Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 111-120.DOI: 10.13304/j.nykjdb.2022.0994
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Jun TIE1,2(), Jie ZHAO1,2, Lu ZHENG1,2(
), Lifeng WU1,3, Bowen HONG1,3
Received:
2022-11-16
Accepted:
2023-01-10
Online:
2024-07-15
Published:
2024-07-12
Contact:
Lu ZHENG
帖军1,2(), 赵捷1,2, 郑禄1,2(
), 吴立锋1,3, 洪博文1,3
通讯作者:
郑禄
作者简介:
帖军 E-mail:tiejun@mail.scuec.edu.cn;
基金资助:
CLC Number:
Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120.
帖军, 赵捷, 郑禄, 吴立锋, 洪博文. 改进YOLOv5 模型在自然环境下柑橘识别的应用[J]. 中国农业科技导报, 2024, 26(7): 111-120.
分类参数 Classification parameter | 标准Standard | 天气Weather | 图像数量 Image number | 总计Total |
---|---|---|---|---|
果实数量 Fruit number | <5 | 阴天Cloudy | 2 006 | 6 018 |
晴天Sunny | 2 004 | |||
5~10 | 阴天Cloudy | 1 004 | ||
晴天Sunny | 1 004 | |||
果实大小(5个以内) Fruit size(<5) | 较大Bigger | 阴天Cloudy | 1 002 | 4 010 |
晴天Sunny | 1 000 | |||
较小Smaller | 阴天Cloudy | 1 004 | ||
晴天Sunny | 1 004 |
Table 1 Citrus data sets in different natural environments
分类参数 Classification parameter | 标准Standard | 天气Weather | 图像数量 Image number | 总计Total |
---|---|---|---|---|
果实数量 Fruit number | <5 | 阴天Cloudy | 2 006 | 6 018 |
晴天Sunny | 2 004 | |||
5~10 | 阴天Cloudy | 1 004 | ||
晴天Sunny | 1 004 | |||
果实大小(5个以内) Fruit size(<5) | 较大Bigger | 阴天Cloudy | 1 002 | 4 010 |
晴天Sunny | 1 000 | |||
较小Smaller | 阴天Cloudy | 1 004 | ||
晴天Sunny | 1 004 |
序号 Number | 注意力机制 Attention mechanisms | 果实数量 Number of fruit | 准确率 Precision/% |
---|---|---|---|
1 | CBAM注意力 CBAM attention | 5~10 | 93.01 |
2 | CA注意力 CA attention | 5~10 | 94.34 |
3 | SE注意力 SE attention | 5~10 | 95.14 |
4 | SE+CA注意力 SE and CA attention | 5~10 | 96.23 |
Table2 Comparative result of YOLOv5 model under different attention mechanisms
序号 Number | 注意力机制 Attention mechanisms | 果实数量 Number of fruit | 准确率 Precision/% |
---|---|---|---|
1 | CBAM注意力 CBAM attention | 5~10 | 93.01 |
2 | CA注意力 CA attention | 5~10 | 94.34 |
3 | SE注意力 SE attention | 5~10 | 95.14 |
4 | SE+CA注意力 SE and CA attention | 5~10 | 96.23 |
模型 Model | 准确率 Precision /% | 平均精度均值 Mean average precision/% | 调和平均数 F1/% |
---|---|---|---|
Faster RCNN | 87.61 | 87.55 | 87.21 |
YOLOv3-LITE | 85.47 | 92.34 | 87.83 |
YOLOv5 | 89.13 | 94.82 | 88.23 |
YOLOv5-SC | 91.74 | 95.09 | 89.56 |
Table 3 Performance comparison among different model
模型 Model | 准确率 Precision /% | 平均精度均值 Mean average precision/% | 调和平均数 F1/% |
---|---|---|---|
Faster RCNN | 87.61 | 87.55 | 87.21 |
YOLOv3-LITE | 85.47 | 92.34 | 87.83 |
YOLOv5 | 89.13 | 94.82 | 88.23 |
YOLOv5-SC | 91.74 | 95.09 | 89.56 |
果实数量 Number of fruits | 天气 Weather | 模型 Model | 准确率 Precision/% |
---|---|---|---|
5~10 Between 5 and 10 | 阴天 Cloudy | YOLOv5 | 94.28 |
YOLOv5-SC | 96.23 | ||
晴天 Sunny | YOLOv5 | 91.75 | |
YOLOv5-SC | 94.09 |
Table4 Comparison result of models under different weather conditions
果实数量 Number of fruits | 天气 Weather | 模型 Model | 准确率 Precision/% |
---|---|---|---|
5~10 Between 5 and 10 | 阴天 Cloudy | YOLOv5 | 94.28 |
YOLOv5-SC | 96.23 | ||
晴天 Sunny | YOLOv5 | 91.75 | |
YOLOv5-SC | 94.09 |
果实数量 Number of fruit | 天气 Weather | 模型 Model | 准确率 Precision/% |
---|---|---|---|
5个以内 Within 5 | 阴天 Cloudy | YOLOv5 | 87.43 |
YOLOv5-SC | 90.47 | ||
晴天 Sunny | YOLOv5 | 85.08 | |
YOLOv5-SC | 88.21 | ||
5~10 Between 5 and 10 | 阴天 Cloudy | YOLOv5 | 94.28 |
YOLOv5-SC | 96.23 | ||
晴天 Sunny | YOLOv5 | 91.75 | |
YOLOv5-SC | 94.09 |
Table5 Comparative experiment of models under different fruit number
果实数量 Number of fruit | 天气 Weather | 模型 Model | 准确率 Precision/% |
---|---|---|---|
5个以内 Within 5 | 阴天 Cloudy | YOLOv5 | 87.43 |
YOLOv5-SC | 90.47 | ||
晴天 Sunny | YOLOv5 | 85.08 | |
YOLOv5-SC | 88.21 | ||
5~10 Between 5 and 10 | 阴天 Cloudy | YOLOv5 | 94.28 |
YOLOv5-SC | 96.23 | ||
晴天 Sunny | YOLOv5 | 91.75 | |
YOLOv5-SC | 94.09 |
果实数量 Number of fruit | 天气 Weather | 果实大小 Size of fruit | 模型 Model | 准确率 Precision/% |
---|---|---|---|---|
5个以内 Within 5 | 阴天 Cloudy | 较大 Bigger | YOLOv5 | 89.55 |
YOLOv5-SC | 90.80 | |||
较小 Smaller | YOLOv5 | 87.65 | ||
YOLOv5-SC | 88.38 | |||
晴天 Sunny | 较大 Bigger | YOLOv5 | 95.80 | |
YOLOv5-SC | 96.35 | |||
较小 Smaller | YOLOv5 | 85.43 | ||
YOLOv5-SC | 86.28 |
Table6 Comparative experiment of models under different fruit sizes
果实数量 Number of fruit | 天气 Weather | 果实大小 Size of fruit | 模型 Model | 准确率 Precision/% |
---|---|---|---|---|
5个以内 Within 5 | 阴天 Cloudy | 较大 Bigger | YOLOv5 | 89.55 |
YOLOv5-SC | 90.80 | |||
较小 Smaller | YOLOv5 | 87.65 | ||
YOLOv5-SC | 88.38 | |||
晴天 Sunny | 较大 Bigger | YOLOv5 | 95.80 | |
YOLOv5-SC | 96.35 | |||
较小 Smaller | YOLOv5 | 85.43 | ||
YOLOv5-SC | 86.28 |
1 | 王林惠,兰玉彬,刘志壮,等.便携式柑橘虫害实时检测系统的研制与试验[J].农业工程学报,2021,37(9):282-288. |
WANG L H, LAN Y B, LIU Z Z, et al.. Development and experiment of the portable real-time detection system for citrus pests [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(9):282-288. | |
2 | CHEN W, ZHOU Y, CHEN Y. The environmental impacts of citrus residue management in China: a case study in the three gorges reservoir region [J]. Waste Manage., 2021, 133(6):80-88. |
3 | TANG Y, CHEN M, WANG C, et al.. Recognition and localization methods for vision-based fruit picking robots: a review [J/OL]. Front. Plant Sci., 2020, 11:510 [2022-12-14]. . |
4 | YE L, DUAN J, YANG Z, et al.. Collision-free motion planning for the litchi-picking robot [J/OL]. Comput. Electron. Agric., 2021,185: 106151 [2022-12-14]. . |
5 | 赵德安,吴任迪,刘晓洋,等.基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J].农业工程学报,2019,35(3):164-173. |
ZHAO D A, WU R D, LIU X Y, et al.. Apple positioning based on YOLO deep convolutional neural network forpicking robot in complex background [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(3):164-173. | |
6 | 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25. |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning [J]. Comput. Eng. Appl., 2021,57(8):10-25. | |
7 | 易诗,李俊杰,张鹏,等.基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数[J].农业工程学报,2021,37(18):161-169. |
YI S, LI J J, ZHANG P, et al.. Detecting and counting of spring-see citrus using YOLOv4 network model and recursive fusion of features [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(18):161-169. | |
8 | 杨婷婷,郭志勋,雷定湘,等.机器视觉技术在农业中的应用[J].安徽农学通报,2021, 27(18):110-111. |
YANG T T, GUO Z X, LEI D X, et al.. Application of machine vision technology in agriculture [J]. Anhui Agric. Sci. Bull., 2021,27(18):110-111. | |
9 | WANG C, LEE W S, ZOU X, et al.. Detection and counting of immature green citrus fruit based on the Local Binary Patterns (LBP) feature using illumination-normalized images [J]. Precis. Agric., 2018,19(6):1062-1083. |
10 | LU J, LEE W S, HAO G, et al.. Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis [J]. Biosys. Eng., 2018,171:78-90. |
11 | GAN H, LEE W S, ALCHANATIS V, et al.. Active thermal imaging for immature citrus fruit detection [J]. Biosys. Eng., 2020,198:291-303. |
12 | 韩文,魏超宇,刘辉军.基于Tiny-YOLOv3的田间绿色柑橘目标检测方法[J].中国计量大学学报, 2020, 31(3):349-356, 392. |
HAN W, WEI C Y, LIU H J. Green citrus detection based on Tiny-YOLOv3 in field [J]. J. China Metrol. Univ., 2020,31(3):349-356, 392. | |
13 | ZHENG Z, XIONG J, LIN H, et al.. A method of green citrus detection in natural environments using a deep convolutional neural network [J/OL]. Front. Plant Sci., 2021, 12:705737 [2022-12-28]. . |
14 | 陈文康,陆声链,刘冰浩,等.基于改进YOLOv4的果园柑橘检测方法研究[J].广西师范大学学报(自然科学版),2021,39(5):134-146. |
CHEN W K, LU S L, LIU B H, et al.. Real-time citrus recognition under orchard environment by improved YOLOv4 [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2021,39(5):134-146. | |
15 | 黄彤镔,黄河清,李震,等.基于YOLOv5改进模型的柑橘果实识别方法[J].华中农业大学学报,2022,41(4):170-177. |
HUANG T B, HUANG H Q, LI Z, al.el. Citrus fruit recognition method based on the improved model of YOLOv5 [J]. J. Huazhong Agric. Univ., 2022,41(4):170-177. | |
16 | 杨长辉,刘艳平,王毅,等. 自然环境下柑橘采摘机器人识别定位系统研究[J].农业机械学报,2019,50(12):14-22. |
YANG C H, LIU Y P, WANG Y, et al.. Research and experiment on recognition and location system for citrus picking robot in natural environment [J]. Trans. Chin. Soc. Agric. Mach., 2019,50(12):14-22. | |
17 | JIE H, LI S, GANG S, et al.. Squeeze-and-excitation networks [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . IEEE, 2018:7132-7141. |
18 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:13713-13722. |
19 | ZHANG H, WANG Y, DAYOUB F, et al.. Varifocalnet:A n iou-aware dense object detector [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE,2021:8514-8523. |
20 | WANG C Y, LIAO H Y M, WU Y H, et al.. CSPNet:A new backbone that can enhance learning capability of CNN [J/OL]. 2019, 1911: 11929 [2022-12-28]. . |
21 | LIN T, DOLLAER P, GIRSHICK R, et al.. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:936-944. |
22 | LIU S, QI L, QIN H, et al.. Path aggregation network for instance segmentation [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2018:8759-8768. |
23 | ZHENG Z H, WANG P, LIU W, et al.. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression [C]// Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence 2017: 12993-13000.. |
24 | 宋中山,刘越,郑禄,等.基于改进YOLOV3的自然环境下绿色柑橘的识别算法[J].中国农机化学报,2021,42(11):159-165. |
SONG Z S, LIU Y, ZHENG L, al.el. Identification of green citrus based on improved YOLOV3 in natural environment [J]. J. Chin. Agric. Mechan., 2021,42(11):159-165. | |
25 | 刘芳,刘玉坤,林森,等.基于改进型YOLO的复杂环境下番茄果实快速识别方法[J].农业机械学报,2020,51(6):229-237. |
LIU F, LIU Y K, LIN S, et al.. Fast Recognition method for tomatoes under complex environments based on improved YOLO [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(6):229-237. |
[1] | Mingbo LI, Yule LIU, Zhimin MU, Junwang GUO, Yong WEI, Dongyue REN, Jishen JIA, Zezhong WEI, Yuhong LI. Tomato Fruit Recognition Based on YOLOX-L-TN Model [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 97-105. |
[2] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 591
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 272
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||