Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 103-111.DOI: 10.13304/j.nykjdb.2022.1051
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Ziqin LI(), Jiaqiang WANG(), Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU
Received:
2022-12-01
Accepted:
2023-02-07
Online:
2024-08-15
Published:
2024-08-12
Contact:
Jiaqiang WANG
李紫琴(), 王家强(), 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬
通讯作者:
王家强
作者简介:
李紫琴 E-mail:791030444@qq.com;
基金资助:
CLC Number:
Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111.
李紫琴, 王家强, 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8): 103-111.
处理Treatment | 样本数 Sample number | 叶绿素密度CH.D/(g·m-2) | ||||
---|---|---|---|---|---|---|
最小值 Minimum | 最大值 Maximum | 均值 Mean | 标准差 Standard deviation | 变异系数 Variable coefficient/% | ||
T0 | 10 | 0.355 | 0.576 | 0.478 b | 0.073 | 16.19 |
T1 | 33 | 0.474 | 0.809 | 0.665 a | 0.087 | 13.31 |
T2 | 16 | 0.521 | 0.704 | 0.616 a | 0.050 | 8.47 |
T3 | 15 | 0.418 | 0.729 | 0.618 a | 0.075 | 12.56 |
T4 | 22 | 0.499 | 0.878 | 0.661 a | 0.080 | 12.44 |
Table 1 Chlorophyll density in leaves of cotton at peak flowering stage under different nitrogen fertilizer treatments
处理Treatment | 样本数 Sample number | 叶绿素密度CH.D/(g·m-2) | ||||
---|---|---|---|---|---|---|
最小值 Minimum | 最大值 Maximum | 均值 Mean | 标准差 Standard deviation | 变异系数 Variable coefficient/% | ||
T0 | 10 | 0.355 | 0.576 | 0.478 b | 0.073 | 16.19 |
T1 | 33 | 0.474 | 0.809 | 0.665 a | 0.087 | 13.31 |
T2 | 16 | 0.521 | 0.704 | 0.616 a | 0.050 | 8.47 |
T3 | 15 | 0.418 | 0.729 | 0.618 a | 0.075 | 12.56 |
T4 | 22 | 0.499 | 0.878 | 0.661 a | 0.080 | 12.44 |
序号 Number | 植被指数表达形式 Vegetation index expression form |
---|---|
1 | R745-R746 |
2 | R739-R747 |
3 | R739-R748 |
4 | R732-R801 |
5 | R733-R793 |
6 | (R722-R723)/(R722+R723) |
7 | (R723-R724)/(R723+R724) |
8 | (R709-R765)/(R709+R765) |
9 | (R718-R723)/(R718+R723) |
10 | R718/R724 |
11 | R711/R764 |
12 | R708/R763 |
Table 2 Vegetation index of the screened bands
序号 Number | 植被指数表达形式 Vegetation index expression form |
---|---|
1 | R745-R746 |
2 | R739-R747 |
3 | R739-R748 |
4 | R732-R801 |
5 | R733-R793 |
6 | (R722-R723)/(R722+R723) |
7 | (R723-R724)/(R723+R724) |
8 | (R709-R765)/(R709+R765) |
9 | (R718-R723)/(R718+R723) |
10 | R718/R724 |
11 | R711/R764 |
12 | R708/R763 |
指标 Index | 偏二小乘模型 PLSR | 随机森林模型 RF | |
---|---|---|---|
建模 Calibration (n=64) | 决定系数R2 | 0.765 4 | 0.731 6 |
均方根误差RMSE | 0.046 6 | 0.045 5 | |
相对分析误差RPD | 1.816 0 | 1.993 1 | |
预测 Validation (n=32) | 决定系数R2 | 0.730 9 | 0.723 5 |
均方根误差RMSE | 0.051 7 | 0.057 2 | |
相对分析误差RPD | 1.456 9 | 1.851 4 |
Table 3 Modeling results of 2 models
指标 Index | 偏二小乘模型 PLSR | 随机森林模型 RF | |
---|---|---|---|
建模 Calibration (n=64) | 决定系数R2 | 0.765 4 | 0.731 6 |
均方根误差RMSE | 0.046 6 | 0.045 5 | |
相对分析误差RPD | 1.816 0 | 1.993 1 | |
预测 Validation (n=32) | 决定系数R2 | 0.730 9 | 0.723 5 |
均方根误差RMSE | 0.051 7 | 0.057 2 | |
相对分析误差RPD | 1.456 9 | 1.851 4 |
1 | 吴长山, 项月琴, 郑兰芬, 等. 利用高光谱数据对作物群体叶绿素密度估算的研究[J]. 遥感学报, 2000,4(3): 228-232. |
WU C S, XIANG Y Q, ZHENG L F, et al.. Estimating chlorophyll density of crop canopies by using hyperspectral data [J]. J. Remote Sensing, 2000,4(3): 228-232. | |
2 | 孟卓强, 胡春胜, 程一松. 高光谱数据与冬小麦叶绿素密度的相关性研究[J]. 干旱地区农业研究, 2007,25(6): 74-79. |
MENG Z Q, HU C S, CHENG Y S. Study on correlation between chlorophyll density of winter wheat and hyperspectral data [J]. Agric. Res. Arid Areas, 2007,25(6): 74-79. | |
3 | PINAR A, CURRAN P J. Technical note grass chlorophyll and the reflectance red edge [J]. Int. J. Remote Sens., 1996, 17(2): 351-357. |
4 | HANSEN P M, SCHJOERRING J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sens. Environ., 2003, 86(4): 542-553. |
5 | DANSON F M, PLUMMER S E. Red-edge response to forest leaf area index [J]. Remote Sens-basel., 1995, 16(1): 183-188. |
6 | BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J]. Remote Sens. Environ., 2001, 76(2): 156-172. |
7 | 陈燕, 黄春燕, 王登伟, 等. 北疆棉花叶绿素密度的高光谱估算研究[J]. 新疆农业科学, 2006,43(6): 451-454. |
CHEN Y, HUANG C Y, WANG D W, et al.. Hyperspectral estimation of chlorophyll density of cotton in northern Xinjiang [J]. Xinjiang Agric. Sci., 2006,43(6): 451-454. | |
8 | 依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 等. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90. |
Ablet Ershat, Sawut Mamat, Maimaitiaili Baidengsha, et al.. Estimation of leaf chlorophyll content in cotton based on the random forest approach [J]. Acta Agron. Sin., 2019, 45(1):81-90. | |
9 | 赵婷婷, 张丽珍, 郑淑华, 等. 黍稷籽粒淀粉含量的近红外光谱分析[J]. 华北农学报, 2011, 26(1): 234-238. |
ZHAO T T, ZHANG L Z, ZHENG S H, et al.. Analysis of starch content of Panicum miliaceum L. seed by near infrared transmittance spectroscopy [J]. Acta Agric. Boreali-Sin., 2011, 26(1): 234-238. | |
10 | 季江, 高鹏飞, 贾南南, 等. 自适应多尺度窗口平均光谱平滑[J]. 光谱学与光谱分析, 2015, 35(5): 1445-1449. |
JI J, GAO P F, JIA N N, et al.. Spectral smoothing with adaptive multiscale window average [J]. Spectrosc. Spectral Anal., 2015, 35(5): 1445-1449. | |
11 | 刘倩. 基于非局部稀疏的图像去噪与平滑方法研究[D]. 济南: 山东大学, 2016. |
LIU Q. Research on image denoising and smoothing method based on non-local sparse [D]. Jinan: Shandong University, 2016. | |
12 | 潘文超, 李少昆, 王克如, 等. 基于棉花冠层光谱的土壤氮素监测研究[J]. 棉花学报, 2010, 22(1): 70-76. |
PAN W C, LI S K, WANG K R, et al.. Monitoring soil nitrogen and plant nitrogen based on hyperspectral of cotton canopy [J]. Cott. Sci., 2010, 22(1): 70-76. | |
13 | 王式琴.基于高光谱的棉花叶片氮素变化特征及估算建模研究[D].阿拉尔:塔里木大学,2021. |
WANG S Q. Study on variation characteristics and estimation modeling of cotton leaf nitrogen based on hyperspectral [D]. Alar: Tarim University, 2021. | |
14 | Breiman L. Random forests [J]. Mach. Learn., 2001, 45(1): 5-32. |
15 | DONNELLY S, WALSH D. Quality of life assessment in advanced cancer [J]. Palliative Med., 1996, 10(4): 275-283. |
16 | 梁智, 孙国强, 卫志农, 等. 基于变量选择与高斯过程回归的短期负荷预测[J]. 电力建设, 2017, 38(2): 122-128. |
LIANG Z, SUN G Q, WEI Z N, et al.. Short-term load forecasting based on variable selection and gaussian process regression [J]. Electric Power Construction, 2017, 38(2): 122-128. | |
17 | GRÖMPING U. Variable importance assessment in regression: linear regression versus random forest [J]. Am. Statistician, 2009, 63(4): 308-319. |
18 | 尼加提·卡斯木, 师庆东, 王敬哲, 等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J]. 农业工程学报, 2017, 33(22): 208-216. |
Kasmu Nigati, SHI Q D, WANG J Z, et al.. Estimation of chlorophyll content in spring wheat based onhyperspectral characteristics and partial least square method [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(22): 208-216. | |
19 | 翁永玲, 戚浩平, 方洪宾, 等. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6): 1255-1263. |
WENG Y L, QI H P, FANG H B, et al.. PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe basin in Qinghai province [J]. Acta Pedol. Sin., 2010, 47(6): 1255-1263. | |
20 | 李四海,任真.基于小波系数特征和偏最小二乘回归的近红外光谱定量分析[J].长春大学学报,2018,28(4):23-27. |
LI S H, REN Z. Quantitative analysis of near infrared spectroscopy based on wavelet coefficient characteristics and partial least-squares regression [J]. J. Changchun Univ., 2018, 28(4):23-27. | |
21 | 杨灵玉.三江源区土壤特性高光谱估算方法比较研究[D].西宁:青海师范大学,2016. |
YANG L Y. Comparison of estimation methods for obtaining soil properties from hyperspectral data in the Sanjiang Yuan Regions [D]. Xining: Qinghai Normal University, 2016. | |
22 | LAZRAQ A, CLÉROUX R. The PLS multivariate regression model: testing the significance of successive PLS components [J]. J. Chemom., 2001, 15(6): 523-536. |
23 | 楚万林, 齐雁冰, 常庆瑞, 等. 棉花冠层叶片叶绿素含量与高光谱参数的相关性[J].西北农林科技大学学报(自然科学版), 2016, 44(9): 65-73. |
CHU W L, QI Y B, CHANG Q R, et al.. Relationship between chlorophyll content and hyperspectral parameters in canopy leaves of cotton [J]. J. Northwest A&F Univ. (Nat. Sci.), 2016, 44(9): 65-73. | |
24 | 齐雁冰, 楚万林, 解飞, 等. 基于高光谱的渭北旱塬区棉花冠层叶面积指数估算[J]. 干旱地区农业研究, 2017, 35(1): 114-121. |
QI Y B, CHU W L, XIE F, et al.. Estimating leaf area index of cotton canopy by hyperspectral reflectance in Weibei plateau [J]. Agric. Res. Arid Areas, 2017, 35(1): 114-121. | |
25 | 李银坤, 武雪萍, 梅旭荣, 等. 不同施氮水平下温室番茄叶片反射光谱特征分析[J].土壤通报, 2012, 43(1): 141-146. |
LI Y K, WU X P, MEI X R, et al.. Analysis of the spectral reflectance characteristics of greenhouse tomato at different nitrogen levels [J]. Chin. J. Soil Sci., 2012, 43(1): 141-146. | |
26 | 王强, 易秋香, 包安明, 等. 基于高光谱反射率的棉花冠层叶绿素密度估算[J]. 农业工程学报, 2012, 28(15): 125-132. |
WANG Q, YI Q X, BAO A M, et al.. Estimating chlorophyll density of cotton canopy by hyperspectral reflectance [J]. Trans. Chin. Soc. Agric., 2012, 28(15): 125-132. | |
27 | 张苏, 刘良云, 黄文江. 基于植被指数的叶绿素密度遥感反演建模与适用性研究[J]. 遥感信息, 2013, 28(3): 94-101. |
ZHANG S, LIU L Y, HUANG W J. Retrieval of canopy chlorophyll density based on hyperpectral vegetation indices [J]. Remote Sensing Inf., 2013, 28(3): 94-101. | |
28 | 乔星星, 冯美臣, 杨武德, 等. SG平滑处理对冬小麦地上干生物量光谱监测的影响[J]. 山西农业科学, 2016, 44(10): 1450-1454. |
QIAO X X, FENG M C, YANG W D, et al.. Effect of SG smoothing processing on predicting the above ground dry biomass of winter wheat [J]. J. Shanxi Agric. Sci., 2016, 44(10): 1450-1454. | |
29 | 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱遥感数据的冬小麦产量估算[J].农业机械学报, 2020, 51(7): 146-155. |
TAO H L, XU L J, FENG H K, et al.. Winter wheat yield estimation based on UAV hyperspectral remote sensing data [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(7): 146-155. | |
30 | 吴芳, 李映雪, 张缘园, 等. 基于机器学习算法的冬小麦不同生育时期生物量高光谱估算[J]. 麦类作物学报, 2019, 39(2): 217-224. |
WU F, LI Y X, ZHANG Y Y, et al.. Hyperspectral estimation of biomass of winter wheat at different growth stages based on machine learning algorithms [J]. J. Triticeae Crops, 2019, 39(2): 217-224. | |
31 | 李世波, 林辉, 王光明, 等. 基于GF-1的森林蓄积量遥感估测[J].中南林业科技大学学报, 2019, 39(8): 70-75. |
LI S B, LIN H, WANG G M, et al.. Estimation of forest volume based on GF-1 [J]. J. Cent. South Univ. For. Technol., 2019, 39(8): 70-75. | |
32 | 朱赟, 申广荣, 项巧巧, 等. 基于不同光谱变换的土壤盐含量光谱特征分析[J]. 土壤通报, 2017, 48(3): 560-568. |
ZHU Y, SHEN G R, XIANG Q Q, et al.. Spectral characteristics of soil salinity based on different pre-processing methods [J]. Acta Pedol. Sin., 2017, 48(3): 560-568. |
[1] | Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199. |
[2] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
[3] | Jiangbo LI, Wenju GAO, Xiaodong YUN, Jieyin ZHAO, Shiwei GENG, Chunbin HAN, Quanjia CHEN, Qin CHEN. Effects of Different Water Stress Treatments on Core Germplasm Resources of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 26-39. |
[4] | Lihua LI, Zhengwen SUN, Huifeng KE, Qishen GU, Liqiang WU, Yan ZHANG, Guiyin ZHANG, Xingfen WANG. Development and Effect Evaluation of KASP Markers for Fiber Strength in Gossypium hirsutum L. [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 46-55. |
[5] | Deyou ZHENG, Dongyun ZUO, Qiaolian WANG, Limin LYU, Hailiang CHENG, Aixing GU, Guoli SONG. Screening of Combination of Flumetralin and Fungicide to Control Cotton Fusarium wilt [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 119-124. |
[6] | Shengmei LI, Bo PANG, Shiwei GENG, Wu SONG, Hongmei LI, Maosen MA, Ru ZHANG, Xinyan WANG, Wenwei GAO. Photosynthetic and Physiological Characteristics of Gossypium hirsutum L. × Gossypium barbadense L. Backross Populations in Full Boll Stage [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 40-51. |
[7] | Wei WANG, Qiang ZHAO, Abuduaini Munire·, Alimu·Amuli, Xinxin LI, Yangqing TIAN. Effects of Different Exogenous Substances on Chemical Capping and Yield and Quality of Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 57-68. |
[8] | Pengfei LIU, Xiaoshuang LU, Dilimurat Reheman, Tangnur Slay, Yanying QU, Quanjia CHEN, Xiaojuan DENG. Genetic Variation Analysis of Main Quality Traits and Agronomic Traits in Upland Cotton Seed [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 22-32. |
[9] | Liting CHEN, Yuanyuan YAN. Investigation of Regulatory Mechanism of Floral Integrators in Upland Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 11-21. |
[10] | Zhengran SUN, Cuiping ZHANG, Jinli ZHANG, Hao WU, Xiuyan LIU, Zhenkai WANG, Yuzhen YANG, Daohua HE. Effects of Chemical Detopping on Cotton Plant Growth in Guanzhong Cotton Region [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 167-177. |
[11] | Wenjun YANG, Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN. Meta-analysis of QTL for Salt Tolerance-related Traits at Seeding Stage in Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 26-34. |
[12] | Da CHEN, Jisheng JU, Qi MA, Shouzhen XU, Juanjuan LIU, Wenmin YUAN, Jilian LI, Caixiang WANG, Junji SU. Effects of FeNPs on Cotton Roots Growth and Its Response to Drought Stress at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 49-57. |
[13] | Man ZHANG, Jin ZHANG, Xinyu ZHANG, Guoning WANG, Xingfen WANG, Yan ZHANG. Cloning and Functional Analysis of GhNAC1 in Upland Cotton Involved in Verticillium Wilt Resistance [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 35-44. |
[14] | Guoqing LU, Caixia MA, Guoqing SUN, Huiming GUO, Hongmei CHENG. Molecular Characterization and Inheritance Stability Analysis of Herbicide-resistant Cotton GV-2 [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 42-49. |
[15] | Yan LIU, Hongshuai BAO, Hongyan SHANG, Guoning WANG, Yan ZHANG, Xingfen WANG, Zhiying MA, Jinhua WU. Selection of Cotton Fusarium Wilt and Culture Conditions [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 124-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||