Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (5): 24-31.DOI: 10.13304/j.nykjdb.2021.0213
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ming CHENG1,2(), Ying ZHU1, Xiaonan WANG2, Ping LUO2, Yong CHEN2, Zhuanfang HAO2(
), Zhangying XI1(
)
Received:
2021-03-15
Accepted:
2021-05-17
Online:
2022-05-15
Published:
2022-06-06
Contact:
Zhuanfang HAO,Zhangying XI
程名1,2(), 朱莹1, 王晓楠2, 罗平2, 陈勇2, 郝转芳2(
), 席章营1(
)
通讯作者:
郝转芳,席章营
作者简介:
程名 E-mail:chengming17025@163.com
基金资助:
CLC Number:
Ming CHENG, Ying ZHU, Xiaonan WANG, Ping LUO, Yong CHEN, Zhuanfang HAO, Zhangying XI. Drought Resistance Regulated by Allelic Variations of ZmSNAC13 in Maize[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 24-31.
程名, 朱莹, 王晓楠, 罗平, 陈勇, 郝转芳, 席章营. 玉米ZmSNAC13等位变异对抗旱性的调控研究[J]. 中国农业科技导报, 2022, 24(5): 24-31.
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 用途 Function |
---|---|---|
ZmSNAC13 qRT-PCR | F:AAGTTGGATGAGTGGGTGT | 荧光定量PCR |
R:TCGTGCGTCTGGAAGCT | qRT-PCR | |
GAPDH | F:CATCACCACGGACTACAT | 内参 |
R:GACTCCACGACATACTCA | Internal reference | |
ZmSNAC13 B73-P | F:ACATAGTGGAGAAACCGCTT | 启动子序列扩增 |
R:ACCCCCTCCTCCTCCTCGTC | Amplification of promoter sequence | |
ZmSNAC13 Qi319-P | F:CACAATGTTCTCCTTTTTACTTA | 启动子序列扩增 |
R:ACCCCCTCCTCCTCCTCCTCCT | Amplification of promoter sequence | |
ZmSNAC13 B73-V | F:GCAGCCCGGGGGATCC ACATAGTGGAGAAACCGCTT | 载体构建 |
R:TAGAACTAGTGGATCC ACCCCCTCCTCCTCCTCGTC | Construction of vector | |
ZmSNAC13 Qi319-V | F:GCAGCCCGGGGGATCC CACAATGTTCTCCTTTTTACTTA | 载体构建 |
R:TAGAACTAGTGGATCC ACCCCCTCCTCCTCCTCCTCCT | Construction of vector |
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 用途 Function |
---|---|---|
ZmSNAC13 qRT-PCR | F:AAGTTGGATGAGTGGGTGT | 荧光定量PCR |
R:TCGTGCGTCTGGAAGCT | qRT-PCR | |
GAPDH | F:CATCACCACGGACTACAT | 内参 |
R:GACTCCACGACATACTCA | Internal reference | |
ZmSNAC13 B73-P | F:ACATAGTGGAGAAACCGCTT | 启动子序列扩增 |
R:ACCCCCTCCTCCTCCTCGTC | Amplification of promoter sequence | |
ZmSNAC13 Qi319-P | F:CACAATGTTCTCCTTTTTACTTA | 启动子序列扩增 |
R:ACCCCCTCCTCCTCCTCCTCCT | Amplification of promoter sequence | |
ZmSNAC13 B73-V | F:GCAGCCCGGGGGATCC ACATAGTGGAGAAACCGCTT | 载体构建 |
R:TAGAACTAGTGGATCC ACCCCCTCCTCCTCCTCGTC | Construction of vector | |
ZmSNAC13 Qi319-V | F:GCAGCCCGGGGGATCC CACAATGTTCTCCTTTTTACTTA | 载体构建 |
R:TAGAACTAGTGGATCC ACCCCCTCCTCCTCCTCCTCCT | Construction of vector |
Fig. 2 Relative expression of ZmSNAC13 gene in roots, stems and leaves of maize B73 and Qi319 under drought stressNote:* and ** indicate significant difference compared to 0 d at P<0.05 and P<0.01 levels, respectively.
1 | 喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11. |
YU F Y, XU X Z. A review on plant stress physiology [J]. World Forestry Res., 2003, 16(5):6-11. | |
2 | SUZUKI N, RIVERO R M, SHΜLAEV V, et al.. Abiotic and biotic stress combinations [J]. New Phytol., 2014, 203(1):32-43. |
3 | 王凯悦,陈芳泉,黄五星.植物干旱胁迫响应机制研究进展[J].中国农业科技导报,2019,21(2):19-25. |
WANG K Y, CHEN F Q, HUANG W X. Research advance on drought stress response mechanism in plants [J]. J. Agric. Sci. Technol., 2019, 21(2):19-25. | |
4 | WANG Y, ZHAO W, ZHANG Q, et al.. Characteristics of drought vulnerability for maize in the eastern part of Northwest China [J/OL]. Sci. Rep., 2019, 9(1):964 [2021-04-06]. . |
5 | XU Z S, CHEN M, LI L C, et al.. Functions and application of the AP2/ERF transcription factor family in crop improvement [J]. J. Integr. Plant Biol., 2011, 53(7):570-585. |
6 | SOUER E, HOUWELINGEN A V, KLOOS D, et al.. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1996, 85(2):159-170. |
7 | AIDA M, ISHIDA T, FUKAKI H, et al.. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell, 1997, 9(6):841-857. |
8 | 康桂娟,曾日中,聂智毅,等.植物NAC转录因子的研究进展[J].生物技术通报,2012,(11):21-26. |
KANG G J, ZENG R Z, NIE Z Y, et al.. Research progress of plant NAC transcription factors [J]. Biotechnol. Bull., 2012 (11):21-26. | |
9 | HU H H, DAI M Q, YAO J L, et al.. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(35):12987-12992. |
10 | LU M, YING S, ZHANG D F, et al.. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis [J]. Plant Cell Rep., 2012, 31(9):1701-1711. |
11 | XIANG Y, SUN X J, BIAN X L, et al.. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize [J]. J. Exp. Bot., 2021,72(4):1399-1410. |
12 | MAO H D, WANG H W, LIU S X, et al.. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings [J/OL]. Nat. Commun., 2015, 6:8326 [2021-04-06]. . |
13 | MAO H D, YU L J, HAN R, et al.. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis [J]. Plant Physiol. Biochem., 2016, 105:55-66. |
14 | JIANG D G, ZHOU L Y, CHEN W T, et al.. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways [J/OL]. Rice, 2019, 12(1):76 [2021-04-06]. . |
15 | TRISHLA V S, KIRTI P B. Structure-function relationship of Gossypium hirsutum NAC transcription factor, GhNAC4 with regard to ABA and abiotic stress responses [J/OL]. Plant Sci., 2021, 302:110718 [2021-04-06]. . |
16 | YANG X F, KIM M Y, HA J M, et al.. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants [J/OL]. Front. Plant Sci., 2019, 10:1036 [2021-04-06]. . |
17 | HONG Y B, ZHANG H J, HUANG L, et al.. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice [J/OL]. Front. Plant Sci., 2016, 7:4 [2021-04-06]. . |
18 | WANG X L, WANG H W, LIU S X, et al.. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings [J]. Nat. Genet., 2016, 48(10):1233-1241. |
19 | ZHANG X M, MI Y, MAO H D, et al.. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize [J]. Plant Biotechnol. J., 2020, 18(5):1271-1283. |
20 | 王楠.玉米SNAC 基因耐旱优异等位变异的发掘与利用潜力研究[D].北京:中国农业科学院,2020. |
WANG N. Identification and exploiting potential for drought-tolerant alleles of SNAC genes in maize [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
21 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25(4):402-408. |
22 | MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Res., 1980, 8(19):4321-4325. |
23 | BERROW N S, ALDERTON D, OWENS R J. The precise engineering of expression vectors using high-throughput In-Fusion™ PCR cloning [J]. Methods Mol. Biol., 2009, 498:75-90. |
24 | YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis [J]. Nat. Protoc., 2007, 2(7):1565-1572. |
25 | 周先贵,陈旭君.一个水稻新的NAC转录因子OsNAC3功能的初步研究[J].植物病理学报,2018,48(1):61-69. |
ZHOU X G, CHEN X J. Identification a new NAC transcription factor OsNAC3 in rice [J]. Acta Phytopathol. Sin., 2018, 48(1):61-69. | |
26 | MAO X G, CHEN S S, LI A, et al.. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis [J/OL]. PLoS One, 2014, 9(1):e84359 [2021-04-06]. . |
27 | NAKASHIMA K, TAKASAKI H, MIZOI J, et al.. NAC transcription factors in plant abiotic stress responses [J]. Biochim. Biophys. Acta, 2012, 1819(2):97-103. |
28 | ZHU J K. Salt and drought stress signal transduction in plants [J]. Annu. Rev. Plant Biol., 2002, 53:247-273. |
29 | JU Y L, YUE X F, MIN Z, et al.. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis [J]. Plant Physiol. Biochem., 2020, 146:98-111. |
30 | ZHANG Q L, MA C, ZHANG Y, et al.. A single-nucleotide polymorphism in the promoter of a hairpin RNA contributes to alternaria alternata leaf spot resistance in apple (Malus × domestica) [J]. Plant Cell, 2018, 30(8):1924-1942. |
31 | MAO H D, LI S M, WANG Z X, et al.. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings [J]. Plant Biotechnol. J., 2020, 18(4):1078-1092. |
[1] | Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20. |
[2] | Fangling WANG, Mingyue ZHANG, Yaru ZHOU, Qinglin GUAN, Xinyan LI, Qiu ZHONG, Mingqin ZHAO. Effect of TS-PAA Water Retaining Agent on Growth and Photosynthetic Characteristics of Cigar under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 162-172. |
[3] | Jiangyan LI, Xianhua ZHANG, Xiaoqiang YUAN. Drought Resistance Index Screening and Drought Resistance Evaluation of Dactylisglomerata Germplasm Resources During Seedling [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 84-94. |
[4] | Wei YAN, Yutao WANG, Yonghao ZHANG, Haixia LIU, Dayong HAN, Aiwen ZHU. Study on Expressions of CNR1 and FABP4 Genes in Ovine Intramuscular Preadipocytes [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 95-102. |
[5] | Xingdong MA, Yehong GUO, Meiying LI, Xiaxia YU, Yingjie XU, Wenjuan ZHU, Jie FENG. Response of Drought Stress of Lyciumruthenicum Murr. Under Different Nitrogen Applications [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 193-200. |
[6] | Yuancheng ZHOU, Yongli CAO, Zhen WANG, Zhirong JIA, Yong YAO, Aiping CHEN. Screening and Evaluation of Drought Resistance Indexes in Different Barley Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 86-92. |
[7] | Xiaochun SUN, Wenjing HUANG, Bo LI. Effects of Exogenous Salicylic Acid on Physiological and Biochemical Indexes and Related Gene Expression in Platycodongrandiflorus Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 63-70. |
[8] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, LIU Benshuai, ZHANG Xin, ZHANG Yang, WANG Zhixiu, JIANG Yong, XU Qi, CHANG Guobin, CHEN Guohong, . Mineral Element Depositions and Gene Expression Across Different Tissues of the Runzhou White Crested Ducks [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 63-73. |
[9] | LIU Yuan, ZHANG Xiuyan, XU Miaoyun, ZHENG Hongyan, ZOU Junjie, ZHANG Lan, WANG Lei. Global Small RNA Transcriptome Profiling of Rice Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 23-32. |
[10] | HU Yang, LI Gangtie, LI Xing, JIA Shouyi. Growth and Physiological Index of Tamarix leptostachys Bunge Seedlings Under Soil Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 43-50. |
[11] | ZHANG Haoyang, JIN Yinan, SUN Yanxin, LI Ziwei, GUO Xiaoheng, XU Zicheng*. Research Progress of Plant microRNAs in Drought Stress Response [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 27-36. |
[12] | WANG Deyun1,2, LIU Peipei1, CHEN Yunting1, XU Yueying1, ZHOU Li1, LUO Guangming1*. Effect of Drought Stress on Endogenous Hormone Content of Gardenia jasminoides Ellis [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 58-63. |
[13] | SU Yumeng§, ZHANG Xuting§, Terigele, TIAN Min, SHANG Xiaorui, LI Guojing, WANG Ruigang*. Identification of microRNAs in Caragana intermedia Kuang by High Throughput Sequencing Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 51-57. |
[14] | FAN Ningbo1, ZHOU Junxue2, JIANG Kai2, WANG Hong2, SHI Longfei2, GAO Yulong3*, CHEN Yi3*. Membrane Lipid Peroxidation and Its Relationship with Senescence-Related Genes in Main Veins of Flue-Cured Tobacco at Different Maturity Stages#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 66-72. |
[15] |
MA Panpan1,2, ZHAO Zengqiang1,2, ZHU Jianbo2, SUN Guoqing3*.
Physiological and Molecular Mechanisms of Drought and Salt Tolerance in Cotton
[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 27-36.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||