Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 63-73.DOI: 10.13304/j.nykjdb.2022.1069
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Shijian BAI(), Jinge HU, Chao LI, Junshe CAI
Received:
2022-12-07
Accepted:
2023-02-13
Online:
2024-08-15
Published:
2024-08-12
作者简介:
白世践E-mail:594748964@qq.com
基金资助:
CLC Number:
Shijian BAI, Jinge HU, Chao LI, Junshe CAI. Effects of 3 Trellis Systems on Cultivation Characters and Berry Quality of ‘Xinyu’ Grape[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 63-73.
白世践, 户金鸽, 李超, 蔡军社. 3种架式对‘新郁’葡萄栽培性状及果实品质的影响[J]. 中国农业科技导报, 2024, 26(8): 63-73.
栽培架式 Cultivation trellis system | 净光合速率 Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) | 水分利用效率 WUE |
---|---|---|---|---|---|
SDTS-H | 14.23±0.07 b | 4.96±0.07 a | 133.18±3.50 b | 167.45±3.30 b | 2.83±0.09 b |
ISDTS-H | 14.13±0.08 b | 4.41±0.09 b | 131.23±1.27 b | 167.66±1.69 b | 3.23±0.07 a |
ISDTS-VH | 15.33±0.41 a | 5.15±0.14 a | 160.81±2.47 a | 187.23±4.84 a | 2.99±0.04 b |
Table 1 Photosynthetic parameters of ‘Xinyu’ grape leaves under 3 trellis systems
栽培架式 Cultivation trellis system | 净光合速率 Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) | 水分利用效率 WUE |
---|---|---|---|---|---|
SDTS-H | 14.23±0.07 b | 4.96±0.07 a | 133.18±3.50 b | 167.45±3.30 b | 2.83±0.09 b |
ISDTS-H | 14.13±0.08 b | 4.41±0.09 b | 131.23±1.27 b | 167.66±1.69 b | 3.23±0.07 a |
ISDTS-VH | 15.33±0.41 a | 5.15±0.14 a | 160.81±2.47 a | 187.23±4.84 a | 2.99±0.04 b |
参数 Parameter | 栽培架式 Cultivation trellis system | ||
---|---|---|---|
SDTS-H | ISDTS-H | ISDTS-VH | |
平均最高温 Average maximum temperature/℃ | 37.05 | 37.01 | 36.90 |
平均最低温 Average minimum temperature/℃ | 16.02 | 18.79 | 18.74 |
平均温度 Average temperature/℃ | 25.40 | 27.69 | 27.64 |
平均温差 Average temperature difference/℃ | 20.65 | 18.23 | 18.16 |
超过35 ℃温差总和 Sum of temperature difference above 35 ℃/℃ | 234.50 | 215.00 | 209.00 |
≥35 ℃高温时长 Time of temperature above 35 ℃/h | 254.00 | 349.50 | 343.00 |
平均最大湿度 Average maximum humidity/% | 78.18 | 65.65 | 66.78 |
平均最小湿度 Average minimum humidity/% | 21.25 | 26.52 | 27.47 |
平均湿度 Average humidity/% | 48.56 | 43.60 | 44.71 |
≤45%低湿时长 Sum of humidity difference below 45%/h | 919.50 | 1 046.00 | 980.00 |
日均叶幕透射辐射 Daily average PARtran/(µmol·m-2·s-1) | 2.37 | 9.29 | 4.17 |
日均土壤反射辐射 Daily average PARsoil/(µmol·m-2·s-1) | 4.29 | 8.48 | 5.61 |
日均总辐射 Daily average total radiation/(µmol·m-2·s-1) | 6.67 | 17.77 | 9.78 |
Table 2 Cluster micro-environment parameters of ‘Xinyu’ grape under 3 trellis systems
参数 Parameter | 栽培架式 Cultivation trellis system | ||
---|---|---|---|
SDTS-H | ISDTS-H | ISDTS-VH | |
平均最高温 Average maximum temperature/℃ | 37.05 | 37.01 | 36.90 |
平均最低温 Average minimum temperature/℃ | 16.02 | 18.79 | 18.74 |
平均温度 Average temperature/℃ | 25.40 | 27.69 | 27.64 |
平均温差 Average temperature difference/℃ | 20.65 | 18.23 | 18.16 |
超过35 ℃温差总和 Sum of temperature difference above 35 ℃/℃ | 234.50 | 215.00 | 209.00 |
≥35 ℃高温时长 Time of temperature above 35 ℃/h | 254.00 | 349.50 | 343.00 |
平均最大湿度 Average maximum humidity/% | 78.18 | 65.65 | 66.78 |
平均最小湿度 Average minimum humidity/% | 21.25 | 26.52 | 27.47 |
平均湿度 Average humidity/% | 48.56 | 43.60 | 44.71 |
≤45%低湿时长 Sum of humidity difference below 45%/h | 919.50 | 1 046.00 | 980.00 |
日均叶幕透射辐射 Daily average PARtran/(µmol·m-2·s-1) | 2.37 | 9.29 | 4.17 |
日均土壤反射辐射 Daily average PARsoil/(µmol·m-2·s-1) | 4.29 | 8.48 | 5.61 |
日均总辐射 Daily average total radiation/(µmol·m-2·s-1) | 6.67 | 17.77 | 9.78 |
Fig. 2 Berry mass, total soluble solids and total acid content of ‘Xinyu’ grape in different periods under 3 trellis systemsNote:Difference lowercase letters indicate significant difference among different treatment at P<0.05 level.
Fig. 3 Fruit color, vitamin C and flavonoid content of ‘Xinyu’ grape in different periods under 3 trellis systemsNote:Difference lowercase letters indicate significant difference among different treatment at P<0.05 level.
栽培架式 Cultivation trellis system | 果穗质量 Cluster mass/g | 实际果穗数 Actual number of clusters/(104·hm-2) | 目标果穗数Objective number of clusters/(104·hm-2) | 实际产量 Actual yield/ (t·hm-2) | 目标产量 Objective yield/(t·hm-2) | 相似指数 Similarity index | |
---|---|---|---|---|---|---|---|
果穗数Number of clusters | 产量Yield | ||||||
SDTS-H | 1 175.32±173.11 a | 2.48±0.16 a | 3.75 | 29.10±3.37 a | 30.02 | 0.66 | 0.97 |
ISDTS-H | 861.25±34.56 b | 1.82±0.13 c | 2.86 | 15.63±1.14 c | 22.87 | 0.64 | 0.68 |
ISDTS-VH | 1 172.38±58.27 a | 2.07±0.14 b | 2.86 | 24.30±1.84 b | 22.87 | 0.73 | 1.06 |
Table 3 Yield of ‘Xinyu’ grape under 3 trellis systems
栽培架式 Cultivation trellis system | 果穗质量 Cluster mass/g | 实际果穗数 Actual number of clusters/(104·hm-2) | 目标果穗数Objective number of clusters/(104·hm-2) | 实际产量 Actual yield/ (t·hm-2) | 目标产量 Objective yield/(t·hm-2) | 相似指数 Similarity index | |
---|---|---|---|---|---|---|---|
果穗数Number of clusters | 产量Yield | ||||||
SDTS-H | 1 175.32±173.11 a | 2.48±0.16 a | 3.75 | 29.10±3.37 a | 30.02 | 0.66 | 0.97 |
ISDTS-H | 861.25±34.56 b | 1.82±0.13 c | 2.86 | 15.63±1.14 c | 22.87 | 0.64 | 0.68 |
ISDTS-VH | 1 172.38±58.27 a | 2.07±0.14 b | 2.86 | 24.30±1.84 b | 22.87 | 0.73 | 1.06 |
参数 Parameter | 栽培架式 Cultivation trellis system | ||
---|---|---|---|
SDTS-H | ISDTS-H | ISDTS-VH | |
顶端优势 Apical dominance | 较明显 Obvious | 不明显 Not obvious | 不明显 Not obvious |
主蔓高度 Main vine setting height/cm | 190 | 190 | 150 |
结果带高度 Fruit setting height/cm | 180 | 180 | 160 |
疏果工时 Fruit thinning hours/(h·hm-2) | 480 | 360 | 240 |
新梢绑缚工时 Fruit branch binding hours/(h·hm-2) | 480 | 480 | 360 |
夏季修剪工时 Summer pruning hours/(h·hm-2) | 300 | 60 | 60 |
上、下架工时 Tying and untying hours/(h·hm-2) | 240 | 120 | 120 |
累计工时 Cumulative hours/(h·hm-2) | 1 500 | 1 020 | 780 |
商品率 Commodity rate/% | 60~70 | 90 | 90 |
经济效益/(104元·hm-2) Economic performance/(104 yuan·hm-2) | 5.47 | 8.04 | 15.84 |
Table 4 Labor costs and benefits under 3 trellis systems
参数 Parameter | 栽培架式 Cultivation trellis system | ||
---|---|---|---|
SDTS-H | ISDTS-H | ISDTS-VH | |
顶端优势 Apical dominance | 较明显 Obvious | 不明显 Not obvious | 不明显 Not obvious |
主蔓高度 Main vine setting height/cm | 190 | 190 | 150 |
结果带高度 Fruit setting height/cm | 180 | 180 | 160 |
疏果工时 Fruit thinning hours/(h·hm-2) | 480 | 360 | 240 |
新梢绑缚工时 Fruit branch binding hours/(h·hm-2) | 480 | 480 | 360 |
夏季修剪工时 Summer pruning hours/(h·hm-2) | 300 | 60 | 60 |
上、下架工时 Tying and untying hours/(h·hm-2) | 240 | 120 | 120 |
累计工时 Cumulative hours/(h·hm-2) | 1 500 | 1 020 | 780 |
商品率 Commodity rate/% | 60~70 | 90 | 90 |
经济效益/(104元·hm-2) Economic performance/(104 yuan·hm-2) | 5.47 | 8.04 | 15.84 |
1 | 刘凤之.中国葡萄栽培现状与发展趋势[J].落叶果树,2017,49(1):1-4. |
2 | 张大鹏,姜红英,陈星黎,等. 叶幕PAR光能截留和分配对葡萄群体光合同化物库源关系的调控[J].植物生态学报,1995,19(4): 302-310. |
ZHANG D P, JIANG H Y, CHEN X L . et al .. Regulating effects of canopy light (PAR) interception and distribution on photosynthate ‘sink-source’ relation in grapevine population with different canopy structures [J]. Chin. J. Plant Ecol., 1995, 19(4): 302-310. | |
3 | 刘笑宏,孙永江,孙红,等.不同叶幕类型对‘摩尔多瓦’葡萄果穗微域环境及果实品质的影响[J].中国农业科学, 2016, 49(21): 4246-4254. |
LIU X H, SUN Y J, SUN H, et al.. Effect of canopy types on the cluster micro-environment and fruit quality of the ‘Moldova’ grapes [J]. Sci. Agric. Sin., 2016, 49(21): 4246-4254. | |
4 | TROUGHT M C T, NAYLOR A P, FRAMPTON C. Effect of row orientation, trellis type, shoot and bunch position on the variability of Sauvignon Blanc (Vitis vinifera L.) juice composition [J]. Aust. J. Grape Wine Res., 2017, 23: 240-250. |
5 | 王晓玥,张国军,孙磊,等. 2种架式对3个鲜食葡萄品种栽培性状及果实品质的影响[J].中国农业科学, 2019,52(7):1150-1163. |
WANG X Y, ZHANG G J, SUN L, et al.. Effects of two trellis systems on viticultural characteristics and fruit quality of three table grape cultivars [J]. Sci. Agric. Sin., 2019,52(7):1150-1163. | |
6 | WOLF T K, DRY P R, ILAND P G, et al.. Response of Shiraz grapevines to five different training systems in the Barossa Valley, Australia [J]. Aus. J. Grape Wine Res., 2003, 9: 82-95. |
7 | TROUGHT M C T, NAYLOR A P, FRAMPTON C. Effect of row orientation, trellis type, shoot and bunch position on the variability of Sauvignon Blanc (Vitis vinifera L.) juice composition [J]. Aust. J. Grape Wine Res., 2017, 23: 240-250. |
8 | 单守明,杨恕玲,王振平,等.不同架式对设施葡萄生长发育和主芽坏死的影响[J].北方园艺,2011(2): 51-53. |
SHAN S M, YANG S L, WANG Z P, et al.. Effects of different training structures on the grape development and bud abortion in greenhouse [J]. Northern Hortic., 2011(2): 51-53. | |
9 | 冀晓昊,刘凤之,史祥宾,等.架式和新梢间距对‘巨峰’葡萄果实品质的影响[J].中国农业科学,2019,52(7):1164-1172. |
JI X H, LIU F Z, SHI X B, et al.. The effects of different training systems and shoot spacing on the fruit quality of ‘Kyoho’ grape [J]. Sci. Agric. Sin., 2019,52(7):1164-1172. | |
10 | 史祥宾,刘凤之,程存刚,等.不同叶幕形对设施葡萄叶幕微环境、叶片质量及果实品质的影响[J].应用生态学报,2015,26(12):3730-3736. |
SHI X B, LIU F Z, CHENG C G, et al.. Effects of canopy shapes of grape on canopy microenvironment, leaf and fruit quality in greenhouse [J]. Chin. J. Appl. Ecol., 2015, 26(12): 3730-3736. | |
11 | ZHANG F C, ZHONG H X, ZHOU X M, et al.. Photosynthesis of grape leaves with ‘OSC’ trellis and cordon based on data model fitting [J]. Photosynthetica, 2021,59:160-170. |
12 | 骆强伟,孙峰,蔡军社,等.葡萄新品种“新郁”[J].园艺学报,2007,34(3):797. |
LUO Q W, SUN F, CAI J S, et al.. A new grape cultivar ‘Xinyu’ [J]. Acta Hortic. Sin., 2007, 34(3): 797. | |
13 | 贾杨,廖康,骆强伟,等.无核白葡萄不同栽培架式叶幕微气候及产量品质差异分析[J].新疆农业科学,2016,53(7):1210-1216. |
JIA Y, LIAO K, LUO Q W, et al.. Analysis on the canopy microclimate and yield and quality of the different grape cultivation trellis in Turpan [J]. Xinjiang Agric. Sci., 2016, 53(7): 1210-1216. | |
14 | AMIRI M E, FALLAHI E, PARSEH S. Application of ethephon and ABA at 40% veraison advanced maturity and quality of ‘Beidaneh Ghermez’ grape [J]. Acta Hortic., 2010, 884: 371-377. |
15 | 中华人民共和国国家健康委员会,国家市场监督管理总局. 食品安全国家标准食品中总酸的测定: [S].北京:中国标准出版社,2021. |
16 | 高俊凤.植物生理学指导[M].北京:高等教育出版,2006:203-204. |
17 | MEYERS K J, WATKINS C B, PRITTS M P, et al.. Antioxidant and antiproliferative activities of strawberries [J]. J. Agric. Food Chem., 2003, 51(23):6887-6892. |
18 | WELLBURM A R. The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolutions [J]. J. Plant Physiol., 1994, 144: 307-313. |
19 | ORAK H H. Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations [J]. Sci. Hortic., 2007, 111(3): 235-241. |
20 | 张付春,潘明启,伍新宇,等.葡萄埋土防寒区水平棚架“顺沟倾斜龙干”树形研究初报[J].干旱地区农业研究, 2015, 33(5): 69-74. |
ZHANG F C, PAN M Q, WU X Y, et al.. Preliminary research on single cordon obliquely along the ditch of grape in cold areas [J]. Agric. Res. Arid Areas, 2015, 33(5): 69-74. | |
21 | CORTÁZAR V G, CÓRDOVA C, PINTO M. Canopy structure and photosynthesis modelling of grapevines (Vitis vinifera L. cv. Sultana) grown on an overhead (parronal) trellis system in Chile [J]. Aust. J. Grape Wine Res., 2005, 11(3): 328-338. |
22 | 张洁,杨伟伟,容新民,等.构建不同树形葡萄树体结构的三维虚拟模型[J].新疆农业科学,2021,58(2): 265-275. |
ZHANG J, YANG W W, RONG X M, et al.. Digital study on the canopy structure of grape with different tree shapes [J]. Xinjiang Agric. Sci., 2021, 58(2): 265-275. | |
23 | FARQUHAR G D, EHLERINGER J R, HUBICKKT. Carbon isotope discrimination and photosynthesis [J]. Ann. Rev. Plant Physiol. Plant Mol. Biol., 2003, 40(1):503-537. |
24 | 许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244. |
XU D Q. Some problems in stomatal limitation analysis of photosynthesis [J]. Plant Physiol. Commun., 1997, 33(4):241-244. | |
25 | GARDEA A A, NORIEGA J R, OROZCO J A, et al.. Advanced maturity of ‘Perlette’ table grapes by training systems which increase foliage exposure to sunlight [J]. Rev. Fitotec. Mex., 2008, 31(1): 27-33. |
26 | 潘明启,张付春,钟海霞,等.北方葡萄水平棚架“顺沟高厂”树形的高光效、省力化评价[J].果树学报,2017,34(9):1134-1143. |
PAN M Q, ZHANG F C, ZHONG H X, et al.. Evaluation of photosynthetic efficiency and labor cost in cultivation of grape with an “oblique single cordon along ditch” trellis type in northern China [J]. J. Fruit Sci., 2017,34(9): 1134-1143. | |
27 | 张大鹏,姜红英.叶幕微气候与葡萄生理、产量和品质形成之间的基本关系研究[J].园艺学报,1995,22 (2):110-116. |
ZHANG D P, JIANG H Y. Studies on the essential relationship between canopy microclimate,vine growth,grape yield and berry quality [J]. Acta Hortic. Sin., 1995, 22(2):110-116. | |
28 | 问亚琴,张艳芳,潘秋红.葡萄果实有机酸的研究进展[J].海南大学学报(自然科学版),2009,27(3):302-307. |
WEN Y Q, ZHANG Y F, PAN Q H. The research progress of grapefruit organic acids [J]. J. Hainan Univ. (Nat. Sci.), 2009, 27(3): 302-307. | |
29 | BERGQVIST J, DOKOOZLIAN N K, EBISUDA N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley in California [J/OL]. Am. J. Enol. Vitic., 2001, 52(1):1 [2022-11-06]. . |
30 | CONDE C, SILVA P, FONTES N, et al.. Biochemical changes throughout grape berry development and fruit and wine quality [J]. Structure, 2007, l: l-22. |
31 | ALJIBURY F, BREWER R, CHRISTENSEN P. Grape response to cooling with sprinklers [J]. Am. J. Enol. Vitic., 1975, 26: 214-217. |
32 | 刘洪波,白云岗,张江辉,等.不同微喷弥雾调控方式下微气候因子对极端干旱区葡萄果实生长及糖度的影响[J].干旱地区农业研究,2020,38(4):159-167. |
LIU H B, BAI Y G, ZHANG J H, et al.. Effects of microclimate factors on grape fruit growth and sugar content in extreme arid regions under different micro spray mist control [J]. Agric. Res. Arid Areas, 2020, 38(4): 159-167. | |
33 | CARAVIA L, PAGAY V, COLLINS C, et al.. Application of sprinkler cooling within the bunch zone during ripening of Cabernet Sauvignon berries to reduce the impact of high temperature [J]. Aust. J. Grape Wine Res., 2017, 23: 48-57. |
34 | 蔡军社,白世践.吐鲁番地区‘火焰无核’葡萄顺架龙干式栽培示范及效益分析[J].中外葡萄与葡萄酒,2018(5):45-48. |
CAI J S, BAI S J. Inclined trunk with same row direction cultivation demonstration and benefit analysis of ‘Flame Seedless’ grapevine in Turpan region [J]. Sino-Overseas Grapevine Wine, 2018(5): 45-48. | |
35 | CASTELLARIN S D, GASPERO G D, MARCONI R, et al.. Colour variation in red grapevines (Vitis Vinifera L .): organisationgenomic, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin [J/OL]. BMC Genomics, 2006, 7:12[2022-11-06]. . |
36 | AZUMAA, YAKUSHIJI H, KOSHITA Y, et al.. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions [J].Planta,2012, 236(4):1067-1080. |
37 | MARTINEZ-LUSCHER J, CHEN C C L, BRILLANTE L, et al.. Partial solar radiation exclusion with color shade nets reduces the degradation of organic acids and flavonoids of grape berry (Vitis vinifera L.) [J]. J. Agric. Food Chem., 2017, 15: 10693-10702. |
38 | TORRES N, MARTINEZ-LUSCHER J, PORTE E, et al.. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates [J/OL]. Food Chem., 2020, 343:128447 [2022-11-06]. . |
39 | MORI K, SUGAYA S, GEMMA H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition [J]. Sci. Hortic., 2015, 105 (3):319-330. |
40 | MOVAHED N, PASTORE C, CELLINI A, et al.. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature [J]. J. Plant Res., 2016, 129: 513-526. |
41 | SPAYD S E, TARARA J M, MEE D L, et al.. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries [J]. Am. J. Enol. Vitic.,2002, 53(3):171-182. |
[1] | Haijun ZHANG, Juan ZHANG, Yinan JIA, Jianglong WANG, Li FENG. Effect of Different Frame Type on Aroma Components and Berry Quality of ‘Nantaihutezao’ [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 201-213. |
[2] | GUO Xiu-ming, FAN Jing-chao, ZHOU Guo-min*, QIU Yun, HU Lin. Research on Master-slave WSN System for Fruit Canopy Micro-environment Monitoring [J]. Journal of Agricultural Science and Technology, 2016, 18(1): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||