Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 239-249.DOI: 10.13304/j.nykjdb.2025.0124
• INNOVATIVE METHODS AND TECHNOLOGIES • Previous Articles
Yanqin MA1,2(), Yujie ZHOU1,2, Haicheng LONG1,2, Ju LI1,2, Haie WANG1,2, Wei CHANG3, Zhi LI1,2, Jian ZHONG1,2, Mingjun MIAO1,2, Liang YANG1,2(
)
Received:
2025-02-26
Accepted:
2025-06-23
Online:
2025-08-15
Published:
2025-08-26
Contact:
Liang YANG
马燕勤1,2(), 周玉洁1,2, 龙海成1,2, 李菊1,2, 王海娥1,2, 常伟3, 李志1,2, 钟建1,2, 苗明军1,2, 杨亮1,2(
)
通讯作者:
杨亮
作者简介:
马燕勤 E-mail:dora0514@sina.cn;
基金资助:
CLC Number:
Yanqin MA, Yujie ZHOU, Haicheng LONG, Ju LI, Haie WANG, Wei CHANG, Zhi LI, Jian ZHONG, Mingjun MIAO, Liang YANG. Construction of TRV-mediated VIGS System in Brassica rapa subsp. chinensis and Brassica juncea[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 239-249.
马燕勤, 周玉洁, 龙海成, 李菊, 王海娥, 常伟, 李志, 钟建, 苗明军, 杨亮. TRV介导的上海青和芥菜VIGS体系的构建[J]. 中国农业科技导报, 2025, 27(8): 239-249.
Fig. 1 Structure of TRV-based VIGS vectorNote: Replicase—RNA-dependent RNA polymerase; 16 KD—16 kD cysteine-rich protein; MP—Move protein; CP—Coat protein; LB and RB—left and right border of T-DNA; Rz—Ribozyme; MCS—Multiple clone site.
引物名称 Primer name | 序列 Sequence (5’-3’) | 备注 Reference |
---|---|---|
BrPDS-F | ATGGTTGTGTTTGGGAATGT | 扩增BrPDS开放阅读框序列 |
BrPDS-R | TCATGTTGATACAGTTGTCTC | Amplify BrPDS open reading frame |
BjuPDS-g-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-g 开放阅读框序列 |
BjuPDS-g-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BjuPDS-c-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-c 开放阅读框序列 |
BjuPDS-c-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BrPDS-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BrPDS沉默表达载体 Construct TRV2-BrPDS vector |
BrPDS-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-g-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BjuPDS-g沉默表达载体 Construct TRV2-BjuPDS-g vector |
BjuPDS-g-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-c-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2- BjuPDS-c沉默表达载体 Construct TRV2-BjuPDS-c vector |
BjuPDS-c-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
YL192-F | CTTGAAGAAGAAGACTTTCGAAGTCTC | 鉴定TRV1,约900 bp Identify TRV1, 900 bp |
YL192-R | GTAAAATCATTGATAACAACACAGACAAAC | |
YL156-F | GGTCAAGGTACGTAGTAGAG | 鉴定TRV2,约390 bp Identify TRV1, 390 bp |
YL156-R | CGAGAATGTCAATCTCGTAGG | |
BrPDS-F2 | CCTGATCGCGTGACTGATG | 内源BrPDS表达检测 Detect expression of BrPDS |
BrPDS-R2 | TGTTCAACAATCGGCATGCA | |
BrActin-F | GTCTCCATCTCCTGCTCATAGT | 上海青内参基因 |
BrActin-R | GCTGACCGTATGAGCAAAGA | actin gene of B. rapa subsp. chinensis |
BjuPDS-g-F2 | CTGATCGCGTGACTGATGAG | 内源BjuPDS-g表达检测 |
BjuPDS-g-R2 | CCATGTTTCTCCTGAAGAAACC | Detect expression of BjuPDS-g |
BjuPDS-c-F2 | TATAGCCATGTCAAAGGCGC | 内源BjuPDS-c表达检测 |
BjuPDS-c-R2 | GCTCAATCTTCCTTATCCTTG | Detect expression of BjuPDS-c |
BjuActin-R | GCTGACCGTATGAGCAAAGA | 芥菜内参基因 |
BjuActin-R | GTTGGAAAGTGCTGAGGGAT | actin gene of B. juncea |
Table 1 Primers for vector construction
引物名称 Primer name | 序列 Sequence (5’-3’) | 备注 Reference |
---|---|---|
BrPDS-F | ATGGTTGTGTTTGGGAATGT | 扩增BrPDS开放阅读框序列 |
BrPDS-R | TCATGTTGATACAGTTGTCTC | Amplify BrPDS open reading frame |
BjuPDS-g-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-g 开放阅读框序列 |
BjuPDS-g-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BjuPDS-c-F | ATGGTTGTGTTTGGGAATGT | 扩增BjuPDS-c 开放阅读框序列 |
BjuPDS-c-R | TCATGTTGATACAGTTGTCTC | Amplify BjuPDS-g open reading frame |
BrPDS-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BrPDS沉默表达载体 Construct TRV2-BrPDS vector |
BrPDS-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-g-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2-BjuPDS-g沉默表达载体 Construct TRV2-BjuPDS-g vector |
BjuPDS-g-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
BjuPDS-c-F1 | CTGTGAGTAAGGTTACCGAATTCACCTGATCGCGTGACTGATG | 构建pTRV2- BjuPDS-c沉默表达载体 Construct TRV2-BjuPDS-c vector |
BjuPDS-c-R1 | GTGAGCTCGGTACCGGATCCAGCGTCTCCTTGGATAGTGG | |
YL192-F | CTTGAAGAAGAAGACTTTCGAAGTCTC | 鉴定TRV1,约900 bp Identify TRV1, 900 bp |
YL192-R | GTAAAATCATTGATAACAACACAGACAAAC | |
YL156-F | GGTCAAGGTACGTAGTAGAG | 鉴定TRV2,约390 bp Identify TRV1, 390 bp |
YL156-R | CGAGAATGTCAATCTCGTAGG | |
BrPDS-F2 | CCTGATCGCGTGACTGATG | 内源BrPDS表达检测 Detect expression of BrPDS |
BrPDS-R2 | TGTTCAACAATCGGCATGCA | |
BrActin-F | GTCTCCATCTCCTGCTCATAGT | 上海青内参基因 |
BrActin-R | GCTGACCGTATGAGCAAAGA | actin gene of B. rapa subsp. chinensis |
BjuPDS-g-F2 | CTGATCGCGTGACTGATGAG | 内源BjuPDS-g表达检测 |
BjuPDS-g-R2 | CCATGTTTCTCCTGAAGAAACC | Detect expression of BjuPDS-g |
BjuPDS-c-F2 | TATAGCCATGTCAAAGGCGC | 内源BjuPDS-c表达检测 |
BjuPDS-c-R2 | GCTCAATCTTCCTTATCCTTG | Detect expression of BjuPDS-c |
BjuActin-R | GCTGACCGTATGAGCAAAGA | 芥菜内参基因 |
BjuActin-R | GTTGGAAAGTGCTGAGGGAT | actin gene of B. juncea |
Fig. 3 Construction of VIGS vectorsA: Amplification fragments of Endogenous PDS gene, - indicates negative control; 1~3 are BrPDS, BjuPDS-g and BjuPDS-c gene fragments, respectively; B: PCR detection of recombinant vector-transformed Escherichia coli DH5α colonies, 1~3 are pTRV2-BrPDS DH5αcolonies PCR detection, respectively; 4~6 are pTRV2-BjuPDS-g DH5αcolonies PCR detection, respectively; 7~9 are pTRV2-BjuPDS-c DH5αcolonies PCR detection, respectively; C: PCR detection of recombinant vector-transformed Agrobacterium tumefaciens GV3101 strain colonies, 1~2 are pTRV2-BrPDS GV3101 colonies PCR detection, respectively; 3~4 are pTRV2-BjuPDS-g GV3101 colonies PCR detection, respectively; 5~6 are pTRV2-BjuPDS-c GV3101 colonies PCR detection. M—DL2000 DNA Marker
Fig. 4 Albinism rate of plant under different Agrobacterium levelsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 6 Leaf albinismof B. juncea plant with downregulation of PDSA: B. juncea var. gemmifera with OD600=0.3; B: B. juncea var. gemmifera with OD600=0.5; C: B. juncea var. gemmifera with OD600=0.8; D: B. juncea var. gemmifera with OD600=1.0;E: B. juncea var. capitate with OD600=0.3; F: B. juncea var. capitate with OD600=0.5; G: B. juncea var. capitate with OD600=0.8; H: B. juncea var. capitate with OD600=1.0. Scale bar =1 cm
Fig. 9 Analysis of TRV RNA expression in leafA: B. rapa subsp. Chinensis; B: B. juncea var. gemmifera; C: B. juncea var. capitata. TRV1 is the detection of TRV1 expression in leaves, TRV2 is the detection of TRV1 expression in leaves
[1] | WATERHOUSE P M, WANG M B, LOUGH T. Gene silencing as an adaptive defence against viruses [J]. Nature, 2001, 411(6839): 834-842. |
[2] | LIU Y, SUN W, ZENG S, et al.. Virus-induced gene silencing in two novel functional plants, Lycium barbarum L. and Lycium ruthenicum Murr [J]. Sci. Hortic., 2014, 170: 267-274. |
[3] | ARCE-RODRÍGUEZ M L, OCHOA-ALEJO N. Virus-induced gene silencing (VIGS) in chili pepper (Capsicum spp.) [J]. Methods Mol. Biol., 2020, 2172: 27-38. |
[4] | BACHAN S, DINESH-KUMAR S P. Tobacco rattle virus (TRV)-based virus-induced gene silencing [J]. Methods Mol. Biol., 2012, 894: 83-92. |
[5] | RATCLIFF F, MARTIN-HERNANDEZ A M, BAULCOMBE D C. Technical advance. tobacco rattle virus as a vector for analysis of gene function by silencing [J]. Plant J., 2001, 25(2): 237-245. |
[6] | SINGH A K, GHOSH D, CHAKRABORTY S. Optimization of tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in tomato [J]. Methods Mol. Biol., 2022, 2408: 133-145. |
[7] | GOULD B, KRAMER E M. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (Columbine, Ranunculaceae) [J/OL]. Plant Methods, 2007, 3: 6 [2025-01-20]. . |
[8] | ZHANG J, WANG F, ZHANG C, et al.. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response [J]. Plant Cell Rep., 2018, 37(8): 1091-1100. |
[9] | CAI C, WANG X, ZHANG B, et al.. Tobacco rattle virus-induced gene silencing in cotton [J]. Methods Mol. Biol., 2019, 1902: 105-119. |
[10] | YAN H, SHI S, MA N, et al.. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers [J]. J. Integr. Plant Biol., 2018, 60(1): 34-44. |
[11] | CHEN R, CHEN X, HAGEL J M, et al.. Virus-induced gene silencing to investigate alkaloid biosynthesis in opium poppy [J]. Methods Mol. Biol., 2020, 2172: 75-92. |
[12] | MA Y Q, LI Q, CHENG H, et al.. Alternative splicing variants of IiSEP3 in Isatis indigotica are involved in floral transition and flower development [J/OL]. Plant Physiol. Biochem., 2024, 216: 109153 [2025-01-20]. . |
[13] | SHEN Z, SUN J, YAO J, et al.. High rates of virus-induced gene silencing by tobacco rattle virus in Populus [J]. Tree Physiol., 2015, 35(9): 1016-1029. |
[14] | LI H L, GUO D, WANG Y, et al.. Tobacco rattle virus-induced gene silencing in Hevea brasiliensis Free [J]. Biosci. Biotechnol. Biochem., 2021, 85(3): 562-567. |
[15] | KOUDOUNAS K, THOMOPOULOU M, ANGELI E, et al.. Virus-induced gene silencing in olive tree (Oleaceae) [J]. Methods Mol. Biol., 2020, 2172: 165-182. |
[16] | ZHANG Y, NIU N, LI S, et al.. Virus-induced gene silencing (VIGS) in Chinese jujube [J/OL]. Plants (Basel), 2023, 12(11): 2115 [2025-01-20]. . |
[17] | YU J, YANG X D, WANG Q, et al.. Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector [J]. Biol. Plant., 2018, 62(4): 826-834. |
[18] | WANG L, WU Y, DU W, et al.. Virus-induced gene silencing (VIGS) analysis shows involvement of the LsSTPK gene in lettuce (Lactuca sativa L.) in high temperature-induced bolting [J/OL]. Plant Signal. Behav., 2021, 16(7): 1913845 [2025-01-20]. . |
[19] | LI G, LI Y, YAO X, et al.. Establishment of a virus-induced gene-silencing (VIGS) system in tea plant and its use in the functional analysis of CsTCS1 [J/OL]. Int. J. Mol. Sci., 2022, 24(1): 392 [2025-01-20]. . |
[20] | PARK H, KREUNEN S S, CUTTRISS A J, et al.. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis [J]. Plant Cell, 2002, 14(2): 321-332. |
[21] | ISAACSON T, RONEN G, ZAMIR D, et al.. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants [J]. Plant Cell, 2002, 14(2): 333-342. |
[22] | KANT R, DASGUPTA I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus [J]. Plant Cell Rep., 2017, 36(7): 1159-1170. |
[23] | ZHANG J, YU D, ZHANG Y, et al.. Vacuum and co-cultivation agroinfiltration of (germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize [J/OL]. Front. Plant Sci., 2017, 8: 393 [2025-01-20]. . |
[24] | YAMAGISHI N, YOSHIKAWA N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors [J]. Plant Mol. Biol., 2009, 71(1-2): 15-24. |
[25] | ROMERO I, TIKUNOV Y, BOVY A. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing [J]. J. Plant Physiol., 2011, 168(10): 1129-1135. |
[26] | C-MRYU, ANAND A, KANG L, et al.. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species [J]. Plant J., 2004, 40(2): 322-331. |
[27] | SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato [J]. Plant Biotechnol. J., 2011, 9(7): 797-806. |
[28] | BURCH-SMITH T M, ANDERSON J C, MARTIN G B, et al.. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J., 2004, 39(5): 734-746. |
[29] | BECKER A, LANGE M. VIGS: genomics goes functional [J]. Trends Plant Sci., 2010, 15(1): 1-4. |
[30] | ZHANG F, WEN Y, GUO X. CRISPR/Cas9 for genome editing: progress, implications and challenges [J]. Huuman Mol. Genet., 2014, 23(r1): R40-R46. |
[1] | Huiting WENG, Haiyang LIU, Huiming GUO, Hongmei CHENG, Jun LI, Chao ZHANG, Xiaofeng SU. Preliminary Function Analysis of GhERF020 Gene in Response to Verticillium Wilt in Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 112-121. |
[2] | Man ZHANG, Jin ZHANG, Xinyu ZHANG, Guoning WANG, Xingfen WANG, Yan ZHANG. Cloning and Functional Analysis of GhNAC1 in Upland Cotton Involved in Verticillium Wilt Resistance [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 35-44. |
[3] | Mengyuan HAO, Qi HANG, Gongyao SHI. Application and Prospect of Virus-induced Gene Silencing in Crop Gene Function Research [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 1-13. |
[4] | Qinqin WANG, Xiugui CHEN, Xuke LU, Shuai WANG, Yuexin ZHANG, Yapeng FAN, Quanjia CHEN, Wuwei YE. Bioinformatics Analysis and Functional Verification of GhPKE1 inUpland Cotton [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 38-45. |
[5] | XU Mengjun, GAO Tian, WANG Pengfei, LI Gezi, KANG Guozhang*. Function of Calcium Dependent Protein Kinase 34 in Grain Starch Synthesis of Wheat (Triticum aestivum L.) [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 26-33. |
[6] | YANG Xiaomin, RUI Cun, ZHANG Yuexin, WANG Delong, WANG Junjuan, LU Xuke, CHEN Xiugui, GUO Lixue, WANG Shuai, CHEN Chao, YE Wuwei*. Cloning and Stress Resistance Analysis of Cotton DNA Methyltransferase GhDMT9 Gene [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 12-19. |
[7] | JIN Qiaochun1, YU Fang2, YU Zongxia1*, FENG Baomin1*. Functional Characterization of PatPTS Gene Using Virus Induced Gene Silencing (VIGS) System in Patchouli (Pogostemon cablin) [J]. Journal of Agricultural Science and Technology, 2018, 20(3): 39-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||