Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (10): 126-136.DOI: 10.13304/j.nykjdb.2022.0389
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Ting ZHOU(), Songlin SUN, Haiying ZHU, Caiwang PENG(
)
Received:
2022-05-10
Accepted:
2022-09-06
Online:
2023-10-15
Published:
2023-10-27
Contact:
Caiwang PENG
通讯作者:
彭才望
作者简介:
周婷 E-mail:760399822@qq.com;
基金资助:
CLC Number:
Ting ZHOU, Songlin SUN, Haiying ZHU, Caiwang PENG. Effect of Moisture Content on Bond Flows of Black Soldier Fly Larvae Biotransformation Pig Manure Organic Fertilizer[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 126-136.
周婷, 孙松林, 朱海英, 彭才望. 含水率对黑水虻生物转化猪粪有机肥黏结流动的影响[J]. 中国农业科技导报, 2023, 25(10): 126-136.
参数符号 Parameter notation | 参数 Parameter | 参数水平 Parameter level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
T1 | 泊松比Poisson ratio | 0.10 | 0.30 | 0.50 |
T2 | 剪切模量Shear modulus/MPa | 1.00 | 5.50 | 10.00 |
T3 | 密度Particle density/(kg·m-3) | 1 600 | 2 000 | 2 400 |
T4 | 有机肥-有机肥碰撞恢复系数 Organic fertilizer-organic fertilizer collided restitution coefficient | 0.40 | 0.60 | 0.80 |
T5 | 有机肥-有机肥静摩擦系数 Organic fertilizer-organic fertilizer static friction coefficient | 0.10 | 0.55 | 1.00 |
T6 | 有机肥-有机肥滚动摩擦系数 Organic fertilizer-organic fertilizer rolling friction coefficient | 0.05 | 0.25 | 0.45 |
T7 | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 0.15 | 0.40 | 0.65 |
T8 | 有机肥-不锈钢静摩擦系数 Organic fertilizer-steel static friction coefficient | 0.10 | 0.50 | 0.90 |
T9 | 有机肥-不锈钢滚动摩擦系数 Organic fertilizer-steelr rolling friction coefficient | 0.10 | 0.40 | 0.70 |
T10 | JKR表面能JKR surface energy/(J·m-2) | 0.05 | 0.40 | 0.75 |
Table 1 Parameters required for discrete element simulation
参数符号 Parameter notation | 参数 Parameter | 参数水平 Parameter level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
T1 | 泊松比Poisson ratio | 0.10 | 0.30 | 0.50 |
T2 | 剪切模量Shear modulus/MPa | 1.00 | 5.50 | 10.00 |
T3 | 密度Particle density/(kg·m-3) | 1 600 | 2 000 | 2 400 |
T4 | 有机肥-有机肥碰撞恢复系数 Organic fertilizer-organic fertilizer collided restitution coefficient | 0.40 | 0.60 | 0.80 |
T5 | 有机肥-有机肥静摩擦系数 Organic fertilizer-organic fertilizer static friction coefficient | 0.10 | 0.55 | 1.00 |
T6 | 有机肥-有机肥滚动摩擦系数 Organic fertilizer-organic fertilizer rolling friction coefficient | 0.05 | 0.25 | 0.45 |
T7 | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 0.15 | 0.40 | 0.65 |
T8 | 有机肥-不锈钢静摩擦系数 Organic fertilizer-steel static friction coefficient | 0.10 | 0.50 | 0.90 |
T9 | 有机肥-不锈钢滚动摩擦系数 Organic fertilizer-steelr rolling friction coefficient | 0.10 | 0.40 | 0.70 |
T10 | JKR表面能JKR surface energy/(J·m-2) | 0.05 | 0.40 | 0.75 |
序号 No. | 参数水平 Parameter level | 堆积角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | ||
1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 25.77 |
2 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 14.07 |
3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 54.29 |
4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 11.30 |
5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 21.69 |
6 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 22.29 |
7 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 14.06 |
8 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 52.31 |
9 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 35.82 |
10 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 67.48 |
11 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 50.51 |
12 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 50.94 |
13 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 74.62 |
14 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 50.06 |
15 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 23.89 |
16 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 57.07 |
17 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 27.64 |
18 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 59.01 |
19 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 56.59 |
20 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 31.52 |
21 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 31.98 |
22 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 32.03 |
23 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 51.46 |
24 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 11.94 |
25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.89 |
Table 2 Pile angle result of Plackett-Burman design
序号 No. | 参数水平 Parameter level | 堆积角 Repose angle/(°) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | ||
1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 25.77 |
2 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 14.07 |
3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 54.29 |
4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 11.30 |
5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 21.69 |
6 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 22.29 |
7 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 14.06 |
8 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 52.31 |
9 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 35.82 |
10 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 67.48 |
11 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 50.51 |
12 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 50.94 |
13 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 74.62 |
14 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 50.06 |
15 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 23.89 |
16 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 57.07 |
17 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 27.64 |
18 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 59.01 |
19 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 56.59 |
20 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 31.52 |
21 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 31.98 |
22 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 32.03 |
23 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 51.46 |
24 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 11.94 |
25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41.89 |
来源 Resources | 自由度 Df | 效应 Effect | 离均差平方和 Adi SS | 均方 Adi MS | F值 F value | P值 P value |
---|---|---|---|---|---|---|
模型Model | 11 | 6 406.13 | 582.38 | 4.46 | 0.006** | |
线性Liner | 10 | 6 396.24 | 639.62 | 4.89 | 0.005** | |
T1 | 1 | -1.80 | 19.37 | 19.37 | 0.15 | 0.707 |
T2 | 1 | -0.96 | 5.51 | 5.51 | 0.04 | 0.841 |
T3 | 1 | -5.62 | 189.73 | 189.73 | 1.45 | 0.250 |
T4 | 1 | -0.20 | 0.25 | 0.25 | 0.00 | 0.966 |
T5 | 1 | 4.55 | 124.03 | 124.03 | 0.95 | 0.348 |
T6 | 1 | 4.35 | 113.36 | 113.36 | 0.87 | 0.369 |
T7 | 1 | 10.87 | 709.16 | 709.16 | 5.43 | 0.037* |
T8 | 1 | 11.87 | 845.38 | 845.38 | 6.47 | 0.025* |
T9 | 1 | 2.52 | 38.10 | 38.10 | 0.29 | 0.598 |
T10 | 1 | 26.93 | 4 351.35 | 4 351.35 | 33.29 | 0.000** |
弯曲Bend | 1 | 9.89 | 9.89 | 0.08 | 0.788 | |
误差Error | 13 | 1 699.32 | 130.72 | |||
合计Sum | 24 | 8 105.45 |
Table 3 Analysis of variance of Plackett-Burman design
来源 Resources | 自由度 Df | 效应 Effect | 离均差平方和 Adi SS | 均方 Adi MS | F值 F value | P值 P value |
---|---|---|---|---|---|---|
模型Model | 11 | 6 406.13 | 582.38 | 4.46 | 0.006** | |
线性Liner | 10 | 6 396.24 | 639.62 | 4.89 | 0.005** | |
T1 | 1 | -1.80 | 19.37 | 19.37 | 0.15 | 0.707 |
T2 | 1 | -0.96 | 5.51 | 5.51 | 0.04 | 0.841 |
T3 | 1 | -5.62 | 189.73 | 189.73 | 1.45 | 0.250 |
T4 | 1 | -0.20 | 0.25 | 0.25 | 0.00 | 0.966 |
T5 | 1 | 4.55 | 124.03 | 124.03 | 0.95 | 0.348 |
T6 | 1 | 4.35 | 113.36 | 113.36 | 0.87 | 0.369 |
T7 | 1 | 10.87 | 709.16 | 709.16 | 5.43 | 0.037* |
T8 | 1 | 11.87 | 845.38 | 845.38 | 6.47 | 0.025* |
T9 | 1 | 2.52 | 38.10 | 38.10 | 0.29 | 0.598 |
T10 | 1 | 26.93 | 4 351.35 | 4 351.35 | 33.29 | 0.000** |
弯曲Bend | 1 | 9.89 | 9.89 | 0.08 | 0.788 | |
误差Error | 13 | 1 699.32 | 130.72 | |||
合计Sum | 24 | 8 105.45 |
序号 No. | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 有机肥-不锈钢静摩擦系数Organic fertilizer-steel static friction coefficient | JKR表面能 JKR surface energy/ (J·m-2) | 仿真结果 Simulation result/(°) | 含水率41.21%有机肥堆积角Repose angle of 41.21% moisture organic fertilizer | 含水率60.52%有机肥 堆积角Repose angle of 60.52% moisture organic fertilizer | |||
---|---|---|---|---|---|---|---|---|---|
试验值 Test value/(°) | 相对误差 Relative error /% | 试验值 Test value/(°) | 相对误差 Relative error /% | ||||||
1 | 0.15 | 0.10 | 0.05 | 12.81 | 37.25 | 65.61 | 45.53 | 71.86 | |
2 | 0.25 | 0.25 | 0.20 | 26.22 | 29.61 | 42.41 | |||
3 | 0.35 | 0.40 | 0.35 | 44.36 | 16.03 | 2.57 | |||
4 | 0.45 | 0.55 | 0.50 | 67.23 | 44.59 | 32.28 | |||
5 | 0.55 | 0.70 | 0.65 | 71.44 | 47.86 | 36.27 |
Table 4 Results of steep climbing test
序号 No. | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 有机肥-不锈钢静摩擦系数Organic fertilizer-steel static friction coefficient | JKR表面能 JKR surface energy/ (J·m-2) | 仿真结果 Simulation result/(°) | 含水率41.21%有机肥堆积角Repose angle of 41.21% moisture organic fertilizer | 含水率60.52%有机肥 堆积角Repose angle of 60.52% moisture organic fertilizer | |||
---|---|---|---|---|---|---|---|---|---|
试验值 Test value/(°) | 相对误差 Relative error /% | 试验值 Test value/(°) | 相对误差 Relative error /% | ||||||
1 | 0.15 | 0.10 | 0.05 | 12.81 | 37.25 | 65.61 | 45.53 | 71.86 | |
2 | 0.25 | 0.25 | 0.20 | 26.22 | 29.61 | 42.41 | |||
3 | 0.35 | 0.40 | 0.35 | 44.36 | 16.03 | 2.57 | |||
4 | 0.45 | 0.55 | 0.50 | 67.23 | 44.59 | 32.28 | |||
5 | 0.55 | 0.70 | 0.65 | 71.44 | 47.86 | 36.27 |
序号 NO. | T7:有机肥-不锈钢 碰撞恢复系数Organic fertilizer-steel collided restitution coefficient | T8:有机肥-不锈钢 静摩擦系数Organic fertilizer-steel static friction coefficient | T10:JKR 表面能 JKR surface energy/(J·m-2) | Y:堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | 0.25 | 0.25 | 0.35 | 32.89 |
2 | 0.45 | 0.25 | 0.35 | 37.94 |
3 | 0.25 | 0.55 | 0.35 | 42.28 |
4 | 0.45 | 0.55 | 0.35 | 45.99 |
5 | 0.25 | 0.40 | 0.20 | 43.51 |
6 | 0.45 | 0.40 | 0.20 | 42.59 |
7 | 0.25 | 0.40 | 0.50 | 38.97 |
8 | 0.45 | 0.40 | 0.50 | 41.47 |
9 | 0.35 | 0.25 | 0.20 | 29.68 |
10 | 0.35 | 0.55 | 0.20 | 40.71 |
11 | 0.35 | 0.25 | 0.50 | 33.35 |
12 | 0.35 | 0.55 | 0.50 | 43.64 |
13 | 0.35 | 0.40 | 0.35 | 39.92 |
14 | 0.35 | 0.40 | 0.35 | 38.61 |
15 | 0.35 | 0.40 | 0.35 | 42.51 |
Table 5 Scheme and results of Box-Behnken design
序号 NO. | T7:有机肥-不锈钢 碰撞恢复系数Organic fertilizer-steel collided restitution coefficient | T8:有机肥-不锈钢 静摩擦系数Organic fertilizer-steel static friction coefficient | T10:JKR 表面能 JKR surface energy/(J·m-2) | Y:堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | 0.25 | 0.25 | 0.35 | 32.89 |
2 | 0.45 | 0.25 | 0.35 | 37.94 |
3 | 0.25 | 0.55 | 0.35 | 42.28 |
4 | 0.45 | 0.55 | 0.35 | 45.99 |
5 | 0.25 | 0.40 | 0.20 | 43.51 |
6 | 0.45 | 0.40 | 0.20 | 42.59 |
7 | 0.25 | 0.40 | 0.50 | 38.97 |
8 | 0.45 | 0.40 | 0.50 | 41.47 |
9 | 0.35 | 0.25 | 0.20 | 29.68 |
10 | 0.35 | 0.55 | 0.20 | 40.71 |
11 | 0.35 | 0.25 | 0.50 | 33.35 |
12 | 0.35 | 0.55 | 0.50 | 43.64 |
13 | 0.35 | 0.40 | 0.35 | 39.92 |
14 | 0.35 | 0.40 | 0.35 | 38.61 |
15 | 0.35 | 0.40 | 0.35 | 42.51 |
来源 Resources | 自由度 Df | 均方 SSAdj | 离均差平方和 MSAdj | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 9 | 275.110 | 30.568 | 23.50 | 0.001** |
T7 | 1 | 0.684 | 0.684 | 0.53 | 0.501 |
T8 | 1 | 135.795 | 135.795 | 104.41 | 0.000** |
T10 | 1 | 79.002 | 79.002 | 60.75 | 0.001** |
T | 1 | 0.644 | 0.644 | 0.49 | 0.513 |
T | 1 | 40.759 | 40.759 | 31.34 | 0.003** |
T | 1 | 7.897 | 7.897 | 6.07 | 0.057 |
T7T8 | 1 | 0.109 | 0.109 | 0.08 | 0.784 |
T7T10 | 1 | 0.504 | 0.504 | 0.39 | 0.561 |
T8T10 | 1 | 10.693 | 10.693 | 8.22 | 0.035* |
误差Error | 5 | 6.503 | 1.301 | ||
失拟项Lack of fit | 3 | 4.211 | 1.404 | 1.23 | 0.479 |
纯误差Pure error | 2 | 2.291 | 1.146 | ||
合计Sum | 14 | 281.613 |
Table 6 ANOVA of Box-Behnken Design quadratic model
来源 Resources | 自由度 Df | 均方 SSAdj | 离均差平方和 MSAdj | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 9 | 275.110 | 30.568 | 23.50 | 0.001** |
T7 | 1 | 0.684 | 0.684 | 0.53 | 0.501 |
T8 | 1 | 135.795 | 135.795 | 104.41 | 0.000** |
T10 | 1 | 79.002 | 79.002 | 60.75 | 0.001** |
T | 1 | 0.644 | 0.644 | 0.49 | 0.513 |
T | 1 | 40.759 | 40.759 | 31.34 | 0.003** |
T | 1 | 7.897 | 7.897 | 6.07 | 0.057 |
T7T8 | 1 | 0.109 | 0.109 | 0.08 | 0.784 |
T7T10 | 1 | 0.504 | 0.504 | 0.39 | 0.561 |
T8T10 | 1 | 10.693 | 10.693 | 8.22 | 0.035* |
误差Error | 5 | 6.503 | 1.301 | ||
失拟项Lack of fit | 3 | 4.211 | 1.404 | 1.23 | 0.479 |
纯误差Pure error | 2 | 2.291 | 1.146 | ||
合计Sum | 14 | 281.613 |
组别 Group | 含水率 Moisture content/% | 堆积角试验值 Repose angle test value/(°) | 堆积角仿真值 Repose angle simulation value/(°) | 相对误差 Relative error/% | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 有机肥-不锈钢静摩擦系数Organic fertilizer-steel static friction coefficient | JKR表面能 JKR surface energy/(J·m-2) |
---|---|---|---|---|---|---|---|
A1 | 41.21 | 37.25 | 37.84 | 1.56 | 0.43 | 0.34 | 0.22 |
A2 | 44.46 | 38.67 | 39.53 | 2.18 | 0.29 | 0.35 | 0.24 |
A3 | 51.37 | 41.62 | 42.73 | 2.60 | 0.35 | 0.36 | 0.32 |
A4 | 56.56 | 42.83 | 41.52 | 3.06 | 0.26 | 0.39 | 0.32 |
A5 | 60.52 | 45.53 | 46.81 | 2.73 | 0.43 | 0.38 | 0.47 |
Table 7 Model verification test results
组别 Group | 含水率 Moisture content/% | 堆积角试验值 Repose angle test value/(°) | 堆积角仿真值 Repose angle simulation value/(°) | 相对误差 Relative error/% | 有机肥-不锈钢碰撞恢复系数 Organic fertilizer-steel collided restitution coefficient | 有机肥-不锈钢静摩擦系数Organic fertilizer-steel static friction coefficient | JKR表面能 JKR surface energy/(J·m-2) |
---|---|---|---|---|---|---|---|
A1 | 41.21 | 37.25 | 37.84 | 1.56 | 0.43 | 0.34 | 0.22 |
A2 | 44.46 | 38.67 | 39.53 | 2.18 | 0.29 | 0.35 | 0.24 |
A3 | 51.37 | 41.62 | 42.73 | 2.60 | 0.35 | 0.36 | 0.32 |
A4 | 56.56 | 42.83 | 41.52 | 3.06 | 0.26 | 0.39 | 0.32 |
A5 | 60.52 | 45.53 | 46.81 | 2.73 | 0.43 | 0.38 | 0.47 |
1 | 陈秋红,张宽.新中国70年畜禽养殖废弃物资源化利用演进[J].中国人口·资源与环境,2020,30(6):166-176. |
CHEN Q H, ZHANG K. The evolution of resource utilization of livestock and poultry breeding waste in the past 70 years since the founding of P.R. China [J]. China Population,Resour. Environ., 2020, 30(6):166-176. | |
2 | BESKINA K V, HOLCOMBA C D, CAMMACKA J A, et al.. Larval digestion of different manure types by the black soldier fly(Diptera:Stratiomyidae) impacts associated volatile emissions [J]. Waste Manage., 2018, 74: 213-220. |
3 | 杨晓杰,游秀峰,李为争,等.虫粪的生态学功能[J].华中昆虫研究, 2019(15): 64-74. |
YANG X J, YOU X F, LI W Z, et al.. Ecological significance of insect frass [J]. Insects Res. Central China, 2019(15): 64-74. | |
4 | 徐齐云,龙镜池,叶明强,等.黑水虻幼虫的发育速率及食物转化率研究[J].环境昆虫学报,2014,36(4):561-564. |
XU Q Y, LONG J C, YE M Q, et al.. Development rate and food conversion efficiency of black soldier fly,Hermetia illucens [J]. J. Environ. Entomol., 2014,36 (4): 561-564. | |
5 | 袁橙,魏冬霞,解慧梅,等.黑水虻幼虫处理规模化猪场粪污的试验研究[J].畜牧与兽医,2019,51 (11): 49-53. |
YUAN C, WEI D X, XIE H M, et al.. Research on treatment of fecal pollution on large scale pig farms with black soldier fly larva [J]. Anim. Husbandry Vet-erinary Med., 2019,51(11): 49-53. | |
6 | 王小波,蔡瑞婕,耿维娜,等.黑水虻生物转化猪粪过程中重金属的迁移变化[J].农业工程学报,2020,36(20):263-268. |
WANG X B, CAI R J, GENG W N, et al.. Migration and changes of heavy metals during biotransformation of pig manure by black soldier fly [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(20):263-268. | |
7 | 张金金,王瑞华,张邦,等.黑水虻幼虫粉对蛋鸡产蛋后期生产性能、蛋品质及血液生理生化指标的影响[J].动物营养学报,2020,32(4):1658-1665. |
ZHANG J J, WANG R H, ZHANG B, et al.. Effects of black soldier fly larvae meal on performance, egg quality and blood physiological and biochemical parameters of hens during late laying period [J]. Chin. J. Anim. Nutr., 2020, 32(4):1658-1665. | |
8 | 彭才望,许道军,贺喜,等.黑水虻处理的猪粪有机肥离散元仿真模型参数标定[J].农业工程学报,2020,36(17):212-218. |
PENG C W, XU D J, HE X, et al.. Parameter calibration of discrete element simulation model for pig manure organic fertilizer treated with Hermetia illucen [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(17): 212-218. | |
9 | 彭才望,贺喜,孙松林,等.斗式黑水虻处理猪粪有机肥取料机设计与试验[J].农业机械学报,2021,52(2):145-156. |
PENG C W, HE X, SUN S L, et al.. Design and experiment on shoveling device of pig manure organic fertilizer by Hermetia illucen transforming based on bucket-wheel mechanism [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(2):145-156. | |
10 | 彭才望,孙松林,贺喜,等.双向螺旋黑水虻虫沙收集装置设计与试验[J].浙江大学学报(农业与生命科学版),2020,46(5):637-646. |
PENG C W, SUN S L, HE X, et al.. Design and experiment of bidirectional spiral collecting device for Hermetia illucens insect sand [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2020,46(5):637-646. | |
11 | 谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007:31-32. |
12 | 李俊伟,佟金,胡斌,等.不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报,2019,35(6):130-140. |
LI J W, TONG J, HU B, et al.. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(6): 130-140. | |
13 | 林嘉聪,罗帅,袁巧霞,等.不同含水率蚯蚓粪颗粒物料流动性研究[J]. 农业工程学报,2019,35(9):221-227. |
LIN J C, LUO S, YUAN Q X, et al.. Flow properties of vermicompost particle with different moisture contents [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(9):221-227. | |
14 | 罗帅,袁巧霞, GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4):343-350. |
LUO S, YUAN Q X, SHABAN G, et al.. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):343-350. | |
15 | 王黎明,范盛远,程红胜,等.基于 EDEM 的猪粪接触参数标定[J].农业工程学报,2020,36(15):95-102. |
WANG L M, FAN S Y, CHENG H S, et al.. Calibration of contact parameters for pig manure based on EDEM [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(15): 95-102. | |
16 | 袁全春,徐丽明,邢洁洁,等. 机施有机肥散体颗粒离散元模型参数标定[J].农业工程学报,2018,34(18):21-27. |
YUAN Q C, XU L M, XING J J, et al.. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization [J]. Trans. Chin. Soc. Agric. Eng., 2018,34(18):21-27. | |
17 | 王宪良,胡红,王庆杰,等. 基于离散元的土壤模型参数标定方法[J].农业机械学报,2017,48(12):78-85. |
WANG X L, HU H, WANG Q J, et al.. Calibration method of soil contact characteristic parameters based on DEM theory [J]. Trans. Chin. Soc. Agric. Mach., 2017, 48(12):78-85. | |
18 | 石林榕,赵武云,孙伟. 基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J]. 农业工程学报,2017,33(21):181-187. |
SHI L R, ZHAO W Y, SUN W. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(21): 181-187. | |
19 | 田晓红,李光涛,张淑丽. 谷物自然休止角测量方法的探究[J]. 粮食加工,2010,35(1):68-71. |
TIAN X H, LI G T, ZHANG S L. Determination of angle of repose [J]. Grain Process., 2010, 35(1): 68-71. | |
20 | UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: accounting for soil cohesion and adhesion [J]. Biosyst. Eng., 2015, 129(1): 298-306. |
21 | PEELE K A, RUPANIDHI S, REDDY E R, et al.. Plackett-Burman design for screening of process components and their effects on production of lactase by newly isolated Bacillus sp. VUVD101 strain from dairy effluent [J].Beni-Suef Univ. J. Basic Appl. Sci., 2018, 7(4): 543-546. |
22 | JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids [J]. Proc. R. Soc. Lond. A, 1971,324(1558): 301-313. |
23 | KALKAN F, KARA M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar [J]. Powder Technol., 2011, 213(1/3): 116-122. |
[1] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[2] | Yancheng WANG, Jiyue ZHANG, Shuaiqi FENG, Xue LIANG, Zhen ZHANG, Weiwei DONG, Wenxiu JI. Effects of Exogenous PGPR Combined with Organic Fertilizers on Soil Properties and Stress Resistance of Ginseng Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 196-202. |
[3] | Yaqiang HU, Ya YUAN, Luwei YANG, Xuelai ZHANG, Shaopeng QIU, Xinyao YU. Study on Hot Air Drying System for Implantable Alfalfa Bales [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 105-112. |
[4] | Xingsheng YIN, Lingfeng BAO, Yongyu PU, Jiali SUN, Qing ZHANG, Haiping LI, Mingying YANG, Yueping LIN, Huaixin WANG, Yonghong HE, Peiwen YANG. Effects of Chemical Fertilizer Reduction Combined with Bio-organic Fertilization on Tobacco Soil Characteristics and Tobacco Bacterial Wilt Control [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 122-131. |
[5] | Feifan HOU, Xiaowen ZHANG, Jiaqi WANG, Jianzhen ZHANG, Kaiquan LI, Xuebin YIN. Effect of Selenium Fertilizer Application Position on Physiological Characters and Selenium Accumulation in Wheat [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 144-152. |
[6] | Xuting HAO, Yaru HUANG, Yingbin MA, Shuai ZHANG, Chunxia HAN, Jiacheng PANG, Guangfu XU, Huizhong HAO, Yajing LIU. Study on Soil Moisture Dynamics in Growing Season of Sand-fixing Haloxylonammodendron Forest in Ulan Buhe Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 187-196. |
[7] | Shijiang ZHU, Hu LI, Wen XU, Yating FENG. Effects of Soil Moisture Content on Fruit Quality in Citrus Orchards Within Three Gorges Reservoir Area [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 201-207. |
[8] | Yanjun KE, Yumeng ZHANG, Yanjie GUO, Lijuan ZHANG, Zitao ZHANG, Yanzhi JI. Effects of Bio-organic Fertilizer Combined with Subsoiling on Farmland Soil Fertility and Crop Yield [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 157-166. |
[9] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[10] | Jiangang JIN, Zaifang TIAN, Minna ZHENG, Jiahui KANG. Effect of Different Fertilization Measures on the Diversity of Soil Bacteria Communities in Fed oats (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 152-160. |
[11] | Hongbo WANG, Zhipeng FAN, Wulantuya, Chunguang WANG, Zhe MA. Parameter Calibration of Discrete Element Model for Simulation of Crushed Corn Stalk Screw Conveying [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 96-106. |
[12] | Juxian GUO, Bishan OUYANG, Guihua LI, Mei FU, Wenlong LUO, Shanwei LUO, Meilian LU. Effect of Bio-organic Fertilizers on Quality and Soil of Continuous Crop Chinese Flowering Cabbage [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 182-191. |
[13] | Kaihong XIANG, Xu LYU, Chuanhai SHU, Riqu WUZA, Jinyue ZHANG, Yuemei ZHU, Zhiyuan YANG, Yongjian SUN, Jun MA. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Nitrogen Use Efficiency of Precision Hill-direct-seeding Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 149-165. |
[14] | Shuxin QI, Xiaolei WEN, Tingfeng JI, Zengzhi SI, Chunming ZHAO, Yake QIAO, Yanmin WANG, Aijun CAI, Haihua ZHANG, Zhixin JI. Effect of Fox Raccoon Manure on the Growth and Development of Black Soldier Fly [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 201-206. |
[15] | Xiubo XIA, Tao LI, Shoujun CAO, Jiangang YAO, Hongyun WANG, Lili ZHANG. Effect of Liquid Organic Fertilizer Partial Replacing Chemical Fertilizer on Bacterial Community in Greenhouse Tomato Root Zone [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 187-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||