Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (1): 107-117.DOI: 10.13304/j.nykjdb.2023.0212
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Shuyuan ZHENG1(), Jian DAO1(
), Xuelin ZHANG1, Shanshan LIU2(
), Jianxiong WANG1(
)
Received:
2023-03-21
Accepted:
2024-03-22
Online:
2025-01-15
Published:
2025-01-21
Contact:
Shanshan LIU,Jianxiong WANG
郑舒元1(), 刀剑1(
), 张学林1, 刘珊珊2(
), 王建雄1(
)
通讯作者:
刘珊珊,王建雄
作者简介:
郑舒元 E-mail:952012141@QQ.com基金资助:
CLC Number:
Shuyuan ZHENG, Jian DAO, Xuelin ZHANG, Shanshan LIU, Jianxiong WANG. Research on Green Vegetation Extraction Method Based on Visible Light Band[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 107-117.
郑舒元, 刀剑, 张学林, 刘珊珊, 王建雄. 基于可见光波段的绿色植被提取方法研究[J]. 中国农业科技导报, 2025, 27(1): 107-117.
植被指数Vegetation index | 计算公式 Formula | 值域Range | 参考文献Refence |
---|---|---|---|
归一化绿红差异指数NGRDI | ( | [-1,1] | [ |
归一化绿蓝差异指数NGBDI | ( | [-1.1] | [ |
红绿蓝植被指数RGBVI | ( | [-1,1] | [ |
改进型绿红植被指数MGRVI | ( | [-1,1] | [ |
绿叶指数GLI | [-1,1] | [ | |
植被颜色指数CIVE | [ | [ | |
植被指数VEG | [0,255] | [ | |
基于可见光3波段的改进型土壤植被调节指数 V-MSAVI | [30,256] | [ |
Table 1 Visible vegetation index and its calculation method
植被指数Vegetation index | 计算公式 Formula | 值域Range | 参考文献Refence |
---|---|---|---|
归一化绿红差异指数NGRDI | ( | [-1,1] | [ |
归一化绿蓝差异指数NGBDI | ( | [-1.1] | [ |
红绿蓝植被指数RGBVI | ( | [-1,1] | [ |
改进型绿红植被指数MGRVI | ( | [-1,1] | [ |
绿叶指数GLI | [-1,1] | [ | |
植被颜色指数CIVE | [ | [ | |
植被指数VEG | [0,255] | [ | |
基于可见光3波段的改进型土壤植被调节指数 V-MSAVI | [30,256] | [ |
植被指数 Vegetation index | 树木 Tree | 草地 Grass | 建筑 Building | 水泥路 Cement road | 裸土 Soil | 荒地 Wasteland | 塑胶地 Plastic | 紫色植物 Purple vegetation |
---|---|---|---|---|---|---|---|---|
NGRDI | 0.073 3±0.062 9 | 0.570 4±0.043 9 | -0.1005±0.090 3 | -0.035 3±0.016 6 | 0.595 0±0.029 6 | -0.040 2±0.018 2 | 0.037 8±0.072 5 | -0.018 7±0.068 7 |
NGBDI | 0.288 4±0.168 7 | 0.183 7±0.079 4 | 0.004 2±0.031 3 | 0.021 3±0.010 1 | 0.074 2±0.037 9 | 0.064 4±0.028 2 | 0.028 3±0.022 1 | 0.034 6±0.066 1 |
RGBVI | 0.347 2±0.188 1 | 0.194 2±0.091 6 | -0.096 5±0.082 3 | -0.014 1±0.013 6 | -0.032 5±0.052 9 | 0.024 2±0.038 9 | 0.065 9±0.073 7 | 0.016 7±0.113 1 |
MGRVI | 0.143 9±0.121 4 | 0.023 1±0.070 7 | -0.194 4±0.172 9 | -0.070 5±0.033 1 | -0.208 6±0.094 4 | -0.080 2±0.036 2 | 0.074 3±0.143 1 | -0.035 8±0.128 9 |
GLI | 0.241 3±0.141 9 | 0.124 1±0.060 7 | -0.070 2±0.059 7 | -0.010 6±0.009 5 | -0.033 7±0.039 6 | 0.012 5±0.025 3 | 0.043 2±0.050 1 | 0.009 9±0.077 2 |
CIVE | 18.668 0±0.059 6 | 18.71 9±0.025 5 | 18.801 0±0.027 5 | 18.774 0±0.004 4 | 18.787 0±0.017 8 | 18.765 0±0.010 7 | 18.750±0.022 8 | 18.766 0±0.033 4 |
VEG | 1.387 3±0.323 5 | 1.154 9±0.102 6 | 0.881 3±0.100 9 | 0.967 7±0.018 4 | 0.912 7±0.057 0 | 0.990 0±0.035 6 | 1.077 3±0.105 6 | 1.004 7±0.110 9 |
V-MSAVI | 0.552 5±0.264 0 | 0.323 1±0.134 6 | -0.090 8±0.071 2 | -0.032 3±0.029 5 | -0.109 4±0.134 9 | 0.035 0±0.073 7 | 0.117 5±0.137 3 | 0.007 5±0.314 3 |
EGBRI | 0.835 4±0.086 8 | 0.781 1±0.051 7 | 0.603 8±0.040 2 | 0.626 4±0.012 2 | 0.684 8±0.040 3 | 0.675 1±0.030 5 | 0.634 3±0.025 5 | 0.636 1±0.091 8 |
Table 2 Visible vegetation index and its calculation method
植被指数 Vegetation index | 树木 Tree | 草地 Grass | 建筑 Building | 水泥路 Cement road | 裸土 Soil | 荒地 Wasteland | 塑胶地 Plastic | 紫色植物 Purple vegetation |
---|---|---|---|---|---|---|---|---|
NGRDI | 0.073 3±0.062 9 | 0.570 4±0.043 9 | -0.1005±0.090 3 | -0.035 3±0.016 6 | 0.595 0±0.029 6 | -0.040 2±0.018 2 | 0.037 8±0.072 5 | -0.018 7±0.068 7 |
NGBDI | 0.288 4±0.168 7 | 0.183 7±0.079 4 | 0.004 2±0.031 3 | 0.021 3±0.010 1 | 0.074 2±0.037 9 | 0.064 4±0.028 2 | 0.028 3±0.022 1 | 0.034 6±0.066 1 |
RGBVI | 0.347 2±0.188 1 | 0.194 2±0.091 6 | -0.096 5±0.082 3 | -0.014 1±0.013 6 | -0.032 5±0.052 9 | 0.024 2±0.038 9 | 0.065 9±0.073 7 | 0.016 7±0.113 1 |
MGRVI | 0.143 9±0.121 4 | 0.023 1±0.070 7 | -0.194 4±0.172 9 | -0.070 5±0.033 1 | -0.208 6±0.094 4 | -0.080 2±0.036 2 | 0.074 3±0.143 1 | -0.035 8±0.128 9 |
GLI | 0.241 3±0.141 9 | 0.124 1±0.060 7 | -0.070 2±0.059 7 | -0.010 6±0.009 5 | -0.033 7±0.039 6 | 0.012 5±0.025 3 | 0.043 2±0.050 1 | 0.009 9±0.077 2 |
CIVE | 18.668 0±0.059 6 | 18.71 9±0.025 5 | 18.801 0±0.027 5 | 18.774 0±0.004 4 | 18.787 0±0.017 8 | 18.765 0±0.010 7 | 18.750±0.022 8 | 18.766 0±0.033 4 |
VEG | 1.387 3±0.323 5 | 1.154 9±0.102 6 | 0.881 3±0.100 9 | 0.967 7±0.018 4 | 0.912 7±0.057 0 | 0.990 0±0.035 6 | 1.077 3±0.105 6 | 1.004 7±0.110 9 |
V-MSAVI | 0.552 5±0.264 0 | 0.323 1±0.134 6 | -0.090 8±0.071 2 | -0.032 3±0.029 5 | -0.109 4±0.134 9 | 0.035 0±0.073 7 | 0.117 5±0.137 3 | 0.007 5±0.314 3 |
EGBRI | 0.835 4±0.086 8 | 0.781 1±0.051 7 | 0.603 8±0.040 2 | 0.626 4±0.012 2 | 0.684 8±0.040 3 | 0.675 1±0.030 5 | 0.634 3±0.025 5 | 0.636 1±0.091 8 |
植被指数 Vegetation index | 双峰直方图分割法 Bimodal histogram method | Otsu’s阈值分割法 Otsu’s method |
---|---|---|
EGBRI | 0.731 8 | 0.741 2 |
NGRDI | 0.034 8 | 0.058 8 |
NGBDI | 0.174 6 | 0.185 2 |
RGBVI | 0.188 1 | 0.227 5 |
MGRVI | 0.070 6 | 0.113 7 |
GLI | 0.122 1 | 0.160 8 |
CIVE | 18.706 5 | 18.721 3 |
VEG | 1.254 8 | 1.121 8 |
V-MSAVI | 0.369 4 | 0.325 5 |
Table 3 Visible vegetation index and its calculation method
植被指数 Vegetation index | 双峰直方图分割法 Bimodal histogram method | Otsu’s阈值分割法 Otsu’s method |
---|---|---|
EGBRI | 0.731 8 | 0.741 2 |
NGRDI | 0.034 8 | 0.058 8 |
NGBDI | 0.174 6 | 0.185 2 |
RGBVI | 0.188 1 | 0.227 5 |
MGRVI | 0.070 6 | 0.113 7 |
GLI | 0.122 1 | 0.160 8 |
CIVE | 18.706 5 | 18.721 3 |
VEG | 1.254 8 | 1.121 8 |
V-MSAVI | 0.369 4 | 0.325 5 |
植被指数 Vegetation index | 精度Accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
植被Vegetation | 非植被 Non vegetation | 总体精度Total | ||
EGBRI | 95.24 | 90.36 | 95.06 | 0.889 5 |
NGRDI | 89.85 | 88.21 | 88.92 | 0.731 2 |
NGBDI | 100.00 | 79.42 | 82.45 | 0.527 6 |
RGBVI | 98.46 | 86.78 | 89.31 | 0.747 2 |
MGRVI | 89.86 | 76.26 | 88.76 | 0.669 8 |
GLI | 98.75 | 83.79 | 86.12 | 0.662 5 |
CIVE | 94.63 | 85.72 | 87.24 | 0.692 3 |
VEG | 97.44 | 79.11 | 80.74 | 0.491 3 |
V-MSAVI | 98.860 | 83.81 | 86.71 | 0.661 9 |
Table 4 Evaluation of accuracy of extracting different visible light vegetation indices
植被指数 Vegetation index | 精度Accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
植被Vegetation | 非植被 Non vegetation | 总体精度Total | ||
EGBRI | 95.24 | 90.36 | 95.06 | 0.889 5 |
NGRDI | 89.85 | 88.21 | 88.92 | 0.731 2 |
NGBDI | 100.00 | 79.42 | 82.45 | 0.527 6 |
RGBVI | 98.46 | 86.78 | 89.31 | 0.747 2 |
MGRVI | 89.86 | 76.26 | 88.76 | 0.669 8 |
GLI | 98.75 | 83.79 | 86.12 | 0.662 5 |
CIVE | 94.63 | 85.72 | 87.24 | 0.692 3 |
VEG | 97.44 | 79.11 | 80.74 | 0.491 3 |
V-MSAVI | 98.860 | 83.81 | 86.71 | 0.661 9 |
研究区 Research area | 精度Accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
植被Vegetation | 非植被 Non vegetation | 总体精度Total | ||
1 | 98.55 | 90.65 | 93.10 | 0.847 2 |
2 | 93.25 | 97.40 | 95.90 | 0.908 1 |
3 | 92.90 | 94.25 | 94.95 | 0.882 8 |
Table 5 Vegetation extraction effects of different visible light vegetation indices in research area
研究区 Research area | 精度Accuracy/% | Kappa系数 Kappa coefficient | ||
---|---|---|---|---|
植被Vegetation | 非植被 Non vegetation | 总体精度Total | ||
1 | 98.55 | 90.65 | 93.10 | 0.847 2 |
2 | 93.25 | 97.40 | 95.90 | 0.908 1 |
3 | 92.90 | 94.25 | 94.95 | 0.882 8 |
1 | MOHAMED H, ZAHRA L, NASER E S. A New Vegetation segmentation approach for cropped fields based on threshold detection from hue histograms [J/OL]. Sensors, 2018, 18(4): 1253 [2024-02-28]. . |
2 | 李德仁,李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报(信息科学版), 2014, 39(5):505-513, 540. |
LI D R, LI M. Research advance and application prospect of unmanned aerial vehicle remote sensing system [J]. Geom. Inform. Sci. Wuhan Univ., 2014, 39(5):505-513, 540. | |
3 | 刘洋,祁琼.无人机航摄技术在国土资源领域的应用[J].地理空间信息, 2014, 12(1):29-30, 39. |
LIU Y, QI Q. Application of unmanned arial technology in the field of land and resources [J]. Geospatial Inform., 2014, 12(1):29-30, 39. | |
4 | 范培新.国土资源执法监察中对无人机的应用实践[J].中小企业管理与科技, 2017,(3):88-89. |
FAN P X. Application practice of UAV in law enforcement and supervision of land and resources [J]. Manage. Technol. SME, 2017 (3):88-89. | |
5 | 胡健波,张健.无人机遥感在生态学中的应用进展[J].生态学报,2018,38(1):20-30. |
HU J B, ZHANG J. Unmanned aerial vehicle remote sensing in ecology: advances and prospects [J]. Acta Ecol. Sin., 2018,38(1):20-30. | |
6 | 刘珊珊,牛超杰,王建雄,等.NDVI在禄劝县植被变化特征分析中的应用[J].山东农业科学,2017,49(2):117-119, 131. |
LIU S S, NIU C J, WANG J X, et al.. Application of NDVI in analysis of vegetation change characteristics in Luquan county of Yunnan province [J].Shandong Agric. Sci., 2017,49(2):117-119, 131. | |
7 | 边琳,叶飞,刘珊珊,等. 基于NDVI的昆明市2001—2015年植被覆盖变化趋势分析[J].山东农业科学,2018,50(1):107-110. |
BIAN L, YE F, LIU S S, et al.. Change trend of vegetation cover in Kunming based on NDVI during 2001-2015 [J]. Shandong Agric. Sci., 2018,50(1):107-110. | |
8 | 杨杰,张莹莹,王建雄,等.利用NDVI与EVI再合成的植被指数算法[J].遥感信息,2020,35(5):127-133. |
YANG J, ZHANG Y Y, WANG J X, et al.. Vegetation Index algorithm using NDVI and EVI resythesis [J]. Remote Sens. Inf., 2020,35(5):127-133. | |
9 | 边琳,叶飞,王建雄. 基于无人机低空多光谱遥感监测的烤烟株高研究[J]. 山东农业科学,2020,52(12):126-132. |
BIAN L, YE F, WANG J X. Research on plant height of flue-cured tobacco based on UAV low-altitude multispectral remote sensing monitoring [J]. Shandong Agric. Sci.,2020,52(12):126-132. | |
10 | 牛鲁燕,蒋风伟,张俊丽,等.基于无人机多光谱遥感的小麦长势监测研究[J].山东农业科学,2021,53(3):139-145. |
NIU L Y, JIANG F W, ZHANG J L, et al.. Study on wheat growth monitoring based on UAV multi-spectrum [J]. Shandong Agric. Sci., 2021, 53(3):139-145. | |
11 | 杨柳,陈延辉,岳德鹏,等.无人机遥感影像的城市绿地信息提取[J].测绘科学,2017,42(2):59-64. |
YANG L, CHEN Y H, YUE D P, et al.. Information extraction of urban green space based on UAV remote sensing image [J]. Sci. Survey. Map., 2017, 42(2):59-64. | |
12 | 凌成星,刘华,纪平,等.基于无人机影像VDVI指数的植被覆盖度估算——以陕西神木防护林工程研究区为例[J].森林工程,2021,37(2):57-66. |
LING C X, LIU H, JI P, et al.. Estimation of vegetation coverage based on VDVI index of UAV visible image—using the shelterbelt research area as an example [J]. Forest Eng., 2021,37(2):57-66. | |
13 | 程滔,管林杰,郑新燕,等.基于色调饱和度亮度模型的可见光植被提取[J].测绘通报,2022(2):116-120. |
CHEN T, GUAN L J, ZHENG X Y, et al.. Visible light vegetation extraction of hue saturation and lightness color model [J]. Bull. Survey. Map., 2022(2):116-120. | |
14 | 高永刚,林悦欢,温小乐,等.基于无人机影像的可见光波段植被信息识别[J].农业工程学报,2020,36(3):178-189. |
GAO Y G, LIN Y H, WEN X L, et al.. Vegetation information recognition in visible band based on UAV images [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(3):178-189. | |
15 | 李了了,邓善熙,丁兴号.基于大津法的图像分块二值化算法[J].微计算机信息,2005(14):76-77. |
LI L L, DENG S X, DING X H. Binarization algorithm based on image partition derived from da-jin method [J]. Microcomputer Information, 2005(14):76-77.[16] . | |
16 | WOEBBECKED M, MEYERG E, BARGENK V, et al.. Plant species identification, size, and enumeration using machine vision techniques on near-binary images [J]. SPIE Proc., 1993,1836: 208-219. |
17 | HUNT E R, CAVIGELLI M, DAUGHTRY C S T, et al.. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status [J]. Precision Agric., 2005, 6:359-378. |
18 | BENDING J, YU K, AASEN H, et al.. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. Int. J. Appl. Earth Observ. Geoinform., 2015, 39:79-87. |
19 | LOUHAICHI M, BORMAN M M, JOHNSON D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocarto Int., 2001,16(1):65-70. |
20 | KATAOKA T, KANEKO T, OKAMOTO H, et al.. Crop growth estimation system using machine vision [C]// Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE Xplore,2003:1079-1083. |
21 | HAGUET, TILLETTN D, WHEELERH. Automated crop and weed monitoring in widely spaced cereals [J]. Precision Agric., 2006,7(1):21-32. |
22 | 周在明,杨燕明,陈本清. 基于可见光波段无人机影像的入侵物种互花米草提取研究[J]. 亚热带资源与环境学报,2017,12(2):90-95. |
ZHOU Z M, YANG Y M, CHEN B Q. Study on the extraction of exotic species spartina alterniflora from UAV visible images [J]. J. Subtropical Resour. Environ., 2017,12(2):90-95. |
[1] | Wei WANG, Hongyu FU, Jianning LU, Yunkai YUE, Ruifang YANG, Guoxian CUI, Wei SHE. Research on Interpretation of Ramie Lodging Information Based on Unmanned Aerial Vehicles [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 91-97. |
[2] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[3] | Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98. |
[4] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
[5] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
[6] | Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. |
[7] | ZHANG Guanhong, WANG Xinjun, XU Xiaolong, YAN Linan, CHANG Mengdi, LI Yongkang, . Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
[8] | FU Rongtao, CHEN Cheng, WANG Jian, CHEN Xuejuan, LU Daihua*. Control Conditions and Effects of Plant Protection Unmanned Aerial Vehicle (UAV) on Diseases and Insect Pests of Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 103-109. |
[9] | ZHOU Kai1, ZHOU Tong1, DING Feng2, DING Dawei2, WU Wei1, YAO Zhaosheng1, LIU Tao1, HUO Zhongyang1, SUN Chengming1*. Wheat LAI Estimation in Main Growth Period Based on UAV Images [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 89-97. |
[10] | WANG Bingjie1, PAN Bo1, JIANG Lei1, LIN Yong1*, ZHAO Shuai2, MO Yuxing2. Effects of Spraying Parameters of Plant Protection Unmanned Aerial Vehicle on Deposition Distribution of Droplets in Pitaya Canopy [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 101-109. |
[11] | XU Peng1, XU Weicheng2, LUO Yangfan2, ZHAO Zuoxi2*. Precise Classification of Cultivated Land Based on Visible Remote Sensing Image of UAV [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 79-86. |
[12] | XU Weicheng1, CHEN Kai1, ZHANG Ming1, LI Zhengfeng2, ZHANG Tianshun1*. Life Lifting Scheme for Plant Protection UAV Based on Solar [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 62-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||