郭岩,杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J].中国科学:生命科学,2021,51(10):1424-1434. |
WANG L, GUO Y, YANG S H. Designed breeding for adaptation of crops to environmental abiotic stresses [J]. Sci. Sin. Vitae, 2021,51(10):1424-1434. | |
2 | 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5): 613-617. |
WANG H Z.New-demand oriented oilseed rape industry developing strategy [J]. Chin. J. Oil Crop Sci., 2018, 40(5): 613-617. | |
3 | SHOKRI-GHARELO R, NOPARVAR P M. Molecular response of canola to salt stress: insights on tolerance mechanisms [J/OL]. Peerj, 2018,6:e4822 [2022-10-10]. . |
4 | 汪波,文静,张凤华,等. 耐盐碱油菜品种选育及修复利用盐碱地研究进展[J]. 科技导报, 2021,39(23):59-64. |
WANG B, WEN J, ZHANG F H, et al..Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land [J]. Sci. Technol. Rev., 2021,39(23):59-64. | |
5 | SHI D C, YIN S J, YANG G H, et al.. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress [J]. Acta Bot. Sin., 2002, 44(5): 537-540. |
6 | YANG J Y, ZHENG W, TIAN Y, et al.. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings [J]. Photosynthetica, 2011, 49(2): 275-284. |
7 | GONG B, WAN X F, LI Y, et al.. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks [J]. Plant Cell Tiss. Ogr. Culture, 2016, 124(2):377-391. |
8 | WANG L X, FANG C, WANG K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses [J]. J. Plant Nutr., 2015,38(4): 526-540. |
9 | BAHMANI K, SEYED A S, ALI L, et al.. Molecular mechanisms of plant salinity tolerance: a review [J]. Aus. J. Crop Sci., 2015, 9(4): 321-336. |
10 | CHEN W, FENG C, GUO W, et al.. Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants [J]. Photosynthetica, 2011, 49(3): 417-425. |
11 | SHABALA S, CUIN T A. Potassium transport and plant salt tolerance [J]. Physiol. Plantarum, 2008, 133(4): 651-669. |
12 | SWANSON S, GILROY S. ROS in plant development [J]. Physiol. Plant, 2010, 138(4): 384-392. |
13 | 魏嘉,蔡勤安,李源, 等. 植物对盐碱胁迫响应机制的研究进展[J]. 山东农业科学, 2022, 54(4): 156-164. |
WEI J, CAI Q A, LI Y, et al.. Research progress on response mechanism of the plant to saline-alkali stress [J]. Shandong Agric. Sci., 2022, 54(4): 156-164. | |
14 | HASEGAWA P M, BRESSAN R A, ZHU J K, et al.. Plant cellular and molecular responses to high salinity [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000,51: 463-499. |
15 | QIN Y, BAI J, WANG Y, et al.. Comparative effects of salt and alkali stress on photosynthesis and root physiology of oat at anthesis [J]. Arch. Biol. Sci., 2018,70 (2):329-338. |
16 | 戴睿. 盐碱胁迫对植物生长的影响及应对措施[J]. 现代农业科技, 2019(23): 58. |
17 | ZHANG G F, ZHOU J Z, PENG Y, et al.. Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus [J/OL]. Front. Plant Sci., 2022,12:772708 [2022-10-10].. |
18 | 万何平,戴希刚,陈敬东,等. 甘蓝型油菜对盐胁迫的响应及耐盐相关性状QTL研究进展[J]. 中国油料作物学报, 2020, 42(4): 536-544. |
WAN H P, DAI X G, CHEN J D, et al.. Research progress on salt stress effect on Brassica napus and QTL reaserch of salt tolerance related traits [J]. Chin. J. Oil Crop Sci., 2020, 42(4): 536-544. | |
19 | 范惠玲,白生文,朱雪峰,等. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019 (3): 178-184. |
FAN H L, BAI S W, ZHU X F, et al..Difference of salt-alkaline tolerance of three rape and its two relatives at germination stage [J]. Crops, 2019 (3): 178-184. | |
20 | 李萍,燕佳琦,张鹤,等. 146份甘蓝型油菜种质芽期耐盐性筛选及评价[J]. 西北农业学报, 2021, 30(6): 848-859. |
LI P, YAN J Q, ZHANG H, et al.. Screening and evaluation of salt tolerance for 146 Brassican napus germplasms at germination stage [J]. Acta Agric.Bor-Occid. Sin., 2021, 30(6): 848-859. | |
21 | 张瑀茜,高山,张锐,等. 盐胁迫对不同油菜种子萌发的影响[J]. 种子, 2021, 40(1):94-98. |
ZHANG Y X, GAO S, ZHANG R, et al.. Effects of salt stress on seed germination and morphology of different rape seeds [J]. Seed, 2021, 40(1):94-98. | |
22 | CHEN J, ZHANG H, TONG J, et al.. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress [J/OL]. Euphytica, 2021, 217(10): 197 [2022-10-10].. |
23 | 丁富功,卢奕霏,康珍,等. 混合盐碱胁迫对油菜种子萌发和幼苗生长的影响[J]. 长江大学学报(自然科学版), 2020, 17(3): 73-80, 90. |
DING F G, LU Y F, KANG Z, et al.. Effects of mixed saline-alkali stress on seed germination and seedling growth of different rape varieties [J]. J. Yangtze Univ. (Nat. Sci.), 2020, 17(3): 73-80, 90. | |
24 | 柴雁飞.盐碱混合胁迫对油菜种子萌发的胁迫效应[J]. 甘肃联合大学学报, 2012,26(11): 1-5. |
CHAI Y F. Stress effect of saline-alkaline on the germination of seeds germination of Brassica campestris L.seedlings [J]. J. Gansu Lianhe Univ. (Nat. Sci.),2012,26(11): 1-5. | |
25 | 吴鹏博,李立军,张艳丽.油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较[J].作物杂志,2022(1): 110-115. |
WU P B, LI L J, ZHANG Y L, et al.. Comprehensive evaluation of saline-alkali tolerance and comparison of rhizosphere soil organic acid content at rapeseed seedling stage [J]. Crops, 2022(1): 110-115. | |
26 | 李班,吕莹,杨明煊,等.盐碱胁迫对甘蓝型油菜生理及分子机制的影响[J].华北农学报,2022,37(3):86-93. |
LI B,LYU Y, YANG M X, et al.. Effects of saline-alkali stress on physiology and molecular mechanism of Brassica napus L.[J]. Acta Agric. Boreali-Sin., 2022,37(3):86-93. | |
27 | 杨洋,王亚娟,阴法庭,等.盐碱胁迫对油菜苗期生理及光合特性的影响[J].北方园艺,2020(15): 1-8. |
YANG Y, WANG Y J, YIN F T, et al.. Effects of saline-alkali stress on physiology and photosynthetic characteristics of rape seedlings [J]. Northern Hortic., 2020(15): 1-8. | |
28 | 孙鲁鹏,杨洋,王卫超,等.油菜苗期对盐碱胁迫的离子响应机制[J/OL].中国农业科技导报, 2022 [2022-10-10].. |
SUN L P, YANG Y, WANG W C, et al.. Ion response mechanism of canola seedlings to saline-alkali stress [J/OL]. J. Agric. Sci. Technol., 2022 [2022-10-10].. | |
29 | AHMAD B. Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars [J]. Not. Sci. Biol., 2010,2(1):81-83. |
30 | ZHANG G F, PENG Y, ZHOU J, et al.. Genome-wide association studies of salt-alkali tolerance at seedling and mature stages in Brassica napus [J/OL]. Front. Plant Sci., 2022,13:857149 [2022-10-10]. . |
31 | NADERI R, TOORCHI M. Path analysis of the relationships between yield and some related traits in canola (Brassica napus L.) under salinity stress conditions [J]. Annals Biol. Res., 2012, 3(4):1731-1734. |
32 | ZAMANI S, BYBORDI A, KHORSHIDI M B, et al.. Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars [J]. Adv. Environ. Biol., 2010, 28(28):197-206. |
33 | 龙卫华,胡茂龙,陈松,等.盐地种植对甘蓝型油菜产量和品质性状的影响[J].江苏农业科学,2015,43(3):85-87. |
34 | SIVAKUMAR J, PRASHANTH P J E, NAMBI R, et al.. Effect of time-course salt stress on chlorophyll, proline and catalase activity in Solanum lycopersicum L. [J]. Res. J. Biotechnol., 2020, 14(9):108-116. |
35 | 丁娟, 黄镇, 张学贤, 等. 甘蓝型油菜苗期生长阶段对NaCl胁迫的生理响应[J]. 西北植物学报, 2014, 34(11):2270-2276. |
DING J, HUANG Z, ZHANG X X, et al.. Physiological effects on Brassican napus seedling under NaCl stress [J]. Acta Bot. Bor-Occid. Sin., 2014, 34(11):2270-2276. | |
36 | WAN H P, QIAN J L, ZHANG H, et al.. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of Huayouza 62, an elite cultivar in rapeseed (Brassica napus L.) [J/OL]. J. Int. Plant Biol., 2022,23(3):1279[2022-10-10]. . |
37 | KUMAR P P. Regulation of biotic and abiotic stress responses by plant hormones [J/OL]. Plant Cell Rep., 2013, 32(7): 943[2022-10-10]. . |
38 | ZHANG M, SMITH J, HARBERD N, et al.. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses [J]. Plant Mol. Biol., 2016,91(6): 651-659. |
39 | WAADT R, SELLER C, HSU P, et al.. Plant hormone regulation of abiotic stress responses [J]. Nat. Rev. Mol. Cell Biol., 2022, 23(10):680-694. |
40 | EL-BADRI A M, BATOOL M, MOHAMED I A, et al.. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage [J/OL]. Antioxidants, 2021,10(8):1227 [2022-10-10]. . |
41 | 陈凤莲,刘志斌,王建美,等.油菜BnRCH基因提高转基因拟南芥的耐盐性研究[J].四川大学学报(自然科学版), 2013, 50(3): 643-648. |
CHEN F L, LIU Z B, WANG J M, et al.. The studies of gene BnRCH from Brassica napus enhances the tolerance to salt stress in transgenic Arabidopsis [J]. J. Sichuan Univ. (Nat. Sci.), 2013, 50(3): 643-648. | |
42 | YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. New Phytol., 2018,217(2): 523-539. |
43 | 郭洋,陈波浪,盛建东,等.几种一年生盐生植物的吸盐能力[J]. 植物营养与肥料学报, 2015,21(1): 289-279. |
GUO Y, CHEN B L, SHENG J D, et al.. Salt absorption capacities of several annul halophytes [J]. J. Plant Nutr. Fert., 2015,21(1): 289-279. | |
44 | YONG H Y, WANG C, BANCROFT I, et al.. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.) [J]. Planta, 2015,242(1): 313-326. |
45 | 王旺年,葛均筑,杨海昌,等.大田作物在不同盐碱地的饲料价值评价[J].作物学报,2022,48(6):1451-1462. |
WANG W N, GE J Z, YANG H C,et al.. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agron. Sin., 2022,48(6):1451-1462. | |
46 | FLOWERS T, COLMER T D. Salinity tolerance in halophytes [J]. New Phytol., 2008, 179(4): 945-963. |
47 | BAIS H P, WEIR T L, PERRY L G, et al.. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu. Rev. Plant Biol., 2006,57: 233-266. |
48 | CHEN W C, CUI P J, SUN H Y, et al.. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.) [J]. Ind. Crop Prod., 2009, 30(3):351-358. |
49 | 冷春旭,郑福余,赵北平,等.水稻耐碱性研究进展[J]. 生物技术通报, 2020, 36(11): 103-111. |
LENG C X, ZHENG F Y, ZHAO B P, et al.. Advances on alkaline tolerance of rice [J]. Biotechnol. Bull., 2020, 36(11): 103-111. | |
50 | 邹春雷.甜菜适应碱性盐胁迫的生理机制及其转录组分析[D].哈尔滨:东北农业大学, 2019. |
ZOU C L. Physiological mechanism and non-coding RNA analysis of sugar beet (Beta vulgaris L.) in adaption to alkali stress [D]. Harbin:Northeast Agricultural University,2019. | |
51 | 刘东洋,徐接亮,张凤华. 不同油菜品种对盐碱土壤理化性质与微生物多样性的影响[J]. 新疆农业科学, 2019, 56(2): 246-257. |
LIU D Y, XU J L, ZHANG F H. Effects of rape varietieson soil physicochemical properties and microbial diversity in saline-alkali land in Xinjiang [J]. Xinjiang Agric. Sci., 2019, 56(2): 246-257. | |
52 | HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al.. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments [J]. ISME J., 2010, 4(6): 829-838. |
53 | 孔涛,张德胜,徐慧,等. 盐碱地及其改良过程中土壤微生物生态特征研究进展[J]. 土壤, 2014, 46(4): 581-588. |
KONG T, ZHANG D S, XU H, et al.. Microbial ecological characteristics of alkaline-saline lands and its amelioration process: a review [J]. Soils, 2014, 46(4): 581-588. | |
54 | 丁兆军,白洋. 根系发育和微生物组研究现状及未来发展趋势[J]. 中国科学:生命科学, 2021, 51(10):1447-1456. |
DING Z J, BAI Y. The current and future studies on plant root development and root microbiota [J]. Sci. Sin. Vitae, 2021, 51(10):1447-1456. | |
55 | 赛牙热木·哈力甫,邓勋,宋小双,等.外生菌根真菌对植物促生抗逆作用机制研究进展[J].世界林业研究, 2021,34(1):19-24. |
Halifu Saiyaremu, DENG X, SONG X S, et al.. Research progress in the working mechanism of ectomycorrhizal fungi for plant growth promotion and stress resistance [J]. World For. Res., 2021,34(1):19-24. | |
56 | 李新.不同盐碱程度盐碱土壤微生物多样性研究[D]. 呼和浩特:内蒙古师范大学, 2015. |
LI X. Studies on soil microbial community structure diversity in different degrees of saline-alkaline soil [D]. Hohhot: Inner Mongolia Normal University, 2015. | |
57 | 吴鹏博.碱性盐胁迫对油菜苗期生长及根际土壤环境的影响[D].呼和浩特:内蒙古农业大学, 2021. |
WU P B. Effects of alkaline salt stress on seedling growth and rhizosphere soil environment of rapeseed [D]. Hohhot:Inner Mongolia Agricultural University,2021. | |
58 | SONG J M, GUAN Z L, HU J L, et al.. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus [J]. Nat. Plants, 2020, 6(1): 34-45. |
59 | XUE X, LIU A, HUA X. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus [J]. BMB Rep., 2009,42(1): 28-34. |
60 | WANG J, ZUO K J, WU W A, et al.. Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus [J]. DNA Seq., 2003, 14(5): 351-358. |
61 | ZHAO B Y, HU Y F, LI J J, et al.. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis [J/OL]. Bot. Stud., 2016,57(1): 12 [2022-10-10]. . |
62 | 郭聚领,石笑蕊,辛强,等. 分子标记辅助选育甘蓝型油菜高油酸pol TCMS不育两用系及其恢复系[J]. 中国油料作物学报, 2021, 43(3): 418-425. |
GUO J L, SHI X R, XIN Q, et al.. Breeding for thermo-sensitive pol cytoplasmic male sterile line and its restorer with high oleic acid through molecular marker-assisted selection in Brassica napus [J]. Chin. J. Oil Crop Sci., 2021, 43(3): 418-425. | |
63 | YANG Y, ZHU K Y, LI H I, et al.. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development [J]. Plant Biotech. J., 2018, 16(7): 1322-1335. |
64 | 贺长征,胡晋,朱志玉,等. 混合盐引发对水稻种子在逆境条件下发芽及幼苗生理特性的影响[J]. 浙江大学学报(农业与生命科学版), 2002,28(2):175-178. |
HE C Z, HU J, ZHU Z Y, et al..Effect of seed priming with mixed-salt solution on germination and physiological characteristics of seedling in rice (Oryza sativa L. ) under stress conditions [J]. J. Zhejiang Univ.(Agric. Life Sci.), 2002, 28( 2): 175-178 | |
65 | 王宝山,蔡蕾,李平华,等. 盐碱地耐盐小麦覆膜栽培高产机理的研究[J]. 西北植物学报, 2000,20(5):746-753. |
WANG B S, CAI L, LI P H, et al..Study on mechanism of high yield of salt-tolerant wheat with the plastic film mulching cultivation in saline soils [J]. Acta Bot. Bor-Occid. Sin., 2000,20(5):746-753. | |
66 | 樊润威,董进亚. 盐碱地覆膜栽培玉米的效果[J]. 土壤, 1996, 28(4): 205-207. |
67 | 张凤华,阴法庭. 一种盐碱地饲用油菜栽培方法:CN109169048A [P]. 2019-01-11. |
68 | 张培通,张萼,郭文琦,等. 油菜宁杂21号在江苏沿海滩涂盐碱地的种植表现及高产栽培技术要点[J]. 江苏农业科学, 2014, 42(6): 84-85. |
69 | 孙鲁鹏,杨洋,王亚娟,等.有机液体肥对盐碱胁迫下油菜幼苗生理及光合特性的影响[J]. 北方园艺, 2022(8): 1-8. |
SUN L P, YANG Y, WANG Y J, et al.. Effects of organic liquid fertilizer on physiological and photosynthetic characteristics of canola at seedling stage under saline-alkali stress [J]. Northern Hortic., 2022(8): 1-8. | |
70 | 任延靖,柳红. 外源物质干预对逆境胁迫下植物生长代谢的影响研究进展[J]. 青海农技推广, 2021(3): 15-23. |
71 | 潘镭文,向春阳,丁建文,等.外源水杨酸处理油菜幼苗对盐胁迫的生理响应[J].天津农学院学报, 2022, 29(2): 22-26. |
PAN L W, XIANG C Y, DING J W, et al.. Physiological response of salicylic acid on physiological characteristics of rape seeding under salt stress [J]. J. Tianjin Agric. Univ., 2022, 29(2): 22-26. | |
72 | ZENG L, CAI J S, LI J J, et al.. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings [J]. J. Integr. Agric., 2018, 17(2): 328-335. |
73 | LIU Y, DING X, LYU Y, et al.. Exogenous serotonin improves salt tolerance in rapeseed (Brassica napus L.) seedlings [J/OL]. Agronomy, 2021, 11(2): 400 [2022-10-10].. |
74 | ZHAO G, ZHAO Y Y, LOU W, et al.. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity [J]. Nanoscale, 2019,11(21):10511-10523. |
75 | KHAN M N, LI Y H, KHAN Z, et al.. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities [J/OL]. J. Nanobiotechnol., 2021, 19(1): 276 [2022-10-10]. . |
[1] | Quanquan WEI, Ying GAO, Jiulan GOU, Meng ZHANG, Yong RAO, Bin YANG, Di FAN, Wenhao FENG, Huagui XIAO. Effects of Different Sowing Rates and Sowing Methods on the Nutrient Absorption, Utilization and Yield of Winter Rapeseed in Yellow Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 182-191. |
[2] | YIN Yan, YIN Liang, ZHANG Xuekun, GUO Jingli, WANG Jijun. Status and Countermeasure of The High-quality Development of Rapeseed Industry in China [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 1-7. |
[3] | LI Yuanyuan1, CHEN Bo2, YAO Lirong2, ZHAI Xueting1, SI Erjing2, WANG Juncheng2, MA Xiaole2, MENG Yaxiong2, WANG Huajun2, LI Baochun1*, YANG Liang1. Evaluation of Salt and Alkali Tolerance and Germplasm Screening of 283 Wheat Varieties (Lines) During Germination [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 25-33. |
[4] | JIANG Xinfeng, SUN Yongming, TONG Zhongfei, WANG Xinming, HUANG Shangshu, LI Fuguang, LI Chen, JIANG Lianghui, . Effects of Base Application Depths of Rapeseed Cake Fertilization on Tea Yield, Quality and Nitrogen Utilization [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 172-178. |
[5] | TIAN Guisheng, WANG Zhibin, LI Xiaokun*, ZHU Dandan, ZHANG Jianglin, LIU Qiuxia. Impact of Rice-Ratoon Rice-Rapeseed/Green Manure Rotation Cropping System and Nitrogen Application on Yield and Grain-Filling Properties of Rice [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 146-153. |
[6] |
YANG Jing, LIAO Guiping*, LIU Fan, GUAN Chunyun.
Prediction of Chlorophyll Content of Rape Leaves with Hyperspectral Imaging Technology
[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 86-96.
|
[7] | JIN Jiaojiao1, HOU Xianfei2, LI Qiang2, JIA Donghai2, GU Yuanguo2, WANG Xuan1, ZENG Rui1, PU Yuanyuan1, WU Junyan1, FANG Yan1, LI Xuecai1, MA Li1, LIU Lijun1, SUN Wancang1*. Analysis of Meteorological Factors Influencing the Variation of Main Agronomic Traits of Northern Winter Rapeseed (Brassica rapa L.) [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 140-151. |
[8] | XIAO Yao1,2, WU Mingliang1,2*, ZHANG Rui1, Mangeh III Fondzenyuy Cedric1. Simulation Analysis of Airflow Field Characteristics in Drying Cylinder of Rapeseed Spin Dryer [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 77-83. |
[9] | WANG Rui, ZHENG Weidong, LIU Duanmei, LIANG Li. Study on the Seed Germination and Seedling Growth Characteristics of Different Genotype Rapeseed Varieties [J]. Journal of Agricultural Science and Technology, 2019, 21(4): 25-34. |
[10] | CHEN Qinghua1, XU Zhuo1, TANG Jichao1,2, JIN Weibin2, SUN Zhigui1, LU Bilin1*. Influences of Adding Biochar on Loss of Nitrogen and Phosphorus and Yield of Rape in Soil [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 130-137. |
[11] | ZHANG Limei, MA Xin, HAN Baoji, SHI Lei*. Present and Residual Effectiveness of Different Boron Fertilizers on the Crop Yield in Soybean-Rapeseed Rotation [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 133-139. |
[12] | WANG Huiguo1, ZHANG Nannan1, ZHAO Xiaohong1, QIN Haihong2,LU Xuan1, FENG Baomin1*. Antihypertensive Effect and Its Effect on Vascular Endothelial Growth Factor of Sinapine of Rapeseed Meal [J]. Journal of Agricultural Science and Technology, 2018, 20(2): 27-32. |
[13] | ZHANG Peng, FAN Qizhou*, HUANG Yu, LIU Guoshan. Experimental Research on a Small Rapeseed Circulating Dryer Machine by Solar Hot Air [J]. Journal of Agricultural Science and Technology, 2018, 20(2): 72-79. |
[14] | CAO Hong-xin1, YANG Tai-ming2, JIANG Yue-lin3, LIU Rui-na2, ZHANG Jian-jun2, GE . Studies on Simulation of Winter Rapeseed (Brassica napus L.) Growth and Yield Under Water-logging Stress at Anthesis [J]. , 2015, 17(1): 137-145. |
[15] |
XIONG Qiu-fang, WEN Jing, LI Xing-hua, SHEN Jin-xiong*.
Technological Innovation and Industrial Development of Rapeseed in China [J]. , 2014, 16(3): 14-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||