Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (1): 118-128.DOI: 10.13304/j.nykjdb.2023.0617
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Xiangzhou TIAN1(), Fuqiang HE1(
), Fajiang CHEN2, Luxin ZHAN1
Received:
2023-08-17
Accepted:
2023-11-16
Online:
2025-01-15
Published:
2025-01-21
Contact:
Fuqiang HE
通讯作者:
贺福强
作者简介:
田祥州 E-mail:1120351604@qq.com;
基金资助:
CLC Number:
Xiangzhou TIAN, Fuqiang HE, Fajiang CHEN, Luxin ZHAN. Calibration of Discrete Elemental Parameters of Wood Powder with Different Moisture Content Based on Angle of Repose[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 118-128.
田祥州, 贺福强, 陈发江, 詹璐歆. 基于休止角标定不同含水率木粉离散元参数[J]. 中国农业科技导报, 2025, 27(1): 118-128.
材料 Material | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/MPa | 密度 Density/(kg·m-3) | 文献 Reference |
---|---|---|---|---|
木粉 Wood powder | 0.25~0.33 | 0.525~1.91×103 | 456.4~600 | [ |
亚克力板 Acrylic board | 0.38 | 1.0×103 | 1 200 | [ |
Table 1 Intrinsic physical parameters of wood powder and acrylic sheet
材料 Material | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/MPa | 密度 Density/(kg·m-3) | 文献 Reference |
---|---|---|---|---|
木粉 Wood powder | 0.25~0.33 | 0.525~1.91×103 | 456.4~600 | [ |
亚克力板 Acrylic board | 0.38 | 1.0×103 | 1 200 | [ |
参数 Parameter | 取值 Value |
---|---|
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.01~0.10 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4~0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.05~0.10 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1~0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2~0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.05~0.10 |
JKR表面能 JKR surface energy/(J·m-2) | 0.05~0.20 |
Table 2 Parameter in DEM simulation
参数 Parameter | 取值 Value |
---|---|
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.01~0.10 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4~0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.05~0.10 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1~0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2~0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.05~0.10 |
JKR表面能 JKR surface energy/(J·m-2) | 0.05~0.20 |
参数 Parameter | 水平编码 Level code | ||
---|---|---|---|
-1 | 0 | 1 | |
木粉密度 Wood powder density/(kg·m-3) | 0.456 | 0.528 | 0.600 |
木粉泊松比 Wood powder Poisson’s ratio | 0.25 | 0.29 | 0.33 |
木粉剪切模量 Wood powder shear modulus /MPa | 0.525 0 | 1.217 5 | 1.910 0 |
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.010 | 0.055 | 0.100 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4 | 0.6 | 0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.050 | 0.075 | 0.100 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1 | 0.3 | 0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2 | 0.5 | 0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.050 | 0.075 | 0.100 |
JKR表面能 JKR surface energy/(J·m-2) | 0.050 | 0.125 | 0.200 |
Table 3 Factors of Plackett-Burman test
参数 Parameter | 水平编码 Level code | ||
---|---|---|---|
-1 | 0 | 1 | |
木粉密度 Wood powder density/(kg·m-3) | 0.456 | 0.528 | 0.600 |
木粉泊松比 Wood powder Poisson’s ratio | 0.25 | 0.29 | 0.33 |
木粉剪切模量 Wood powder shear modulus /MPa | 0.525 0 | 1.217 5 | 1.910 0 |
木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 0.010 | 0.055 | 0.100 |
木粉-木粉静摩擦系数 Wood powder-wood powder static friction coefficient | 0.4 | 0.6 | 0.8 |
木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | 0.050 | 0.075 | 0.100 |
木粉-亚力克板碰撞恢复系数 Wood powder-acrylic board restitution coefficient | 0.1 | 0.3 | 0.5 |
木粉-亚力克板静摩擦系数 Wood powder-acrylic board static friction coefficient | 0.2 | 0.5 | 0.8 |
木粉-亚力克板滚动摩擦系数 Wood powder-acrylic board rolling friction coefficient | 0.050 | 0.075 | 0.100 |
JKR表面能 JKR surface energy/(J·m-2) | 0.050 | 0.125 | 0.200 |
含水率 Moisture content/% | 休止角 Repose angle/(°) | 标准差 Standard deviation/(°) |
---|---|---|
15.32 | 36.62 | 0.32 |
17.45 | 37.50 | 0.26 |
19.21 | 38.63 | 0.17 |
21.42 | 40.25 | 0.54 |
23.56 | 43.66 | 0.68 |
Table 4 Repose angle of wood powder with different moisture content
含水率 Moisture content/% | 休止角 Repose angle/(°) | 标准差 Standard deviation/(°) |
---|---|---|
15.32 | 36.62 | 0.32 |
17.45 | 37.50 | 0.26 |
19.21 | 38.63 | 0.17 |
21.42 | 40.25 | 0.54 |
23.56 | 43.66 | 0.68 |
试验序号 Test No. | 因素水平 Factor level | 休止角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | ||
1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 28.98 |
2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 31.71 |
3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 42.29 |
4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 45.05 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 23.23 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 44.18 |
7 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 65.99 |
8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 43.69 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.25 |
10 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 32.97 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 56.08 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 34.01 |
13 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 37.05 |
Table 5 Design and results of Plackett-Burman test
试验序号 Test No. | 因素水平 Factor level | 休止角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | ||
1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 28.98 |
2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 31.71 |
3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 42.29 |
4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 45.05 |
5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 23.23 |
6 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 44.18 |
7 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 65.99 |
8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 43.69 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.25 |
10 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 32.97 |
11 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 56.08 |
12 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 34.01 |
13 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 37.05 |
参数 Parameter | 效应 Effect | 均方和 Sum of squares | F值 F value | P值 P value | 显著性排序 Significance ranking |
---|---|---|---|---|---|
模型Model | — | 154.79 | 26.39 | 0.037 0 | — |
X1 | 0.23 | 0.16 | 0.03 | 0.883 6 | 9 |
X2 | -3.84 | 44.43 | 7.58 | 0.110 5 | 6 |
X3 | -1.89 | 10.74 | 1.83 | 0.308 7 | 8 |
X4 | -11.40 | 389.77 | 66.46 | 0.014 7* | 2 |
X5 | 4.59 | 63.16 | 10.77 | 0.08 16 | 5 |
X6 | 8.31 | 206.92 | 35.28 | 0.027 2* | 3 |
X7 | 0.11 | 0.04 | 0.01 | 0.943 6 | 10 |
X8 | 5.90 | 104.49 | 17.82 | 0.051 8 | 4 |
X9 | 1.92 | 11.00 | 1.88 | 0.304 3 | 7 |
X10 | 15.46 | 717.19 | 122.30 | 0.008 1** | 1 |
Table 6 Significance analysis of Plackett-Burman test results
参数 Parameter | 效应 Effect | 均方和 Sum of squares | F值 F value | P值 P value | 显著性排序 Significance ranking |
---|---|---|---|---|---|
模型Model | — | 154.79 | 26.39 | 0.037 0 | — |
X1 | 0.23 | 0.16 | 0.03 | 0.883 6 | 9 |
X2 | -3.84 | 44.43 | 7.58 | 0.110 5 | 6 |
X3 | -1.89 | 10.74 | 1.83 | 0.308 7 | 8 |
X4 | -11.40 | 389.77 | 66.46 | 0.014 7* | 2 |
X5 | 4.59 | 63.16 | 10.77 | 0.08 16 | 5 |
X6 | 8.31 | 206.92 | 35.28 | 0.027 2* | 3 |
X7 | 0.11 | 0.04 | 0.01 | 0.943 6 | 10 |
X8 | 5.90 | 104.49 | 17.82 | 0.051 8 | 4 |
X9 | 1.92 | 11.00 | 1.88 | 0.304 3 | 7 |
X10 | 15.46 | 717.19 | 122.30 | 0.008 1** | 1 |
试验序号 Test No. | A:木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | B:木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | C:JKR表面能 JKR surface energy/ (J·m-2) | 仿真休止角 Simulated repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.10 | 0.05 | 0.05 | 28.04 | 27.41 |
2 | 0.08 | 0.06 | 0.09 | 32.03 | 17.09 |
3 | 0.06 | 0.07 | 0.13 | 36.38 | 5.82 |
4 | 0.04 | 0.08 | 0.17 | 56.13 | 45.30 |
5 | 0.02 | 0.09 | 0.21 | 67.91 | 75.80 |
Table 7 Scheme and results of Steepest climbing test
试验序号 Test No. | A:木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | B:木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | C:JKR表面能 JKR surface energy/ (J·m-2) | 仿真休止角 Simulated repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.10 | 0.05 | 0.05 | 28.04 | 27.41 |
2 | 0.08 | 0.06 | 0.09 | 32.03 | 17.09 |
3 | 0.06 | 0.07 | 0.13 | 36.38 | 5.82 |
4 | 0.04 | 0.08 | 0.17 | 56.13 | 45.30 |
5 | 0.02 | 0.09 | 0.21 | 67.91 | 75.80 |
试验序号 Test No. | 因素水平Factor level | 休止角 Repose angle/(°) | ||
---|---|---|---|---|
A | B | C | ||
1 | 1 | 0 | 1 | 22.03 |
2 | 0 | -1 | 1 | 39.32 |
3 | 1 | 0 | -1 | 35.56 |
4 | -1 | 1 | 0 | 59.32 |
5 | 0 | -1 | -1 | 48.71 |
6 | 1 | -1 | 0 | 35.11 |
7 | -1 | 0 | 1 | 45.22 |
8 | -1 | 0 | -1 | 43.71 |
9 | 0 | 0 | 0 | 41.83 |
10 | 1 | 1 | 0 | 33.95 |
11 | 0 | 1 | -1 | 59.61 |
12 | 0 | 1 | 1 | 47.99 |
13 | 0 | 0 | 0 | 38.96 |
14 | -1 | -1 | 0 | 44.24 |
15 | 0 | 0 | 0 | 38.73 |
Table 8 Scheme and results of Box-Behnken test
试验序号 Test No. | 因素水平Factor level | 休止角 Repose angle/(°) | ||
---|---|---|---|---|
A | B | C | ||
1 | 1 | 0 | 1 | 22.03 |
2 | 0 | -1 | 1 | 39.32 |
3 | 1 | 0 | -1 | 35.56 |
4 | -1 | 1 | 0 | 59.32 |
5 | 0 | -1 | -1 | 48.71 |
6 | 1 | -1 | 0 | 35.11 |
7 | -1 | 0 | 1 | 45.22 |
8 | -1 | 0 | -1 | 43.71 |
9 | 0 | 0 | 0 | 41.83 |
10 | 1 | 1 | 0 | 33.95 |
11 | 0 | 1 | -1 | 59.61 |
12 | 0 | 1 | 1 | 47.99 |
13 | 0 | 0 | 0 | 38.96 |
14 | -1 | -1 | 0 | 44.24 |
15 | 0 | 0 | 0 | 38.73 |
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Sum of squares | P值 P value |
---|---|---|---|---|
模型Model | 1 266.47 | 9 | 140.72 | 0.000 6* |
A | 541.86 | 1 | 541.86 | <0.000 1** |
B | 140.20 | 1 | 140.20 | 0.002 3* |
C | 136.37 | 1 | 136.37 | 0.002 4* |
AB | 65.93 | 1 | 65.93 | 0.011 0* |
AC | 56.55 | 1 | 56.55 | 0.014 9* |
BC | 1.24 | 1 | 1.24 | 0.612 3 |
A2 | 74.15 | 1 | 74.15 | 0.008 7* |
B2 | 224.42 | 1 | 224.42 | 0.000 8* |
C2 | 5.97 | 1 | 5.97 | 0.289 9 |
残差Residual | 21.31 | 5 | 4.26 | |
失拟项Lack of fit | 15.34 | 3 | 5.11 | 0.389 1 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
Table 9 ANOVA of Box-Behnken model
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Sum of squares | P值 P value |
---|---|---|---|---|
模型Model | 1 266.47 | 9 | 140.72 | 0.000 6* |
A | 541.86 | 1 | 541.86 | <0.000 1** |
B | 140.20 | 1 | 140.20 | 0.002 3* |
C | 136.37 | 1 | 136.37 | 0.002 4* |
AB | 65.93 | 1 | 65.93 | 0.011 0* |
AC | 56.55 | 1 | 56.55 | 0.014 9* |
BC | 1.24 | 1 | 1.24 | 0.612 3 |
A2 | 74.15 | 1 | 74.15 | 0.008 7* |
B2 | 224.42 | 1 | 224.42 | 0.000 8* |
C2 | 5.97 | 1 | 5.97 | 0.289 9 |
残差Residual | 21.31 | 5 | 4.26 | |
失拟项Lack of fit | 15.34 | 3 | 5.11 | 0.389 1 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Quadratic sum | P值 P value |
---|---|---|---|---|
模型Model | 1 265.23 | 8 | 158.15 | 0.000 1* |
541.86 | 1 | 541.86 | <0.000 1** | |
140.20 | 1 | 140.20 | 0.000 9* | |
136.37 | 1 | 136.37 | 0.000 9* | |
65.93 | 1 | 65.93 | 0.005 8* | |
AC | 56.55 | 1 | 56.55 | 0.008 2* |
A2 | 74.15 | 1 | 74.15 | 0.004 4* |
B2 | 224.42 | 1 | 224.42 | 0.000 2* |
C2 | 5.97 | 1 | 5.97 | 0.254 5 |
残差Residual | 22.55 | 6 | 3.76 | |
失拟项Lack of fit | 16.58 | 4 | 4.15 | 0.459 2 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
Table 10 ANOVA of Box-Behnken modified model
方差来源 Soruce of variation | 均方和 Sum of squares | 自由度 Freedom | 平方和 Quadratic sum | P值 P value |
---|---|---|---|---|
模型Model | 1 265.23 | 8 | 158.15 | 0.000 1* |
541.86 | 1 | 541.86 | <0.000 1** | |
140.20 | 1 | 140.20 | 0.000 9* | |
136.37 | 1 | 136.37 | 0.000 9* | |
65.93 | 1 | 65.93 | 0.005 8* | |
AC | 56.55 | 1 | 56.55 | 0.008 2* |
A2 | 74.15 | 1 | 74.15 | 0.004 4* |
B2 | 224.42 | 1 | 224.42 | 0.000 2* |
C2 | 5.97 | 1 | 5.97 | 0.254 5 |
残差Residual | 22.55 | 6 | 3.76 | |
失拟项Lack of fit | 16.58 | 4 | 4.15 | 0.459 2 |
纯误差Pure error | 5.97 | 2 | 2.98 | |
总和Sum | 1287.78 | 14 |
含水率 Moisture content/% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 物理试验休止角Physical test repose angle/(°) | 相对误差Relative error/% |
---|---|---|---|---|---|---|
15.32 | 0.06 | 0.07 | 0.15 | 35.13 | 36.62 | 4.07 |
17.45 | 0.07 | 0.06 | 0.16 | 36.93 | 37.50 | 1.52 |
19.21 | 0.06 | 0.07 | 0.16 | 37.18 | 38.63 | 3.75 |
21.42 | 0.05 | 0.06 | 0.14 | 41.61 | 40.25 | 3.38 |
23.56 | 0.06 | 0.07 | 0.12 | 42.34 | 43.66 | 3.02 |
Table 11 Optimal value of wood powder discrete element parameters and verification test results under different moisture content
含水率 Moisture content/% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 物理试验休止角Physical test repose angle/(°) | 相对误差Relative error/% |
---|---|---|---|---|---|---|
15.32 | 0.06 | 0.07 | 0.15 | 35.13 | 36.62 | 4.07 |
17.45 | 0.07 | 0.06 | 0.16 | 36.93 | 37.50 | 1.52 |
19.21 | 0.06 | 0.07 | 0.16 | 37.18 | 38.63 | 3.75 |
21.42 | 0.05 | 0.06 | 0.14 | 41.61 | 40.25 | 3.38 |
23.56 | 0.06 | 0.07 | 0.12 | 42.34 | 43.66 | 3.02 |
含水率 Moisture content /% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 试验休止角Test repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
18.25 | 0.08 | 0.07 | 0.09 | 36.68 | 38.18 | 3.93 |
19.76 | 0.07 | 0.08 | 0.16 | 38.53 | 39.62 | 2.75 |
23.12 | 0.06 | 0.06 | 0.14 | 40.29 | 42.12 | 4.34 |
Table 12 Verification resultscylinder lifting
含水率 Moisture content /% | 木粉-木粉碰撞恢复系数 Wood powder-wood powder restitution coefficient | 木粉-木粉滚动摩擦系数 Wood powder-wood powder rolling friction coefficient | JKR表面能 JKR surface energy/(J·m-2) | 仿真休止角 Simulated repose angle/(°) | 试验休止角Test repose angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
18.25 | 0.08 | 0.07 | 0.09 | 36.68 | 38.18 | 3.93 |
19.76 | 0.07 | 0.08 | 0.16 | 38.53 | 39.62 | 2.75 |
23.12 | 0.06 | 0.06 | 0.14 | 40.29 | 42.12 | 4.34 |
1 | 张清博,刘玉高,张瑞,等.基于离散元的联合整地机驱动耙耕作载荷仿真分析[J].农机化研究,2021,43(4):167-173. |
ZHANG Q B, LIU Y G, ZHANG R,et al.. Discrete element-based simulation analysis of tillage load of combined grader driving harrow [J]. J. Agric. Mech. Res., 2021,43(4):167-173. | |
2 | 赵淑红,刘汉朋,杨超,等.玉米秸秆还田交互式分层深松铲设计与离散元仿真[J].农业机械学报,2021,52(3):75-87. |
ZHAO S H, LIU H P, YANG C,et al.. Design and discrete element simulation of an interactive layered deep loosening shovel for corn straw return [J]. Trans. Chin. Soc. Agric. Mach.,2021,52(3):75-87. | |
3 | 李少华,朱明亮,张立栋,等.回转装置内三组元颗粒径向混合评价方法分析[J].化工进展,2013,32(6):1224-1229. |
LI S H, ZHU M L, ZHANG L D, et al.. Analysis of radial mixing evaluation method for three-component particles in rotary units [J]. Chem. Ind. Eng. Prog., 2013,32(6):1224-1229. | |
4 | 吴鹏,张喜瑞,李粤,等.基于离散元的砖红土壤模型堆积特性研究[J].农机化研究,2020,42(9):145-150. |
WU P, ZHANG X R, LI Y,et al.. Research on the stacking characteristics of brick red soil model based on discrete elements [J]. J. Agric. Mechan. Res., 2020,42(9):145-150. | |
5 | 刘羽平,张拓,刘妤.稻谷颗粒模型离散元接触参数标定与试验[J].中国农业科技导报,2019,21(11):70-76. |
LIU Y P, ZHANG T, LIU Y. Calibration and experiment of discrete element contact parameters for rice grain model [J]. J. Agric. Sci. Technol. China, 2019,21(11):70-76. | |
6 | 王韦韦,蔡丹艳,谢进杰,等.玉米秸秆粉料致密成型离散元模型参数标定[J].农业机械学报,2021,52(3):127-134. |
WANG W W, CAI D Y, XIE J J, et al.. Parameters calibration of discrete element model for corn stalk powder compression simulation [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(3):127-134 | |
7 | MAK J, CHEN Y, SADEK M A. Determining parameters of a discrete element model for soil-tool interaction [J]. Soil Till. Res., 2012, 118: 117-122. |
8 | SMITH W, PENG H. Modeling of wheel-soil interaction over rough terrain using the discrete element method [J]. J. Terra Mech., 2013, 50(5-6): 277-287. |
9 | MARTIN C L, BOUVARD D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method [J]. J. Mech. Phys. Solids, 2003, 51(4): 667-693. |
10 | WEI H, NIE H, LI Y, et al.. Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles [J]. Powder Tech., 2020, 364: 593-603. |
11 | 鹿芳媛,马旭,谭穗妍,等.水稻芽种离散元主要接触参数仿真标定与试验[J].农业机械学报,2018,49(2):93-99. |
LU F Y, MA X, TAN S Y, et al.. Simulation calibration and experiments on the main contact parameters of discrete elements of rice sprouting seeds [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(2):93-99. | |
12 | 曾智伟,马旭,曹秀龙,等.离散元法在农业工程研究中的应用现状和展望[J].农业机械学报,2021,52(4):1-20. |
ZENG Z W, MA X, CAO X L, et al.. Critical review of applications of discrete element method in agricultural Engineering [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(4):1-20. | |
13 | DESHPANDE R, ANTONYUK S, ILIEV O. DEM-CFD study of the filter cake formation process due to non-spherical particles [J]. Particuology, 2020, 53:48-57. |
14 | 万里鹏程,李永磊,苏辰,等.基于EEPA接触模型的土壤耕作特性模拟及颗粒球型影响分析[J].中国农业大学学报,2021,26(12):193-206. |
WAN L P C, LI Y L, SU C, et al.. Simulation of soil tillage characteristics based on EEPA contact model and analysis of the effect of particle sphericity [J]. J. China Agric. Univ., 2021,26(12):193-206. | |
15 | 刘凡一,张舰,李博,等.基于堆积试验的小麦离散元参数分析及标定[J].农业工程学报,2016,32(12):247-253. |
LIU F Y, ZHANG J, LI B, et al.. Discrete element parameter analysis and calibration of wheat based on stacking test [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(12):247-253. | |
16 | 罗帅,袁巧霞, GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4):343-350. |
LUO S, YUAN Q X, GOUDA S,et al.. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):343-350. | |
17 | 王黎明,范盛远,程红胜,等.基于EDEM的猪粪接触参数标定[J].农业工程学报,2020,36(15):95-102. |
WANG L M, FAN S Y, CHENG H S, et al.. Calibration of contact parameters for pig manure based on EDEM [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(15): 95-102. | |
18 | 谢方平,吴正阳,王修善,等.基于无侧限抗压强度试验的土壤离散元参数标定[J].农业工程学报,2020,36(13):39-47. |
XIE F P, WU Z Y, WANG X S, et al.. Soil discrete element parameter calibration based on lateral limitless compressive strength test [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(13):39-47. | |
19 | 张荣芳,周纪磊,刘虎,等.玉米颗粒粘结模型离散元仿真参数标定方法研究[J].农业机械学报,2022,53(S1):69-77. |
ZHANG R F, ZHOU J L, LIU H, et al.. Research on the calibration method of discrete element simulation parameters for corn particle bonding model [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(S1):69-77. | |
20 | 袁全春,徐丽明,邢洁洁,等.机施有机肥散体颗粒离散元模型参数标定[J].农业工程学报,2018,34(18):21-27. |
YUAN Q C, XU L M, XING J J, et al.. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization [J]. Trans. Chin. Soc. Agric. Eng., 2018,34(18):21-27. | |
21 | 贵州晶木建材有限公司.一种抗老化防铁锈的木质纤维板及其制备方法[P],中国,CN202010635398.1. |
22 | 朱新华,伏胜康,李旭东,等.不同含水率羊粪离散元参数通用标定方法研究[J].农业机械学报,2022,53(8):34-41. |
ZHU X H, FU S K, LI X D, et al.. Study on the general calibration method for discrete element parameters of sheep manure with different moisture contents [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(8):34-41. | |
23 | 彭飞,王红英,方芳,等.基于注入截面法的颗粒饲料离散元模型参数标定[J].农业机械学报,2018,49(4):140-147. |
PENG F, WANG H Y, FANG F, et al.. Parameter calibration of discrete element model parameters for pellet feed based on injected section method [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):140-147. | |
24 | 贺一鸣,向伟,吴明亮,等.基于堆积试验的壤土离散元参数的标定[J].湖南农业大学学报(自然科学版),2018,44(2):216-220. |
HE Y M, XIANG W, WU M L, et al.. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap [J]. J. Hunan Agric. Univ. (Nat. Sci.), 2018,44(2):216-220. | |
25 | 贾富国,韩燕龙,刘扬,等.稻谷颗粒物料堆积角模拟预测方法[J].农业工程学报,2014,30(11):254-260. |
JIA F G, HAN Y L, LIU Y, et al.. Simulation prediction method of repose angle for rice particle materials [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(11):254-260. | |
26 | 薛亚军,贺福强,陈发江,等.基于离散元法的木质板材压制成形过程仿真与分析[J].林业机械与木工设备, 2021, 49(5):52-57. |
XUE Y J, HE F Q, CHEN F J, et al.. Simulation and analysis of press forming process of wood-based panels based on discrete element method [J]. Forestry Mach. Woodworking Equip., 2021, 49(5): 52-57. | |
27 | 黄易周.木质隔音防火板压制成形技术研究与应用[D].贵阳:贵州大学, 2023 |
HUANG Y Z. Research and application of press molding technology for wood acoustic fire prevention board [D]. Guiyang: Guizhou University, 2023. | |
28 | 林江萍.观光潜水器亚克力耐压圆柱壳极限强度研究[D].武汉:武汉理工大学, 2021. |
LIN J P. Study on the ultimate strength of acrylic pressure-resistant cylindrical shell for tourist submersible [D]. Wuhan: Wuhan University of Technology, 2021. | |
29 | MUDARISOV S, FARKHUTDINOV I, KHAMALETDINOV R, et al.. Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method [J/OL]. Soil Till. Res., 2022, 215: 105228 [2024-05-13]. . |
30 | 李永祥,李飞翔,徐雪萌,等.基于颗粒缩放的小麦粉离散元参数标定[J].农业工程学报,2019,35(16):320-327. |
LI Y X, LI F X, XU X M, et al.. Discrete element parameter calibration of wheat powder based on particle scaling [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(16):320-327. |
[1] | Yuanhao HUANG, Lazhen QUAN, Guangfa HU, Wei QUAN, Fanggang SHI. Calibration of Discrete Element Contact Parameters for Various Materials and Soils with Different Moisture Content [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 98-109. |
[2] | Liang CHEN, Keqin WANG, Hui QI, Hua PENG, An LIU, Dongning WEI, Ming DENG, Xiaofen WU. Effect of Moisture Content on Composting with Spent Substrate of Pleurotus ostreatus [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 226-233. |
[3] | Wei LIU, Yuanyuan ZHAO, Xiaolong CHEN, Hongzhi SHI. Effects of Soil Moisture Content on Microbial Community Diversity and Abundance of Nitrogen Cycling Genes in Central Henan Tobacco-growing Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 214-225. |
[4] | Yaqiang HU, Ya YUAN, Luwei YANG, Xuelai ZHANG, Shaopeng QIU, Xinyao YU. Study on Hot Air Drying System for Implantable Alfalfa Bales [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 105-112. |
[5] | Xuting HAO, Yaru HUANG, Yingbin MA, Shuai ZHANG, Chunxia HAN, Jiacheng PANG, Guangfu XU, Huizhong HAO, Yajing LIU. Study on Soil Moisture Dynamics in Growing Season of Sand-fixing Haloxylonammodendron Forest in Ulan Buhe Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 187-196. |
[6] | Shijiang ZHU, Hu LI, Wen XU, Yating FENG. Effects of Soil Moisture Content on Fruit Quality in Citrus Orchards Within Three Gorges Reservoir Area [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 201-207. |
[7] | Miao YU, Haibin ZHOU, Jingtao DING, Hongsheng CHENG, Yujun SHEN, Shengyuan FAN, Xi ZHANG, Jian WANG, Pengxiang XU, Qiongyi CHENG. Calibration of Interparticle Contact Parameters of Kitchen Waste Composition Based on EDEM [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 111-120. |
[8] | Ting ZHOU, Songlin SUN, Haiying ZHU, Caiwang PENG. Effect of Moisture Content on Bond Flows of Black Soldier Fly Larvae Biotransformation Pig Manure Organic Fertilizer [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 126-136. |
[9] | LIU Boyuan1, ZHAO Songchao1, LI Yifan2, HE Fan3, YANG Weili4, ZHAO Mingqin1*. Study on Changes of Carbohydrate and Its Related Enzyme Activities during Drying of Cigar with Different Maturities [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 192-201. |
[10] | ZHAO Songchao1, TIAN Pei1, LIU Boyuan1, LI Yifan2, ZHAO Mingqin1*. Effects of Air Curing of Different Maturity on Enzymatic Browning and Quality of Cigar Tobacco Leaves [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 51-59. |
[11] | WANG Ronghuan§, XU Tianjun§, ZHAO Jiuran*, WANG Yuandong, XING Jinfeng, LYU Tianfang, LIU Yuee, CAI Wantao, LIU Xiuzhi, LIU Chunge. Effects of Harvest Date on Maize Grain Moisture Content and Grain Mechanical Harvesting Quality [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 32-41. |
[12] | LIU Fanghong, LIU Jing, LIU Meiying, NIU Zhiyou*. Study on Dielectric Properties of Pellet Feed and Establishment of Moisture Content Model [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 85-94. |
[13] | ZHANG Nan, LIU Jing, NIU Zhiyou*, SHI Lijun, LIU Zhaoxia. Experimental Study on Mechanical Properties of Pellet Feed [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 82-90. |
[14] | ZHANG Peng, FAN Qizhou*, HUANG Yu, LIU Guoshan. Experimental Research on a Small Rapeseed Circulating Dryer Machine by Solar Hot Air [J]. Journal of Agricultural Science and Technology, 2018, 20(2): 72-79. |
[15] | LIU Long, YAO Yunfeng, GUO Yuefeng*, QI Wei, GAO Yuhan, HAN Zhaomin, YUCHI Wensi. Studies on Spatial Relationship between Caragana korshinskii Kom. Root and Soil Water Content in Agriculture-pasture Transition Zone [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 101-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||