Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (10): 125-134.DOI: 10.13304/j.nykjdb.2023.0947
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Mingkang PENG(), Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG(
), Fuzhong LI
Received:
2023-12-24
Accepted:
2024-02-06
Online:
2024-10-15
Published:
2024-10-18
Contact:
Wuping ZHANG
彭明康(), 崔钰, 薛淇元, 殷允振, 尹哲, 张吴平(
), 李富忠
通讯作者:
张吴平
作者简介:
彭明康 E-mail:pmk1998@126.com;
基金资助:
CLC Number:
Mingkang PENG, Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG, Fuzhong LI. Weed Identification and Location for Crop at Seedling Stage Based on Enhancing and Fine-tuning Weather Data[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 125-134.
彭明康, 崔钰, 薛淇元, 殷允振, 尹哲, 张吴平, 李富忠. 基于天气数据增强和微调的苗期作物杂草识别定位模型[J]. 中国农业科技导报, 2024, 26(10): 125-134.
网络 Network | 类别精度均值 mAP/% | 精确率Precision/% | 召回率Recall/% | 调和平均数F1/% | 参数量Parameters/M | 浮点数 Floating Point/G | 平均检测时间Velocity/ms |
---|---|---|---|---|---|---|---|
Yolov8 | 97.43 | 94.14 | 95.57 | 94.82 | 11.155 | 25.754 | 13.032 |
Yolov7-tiny | 88.99 | 92.46 | 57.93 | 70.10 | 6.149 | 13.611 | 12.547 |
Yolov5 | 96.22 | 93.40 | 91.05 | 92.36 | 7.157 | 16.376 | 15.823 |
Effcientdet | 90.29 | 86.03 | 82.94 | 82.73 | 11.976 | 49.303 | 84.911 |
Table 1 Evaluation of weed feature extraction effect by different neural networks
网络 Network | 类别精度均值 mAP/% | 精确率Precision/% | 召回率Recall/% | 调和平均数F1/% | 参数量Parameters/M | 浮点数 Floating Point/G | 平均检测时间Velocity/ms |
---|---|---|---|---|---|---|---|
Yolov8 | 97.43 | 94.14 | 95.57 | 94.82 | 11.155 | 25.754 | 13.032 |
Yolov7-tiny | 88.99 | 92.46 | 57.93 | 70.10 | 6.149 | 13.611 | 12.547 |
Yolov5 | 96.22 | 93.40 | 91.05 | 92.36 | 7.157 | 16.376 | 15.823 |
Effcientdet | 90.29 | 86.03 | 82.94 | 82.73 | 11.976 | 49.303 | 84.911 |
模型 Model | 平均精度均值mAP/% | 准确率 Precision/% | 召回率 Recall/% | 调和平均数 F1/% |
---|---|---|---|---|
Yolov8-天气数据增强 Yolov8-weather augmentation | 97.43 | 94.14 | 95.57 | 94.82 |
Yolov8 | 96.04 | 94.04 | 93.78 | 94.27 |
Table 2 Evaluation of the effect of weather data enhancement on weed feature extraction
模型 Model | 平均精度均值mAP/% | 准确率 Precision/% | 召回率 Recall/% | 调和平均数 F1/% |
---|---|---|---|---|
Yolov8-天气数据增强 Yolov8-weather augmentation | 97.43 | 94.14 | 95.57 | 94.82 |
Yolov8 | 96.04 | 94.04 | 93.78 | 94.27 |
Fig.6 Comparison of the confusion matrix of the model before and after weather data enhancement and fine-tuningA:Before improvement;B: After improved. C1—Corn; C2—Soybean; W1—Black nightshade; W2—Chenopodium album; W3—Cirsium; W4—Crabgrass; W5—Calystegia; W6—Pigweed; W7—Pteris; W8—Purslane; W9—Sonchus
相机 Cemera | 相机参数 Camera parameters | 标定结果 Evaluation result | ||||
---|---|---|---|---|---|---|
左Left | 参数矩阵 Parameter matrix | 423.082 57 | 0 | 324.346 42 | ||
0 | 426.703 29 | 278.421 00 | ||||
畸变参数 Distortion parameter | 0 | 0 | 1 | |||
0.082 71 | -0.294 30 | 0.000 90 | 0.002 77 | 0.310 26 | ||
右Right | 参数矩阵 Parameter matrix | 448.250 71 | 0 | 337.516 27 | ||
0 | 451.45484 | 256.585 24 | ||||
畸变系数 Distortion parameter | 0 | 0 | 1 | |||
0.078 36 | -0.201 19 | -0.000 58 | 0.001 66 | 0.115 51 |
Table 3 Binocular camera calibration results
相机 Cemera | 相机参数 Camera parameters | 标定结果 Evaluation result | ||||
---|---|---|---|---|---|---|
左Left | 参数矩阵 Parameter matrix | 423.082 57 | 0 | 324.346 42 | ||
0 | 426.703 29 | 278.421 00 | ||||
畸变参数 Distortion parameter | 0 | 0 | 1 | |||
0.082 71 | -0.294 30 | 0.000 90 | 0.002 77 | 0.310 26 | ||
右Right | 参数矩阵 Parameter matrix | 448.250 71 | 0 | 337.516 27 | ||
0 | 451.45484 | 256.585 24 | ||||
畸变系数 Distortion parameter | 0 | 0 | 1 | |||
0.078 36 | -0.201 19 | -0.000 58 | 0.001 66 | 0.115 51 |
识别结果 Identification result | 实际距离 Actual distance/m | 深度相机测量距离 Depth cameras measures distance/m | 深度相机误差 Depth camera error/m | 双目相机测量距离 Binocular camera measures distance/m | 双目相机误差 Binocular camera error/m |
---|---|---|---|---|---|
剑叶凤尾蕨Pteris | 0.50 | 0.50 | 0.00 | 0.49 | 0.01 |
剑叶凤尾蕨Pteris | 0.60 | 0.59 | 0.01 | 0.61 | 0.01 |
剑叶凤尾蕨Pteris | 0.70 | 0.69 | 0.01 | 0.73 | 0.03 |
剑叶凤尾蕨Pteris | 0.80 | 0.81 | 0.01 | 0.84 | 0.04 |
剑叶凤尾蕨Pteris | 0.90 | 0.92 | 0.02 | 0.92 | 0.02 |
剑叶凤尾蕨Pteris | 1.00 | 0.98 | 0.02 | 1.03 | 0.03 |
Table 4 Results of weed locating accuracy test
识别结果 Identification result | 实际距离 Actual distance/m | 深度相机测量距离 Depth cameras measures distance/m | 深度相机误差 Depth camera error/m | 双目相机测量距离 Binocular camera measures distance/m | 双目相机误差 Binocular camera error/m |
---|---|---|---|---|---|
剑叶凤尾蕨Pteris | 0.50 | 0.50 | 0.00 | 0.49 | 0.01 |
剑叶凤尾蕨Pteris | 0.60 | 0.59 | 0.01 | 0.61 | 0.01 |
剑叶凤尾蕨Pteris | 0.70 | 0.69 | 0.01 | 0.73 | 0.03 |
剑叶凤尾蕨Pteris | 0.80 | 0.81 | 0.01 | 0.84 | 0.04 |
剑叶凤尾蕨Pteris | 0.90 | 0.92 | 0.02 | 0.92 | 0.02 |
剑叶凤尾蕨Pteris | 1.00 | 0.98 | 0.02 | 1.03 | 0.03 |
1 | 赵玉信,杨惠敏.作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制[J].草业学报,2015,24(8):199-210. |
ZHAO Y X, YANG H M. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms [J]. Acta Prataculturae Sin., 2015, 24(8):199-210. | |
2 | SYED AB RAHMAN S F, SINGH E, PIETERSE C M J, et al.. Emerging microbial biocontrol strategies for plant pathogens [J]. Plant Sci., 2018, 267:102-111. |
3 | 潘俊峰,万开元,陶勇,等.基于农田养分管理的杂草生态防控策略[J].植物保护,2014,40(3):5-9, 36. |
PAN J F, WAN K Y, TAO Y, et al.. Ecological weed control strategy based on farmland nutrient management [J]. Plant Prot., 2014, 40(3):5-9, 36. | |
4 | NIKITA G, RAYMOND A, ZEYNEP G, et al.. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields [J/OL]. Comput. Electron. Agric., 2022,202:107388 [2024-08-08]. . |
5 | UTSTUMO T, URDAL F, BREVIK A, et al.. Robotic in-row weed control in vegetables [J]. Comput. Electron. Agric., 2018,154:36-45. |
6 | FERREIRA S D A, FREITAS M D, SILVA D G G, et al.. Weed detection in soybean crops using ConvNets [J]. Comput. Electron. Agric., 2017,143:314-324. |
7 | 傅雷扬,李绍稳,张乐,等.田间除草机器人研究进展综述[J].机器人,2021,43(6):751-768. |
FU L Y, LI S W, ZHANG L, et al.. Research progress on field weeding robots:a review [J]. Robot, 2021,43(6):751-768. | |
8 | SALEEM M H, POTGIETER J, ARIF K M. Automation in agriculture by machine and deep learning techniques:a review of recent developments [J]. Precis. Agric., 2021,22(6):2053-2091. |
9 | XU K, SHU L, XIE Q, et al.. Precision weed detection in wheat fields for agriculture 4.0:a survey of enabling technologies, methods, and research challenges [J/OL]. Comput.Electron.Agric., 2023,212:108106 [2024-08-08]. . |
10 | JANNEH L L, ZHANG Y J, CUI Z W, et al.. Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds [J/OL]. J. King Saud University-Comput. Inf. Sci., 2023,35(6):101545 [2024-08-08]. . |
11 | 纪守领,杜天宇,邓水光,等.深度学习模型鲁棒性研究综述[J].计算机学报,2022,45(1):190-206. |
JI S L, DU T Y, DENG S G, et al.. Robustness certification research on deep learning models:a survey [J]. Chin. J. Comput., 2022,45(1):190-206. | |
12 | JIANG H H, ZHANG C Y, QIAO Y L, et al.. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J/OL]. Comput. Electron. Agric., 2020,174:105450 [2024-08-08]. . |
13 | CHEN J Q, WANG H B, ZHANG H D, et al.. Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion [J/OL]. Comput. Electron. Agric., 2022,202:107412 [2024-08-08]. . |
14 | JIN X J, SUN Y X, CHE J, et al.. A novel deep learning-based method for detection of weeds in vegetables [J]. Pest Manage. Sci., 2022,78(5):1861-1869. |
15 | TANG J L, WANG D, ZHANG Z G, et al.. Weed identification based on K-means feature learning combined with convolutional neural network [J]. Comput. Electron. Agric., 2017,135:63-70. |
16 | WANG Y C, ZHANG S Q, DAI B S, et al.. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning [J/OL]. Front. Plant Sci., 2023,14:1134932 [2024-08-08]. . |
17 | 赵辉,曹宇航,岳有军,等.基于改进DenseNet的田间杂草识别[J].农业工程学报,2021,37(18):136-142. |
ZHAO H, CAO Y H, YUE Y J, et al.. Field weed recognition based on improved DenseNet [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(18):136-142. | |
18 | WANG P, TANG Y, LUO F, et al.. Weed25: a deep learning dataset for weed identification [J/OL]. Front. Plant Sci., 2022,13:1053329 [2024-08-08]. . |
19 | ABDALLA A, CEN H Y, WAN L, et al.. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure [J/OL].Comput.Electron.Agric.,2019,167:105091 [2024-08-08]. . |
20 | ESPEJO-GARCIA B, MYLONAS N, ATHANASAKOS L, et al.. Towards weeds identification assistance through transfer learning [J/OL]. Comput. Electron. Agric., 2020,171:105306 [2024-08-08]. . |
21 | REIS D, KUPEC J, HONG J, et al.. Real-Time flying object detection with YOLOv8 [EB/OL]. (2023-05-17) [2024-08-08]. . |
22 | YANG W J, WU J C, ZHANG J L, et al.. Deformable convolution and coordinate attention for fast cattle detection [J/OL]. Comput. Electron. Agric., 2023,211:108006 [2024-08-08]. . |
23 | TAN M X, LE Q V. Efficientnetv2: smaller models and faster training [EB/OL]. (2021-04-01) [2024-08-08]. . |
24 | REDMON J, DIVVALA S, GIRSHICK R, et al.. You only look once: Unified, realtime object detection. Paper presented at: CVPR 2016 [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, 2016:779-788. |
25 | WANG Q F, CHENG M, HUANG S, et al.. A deep learning approach incorporating YOLOv5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings [J/OL]. Comput. Electron. Agric., 2022,199:107194 [2024-08-08]. . |
26 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [J/OL]. (2022-07-06) [2024-08-08]. . |
27 | LI S N, LI T F, SUN C, et al.. Multilayer Grad-CAM: An effective tool towards explainable deep neural networks for intelligent fault diagnosis [J]. J. Manuf. Syst., 2023,69:20-30. |
28 | ADADI A, BERRADA M. Peeking inside the Black-Box: a survey on explainable artificial intelligence (XAI) [J/OL]. IEEE Access, 2018,6:2870052 [2024-08-08]. . |
29 | 张伟康,孙浩,陈鑫凯,等.基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究[J].图学学报,2023,44(2):346-356. |
ZHANG W K, SUN H, CHEN X K, et al.. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. J. Graph., 2023,44(2):346-356. |
[1] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[2] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[3] | Wei ZHAO, Rui MA, Jia WANG, Hongjie GUO, Jinpu XU. Classification and Identification of Corn Varieties Based on Ear Image [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 97-106. |
[4] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||