中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (9): 58-65.DOI: 10.13304/j.nykjdb.2021.0883
收稿日期:
2021-10-18
接受日期:
2022-01-18
出版日期:
2022-09-15
发布日期:
2022-10-11
作者简介:
郑龙 E-mail:ptagri@163.com
Received:
2021-10-18
Accepted:
2022-01-18
Online:
2022-09-15
Published:
2022-10-11
摘要:
为明确小白菜镉(Cd)含量的差异及基因型、环境的效应,利用AMMI(additive main multiplicative interaction)模型对福建省莆田市6个地点种植的6个小白菜品种的Cd含量进行分析。结果表明,不同品种小白菜在不同试点的Cd含量变异范围较大,小白菜地上部和地下部及试点土壤Cd含量间相关性不显著;基因型、环境及两者间互作效应对小白菜Cd含量存在极显著影响。对于小白菜地上部和地下部Cd含量,环境效应占总效应的比例分别为87.04%和65.97%,基因型与环境间的互作效应次之,基因型效应最小;表明环境差异是引起Cd含量变化的主要原因,选择适宜的种植地点是降低小白菜Cd含量的主要途径,因此为减少小白菜Cd含量,采取地区控制和品种搭配相结合的策略是最为有效的途径。根据Cd含量的表型值、AMMI双标图和稳定性分析结果,品种‘田园青冠’在兴沙村和东大村试点的小白菜地上部Cd含量低且稳定,生产上可优先选择。
中图分类号:
郑龙. 小白菜镉含量基因型与环境效应研究[J]. 中国农业科技导报, 2022, 24(9): 58-65.
Long ZHENG. Research on Effects of Genotypes and Environments on Cd Contents in Pakchoi[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 58-65.
试验点Experimental site | 经度 Longitude | 纬度 Latitude | 镉含量 Cadmium content/ (mg·kg-1) | pH | 有机质 Organic matter/(g·kg-1) | 碱解氮Alkali hydrolyzed nitrogen/(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
E1 | 119°04′25.91″E | 25°24′24.23″N | 0.107 4 | 5.8 | 27.9 | 164 | 94.2 | 341 |
E2 | 118°57′17.05″E | 25°22′06.33″N | 0.067 2 | 6.4 | 22.4 | 147 | 44.1 | 120 |
E3 | 118°39′51.28″E | 25°20′19.65″N | 0.088 3 | 5.2 | 41.8 | 159 | 112.2 | 203 |
E4 | 119°01′53.10″E | 25°23′08.34″N | 0.156 4 | 6.5 | 39.4 | 166 | 38.4 | 96 |
E5 | 119°03′28.35″E | 25°24′11.12″N | 0.141 7 | 6.8 | 24.6 | 109 | 41.2 | 102 |
E6 | 119°14′04.61″E | 25°31′32.30″N | 0.069 4 | 6.3 | 33.8 | 114 | 21.5 | 141 |
表1 试验地点的基本情况
Table 1 Basic Information about Experimental Sites
试验点Experimental site | 经度 Longitude | 纬度 Latitude | 镉含量 Cadmium content/ (mg·kg-1) | pH | 有机质 Organic matter/(g·kg-1) | 碱解氮Alkali hydrolyzed nitrogen/(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
E1 | 119°04′25.91″E | 25°24′24.23″N | 0.107 4 | 5.8 | 27.9 | 164 | 94.2 | 341 |
E2 | 118°57′17.05″E | 25°22′06.33″N | 0.067 2 | 6.4 | 22.4 | 147 | 44.1 | 120 |
E3 | 118°39′51.28″E | 25°20′19.65″N | 0.088 3 | 5.2 | 41.8 | 159 | 112.2 | 203 |
E4 | 119°01′53.10″E | 25°23′08.34″N | 0.156 4 | 6.5 | 39.4 | 166 | 38.4 | 96 |
E5 | 119°03′28.35″E | 25°24′11.12″N | 0.141 7 | 6.8 | 24.6 | 109 | 41.2 | 102 |
E6 | 119°14′04.61″E | 25°31′32.30″N | 0.069 4 | 6.3 | 33.8 | 114 | 21.5 | 141 |
部位Part | 试验点Experimental site | G1 | G2 | G3 | G4 | G5 | G6 |
---|---|---|---|---|---|---|---|
地上部Aboveground parts | E1 | 0.007 8 | 0.012 2 | 0.009 1 | 0.014 1 | 0.007 3 | 0.016 6 |
E2 | 0.003 7 | 0.004 1 | 0.006 0 | 0.008 4 | 0.006 6 | 0.001 7 | |
E3 | 0.017 7 | 0.023 1 | 0.017 8 | 0.025 0 | 0.021 8 | 0.019 9 | |
E4 | 0.017 8 | 0.017 3 | 0.013 4 | 0.017 8 | 0.016 6 | 0.013 6 | |
E5 | 0.017 8 | 0.012 0 | 0.018 6 | 0.021 9 | 0.015 9 | 0.019 0 | |
E6 | 0.003 0 | 0.002 6 | 0.002 8 | 0.002 2 | 0.001 3 | 0.004 0 | |
平均Mean | 0.011 3 | 0.011 9 | 0.011 3 | 0.014 9 | 0.011 6 | 0.012 5 | |
地下部Underground parts | E1 | 0.089 4 | 0.052 7 | 0.057 8 | 0.057 7 | 0.105 2 | 0.043 1 |
E2 | 0.033 6 | 0.024 1 | 0.021 9 | 0.020 9 | 0.015 8 | 0.013 3 | |
E3 | 0.034 9 | 0.069 3 | 0.025 2 | 0.031 4 | 0.030 5 | 0.026 1 | |
E4 | 0.029 1 | 0.034 4 | 0.036 6 | 0.029 8 | 0.028 6 | 0.034 2 | |
E5 | 0.026 4 | 0.031 0 | 0.034 3 | 0.037 3 | 0.030 0 | 0.033 8 | |
E6 | 0.014 1 | 0.022 8 | 0.019 1 | 0.016 4 | 0.018 7 | 0.011 0 | |
平均Mean | 0.037 9 | 0.039 1 | 0.032 5 | 0.032 3 | 0.038 1 | 0.026 9 |
表2 不同小白菜品种在不同地点的Cd含量 (mg·kg-1)
Table 2 Cd contents of pakchoi planted in different sites
部位Part | 试验点Experimental site | G1 | G2 | G3 | G4 | G5 | G6 |
---|---|---|---|---|---|---|---|
地上部Aboveground parts | E1 | 0.007 8 | 0.012 2 | 0.009 1 | 0.014 1 | 0.007 3 | 0.016 6 |
E2 | 0.003 7 | 0.004 1 | 0.006 0 | 0.008 4 | 0.006 6 | 0.001 7 | |
E3 | 0.017 7 | 0.023 1 | 0.017 8 | 0.025 0 | 0.021 8 | 0.019 9 | |
E4 | 0.017 8 | 0.017 3 | 0.013 4 | 0.017 8 | 0.016 6 | 0.013 6 | |
E5 | 0.017 8 | 0.012 0 | 0.018 6 | 0.021 9 | 0.015 9 | 0.019 0 | |
E6 | 0.003 0 | 0.002 6 | 0.002 8 | 0.002 2 | 0.001 3 | 0.004 0 | |
平均Mean | 0.011 3 | 0.011 9 | 0.011 3 | 0.014 9 | 0.011 6 | 0.012 5 | |
地下部Underground parts | E1 | 0.089 4 | 0.052 7 | 0.057 8 | 0.057 7 | 0.105 2 | 0.043 1 |
E2 | 0.033 6 | 0.024 1 | 0.021 9 | 0.020 9 | 0.015 8 | 0.013 3 | |
E3 | 0.034 9 | 0.069 3 | 0.025 2 | 0.031 4 | 0.030 5 | 0.026 1 | |
E4 | 0.029 1 | 0.034 4 | 0.036 6 | 0.029 8 | 0.028 6 | 0.034 2 | |
E5 | 0.026 4 | 0.031 0 | 0.034 3 | 0.037 3 | 0.030 0 | 0.033 8 | |
E6 | 0.014 1 | 0.022 8 | 0.019 1 | 0.016 4 | 0.018 7 | 0.011 0 | |
平均Mean | 0.037 9 | 0.039 1 | 0.032 5 | 0.032 3 | 0.038 1 | 0.026 9 |
变异来源 Source of variation | 自由度 Degree of freedom | 地上部Cd含量 Cd contents in aboveground parts | 地下部Cd含量 Cd contents in underground parts | ||||
---|---|---|---|---|---|---|---|
平方和 Sum of squares | F值 F value | P值 P value | 平方和 Sum of squares | F值 F value | P值 P value | ||
总变异 Total variation | 107 | 0.005 4 | — | — | 0.043 2 | — | — |
基因型Genotype (G) | 5 | 0.000 2 | 54.657 6 | 0.000 1 | 0.002 0 | 69.149 3 | 0.000 1 |
环境Environment (E) | 5 | 0.004 7 | 1 510.020 3 | 0.000 1 | 0.028 5 | 977.485 3 | 0.000 1 |
基因型×环境交互作用 G×E interaction | 25 | 0.000 5 | 31.808 7 | 0.000 1 | 0.012 2 | 83.739 0 | 0.000 1 |
iPCA1 | 9 | 0.000 2 | 3.908 1 | 0.000 4 | 0.008 6 | 27.022 4 | 0.000 1 |
iPCA2 | 7 | 0.000 2 | 3.806 6 | 0.001 4 | 0.002 8 | 11.451 2 | 0.000 1 |
iPCA3 | 5 | 0.000 1 | 2.403 4 | 0.045 0 | 0.000 6 | 3.434 5 | 0.007 7 |
残差 Residual | 4 | 0.000 0 | — | — | 0.000 1 | — | — |
误差 Error | 72 | 0.000 0 | — | — | 0.000 4 | — | — |
表3 小白菜Cd含量的方差分析和AMMI分析
Table 3 Variance analysis and AMMI model analysis of Cd contents in pakchoi
变异来源 Source of variation | 自由度 Degree of freedom | 地上部Cd含量 Cd contents in aboveground parts | 地下部Cd含量 Cd contents in underground parts | ||||
---|---|---|---|---|---|---|---|
平方和 Sum of squares | F值 F value | P值 P value | 平方和 Sum of squares | F值 F value | P值 P value | ||
总变异 Total variation | 107 | 0.005 4 | — | — | 0.043 2 | — | — |
基因型Genotype (G) | 5 | 0.000 2 | 54.657 6 | 0.000 1 | 0.002 0 | 69.149 3 | 0.000 1 |
环境Environment (E) | 5 | 0.004 7 | 1 510.020 3 | 0.000 1 | 0.028 5 | 977.485 3 | 0.000 1 |
基因型×环境交互作用 G×E interaction | 25 | 0.000 5 | 31.808 7 | 0.000 1 | 0.012 2 | 83.739 0 | 0.000 1 |
iPCA1 | 9 | 0.000 2 | 3.908 1 | 0.000 4 | 0.008 6 | 27.022 4 | 0.000 1 |
iPCA2 | 7 | 0.000 2 | 3.806 6 | 0.001 4 | 0.002 8 | 11.451 2 | 0.000 1 |
iPCA3 | 5 | 0.000 1 | 2.403 4 | 0.045 0 | 0.000 6 | 3.434 5 | 0.007 7 |
残差 Residual | 4 | 0.000 0 | — | — | 0.000 1 | — | — |
误差 Error | 72 | 0.000 0 | — | — | 0.000 4 | — | — |
因素 Factor | 编号 No. | 地上部 Aboveground parts | 地下部 Underground parts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
iPCA1 | iPCA2 | iPCA3 | Di | 排序 Ranking | iPCA1 | iPCA2 | iPCA3 | Di | 排序Ranking | ||
品种 Variety | G1 | -0.020 9 | 0.026 7 | -0.044 0 | 0.055 5 | 4 | -0.091 2 | 0.031 4 | 0.092 4 | 0.133 6 | 4 |
G2 | -0.008 6 | -0.069 9 | -0.012 6 | 0.071 5 | 5 | 0.114 7 | 0.130 9 | -0.013 8 | 0.174 5 | 6 | |
G3 | -0.000 7 | 0.043 0 | -0.000 9 | 0.043 1 | 1 | 0.026 0 | -0.075 0 | 0.010 7 | 0.080 1 | 2 | |
G4 | 0.000 2 | 0.006 8 | 0.052 8 | 0.053 2 | 3 | 0.031 8 | -0.039 3 | 0.001 1 | 0.050 6 | 1 | |
G5 | -0.047 0 | -0.004 0 | 0.011 3 | 0.048 5 | 2 | -0.157 2 | 0.022 7 | -0.071 0 | 0.174 0 | 5 | |
G6 | 0.076 9 | -0.002 6 | -0.006 6 | 0.077 2 | 6 | 0.076 0 | -0.070 7 | -0.019 3 | 0.105 5 | 3 | |
试验点 Experimental site | E1 | 0.068 6 | -0.027 8 | 0.007 1 | 0.074 4 | 6 | -0.204 6 | 0.028 9 | -0.014 4 | 0.207 1 | 6 |
E2 | -0.042 1 | 0.015 8 | 0.021 1 | 0.049 7 | 2 | 0.009 6 | -0.013 0 | 0.107 3 | 0.108 5 | 4 | |
E3 | -0.016 7 | -0.043 4 | 0.033 1 | 0.057 1 | 4 | 0.087 1 | 0.140 5 | -0.015 3 | 0.166 0 | 5 | |
E4 | -0.038 0 | -0.015 8 | -0.030 2 | 0.051 1 | 3 | 0.043 9 | -0.059 3 | -0.012 2 | 0.074 8 | 2 | |
E5 | 0.018 0 | 0.065 8 | 0.016 5 | 0.070 2 | 5 | 0.039 9 | -0.078 8 | -0.033 7 | 0.094 5 | 3 | |
E6 | 0.010 2 | 0.005 5 | -0.047 6 | 0.049 0 | 1 | 0.024 1 | -0.018 2 | -0.031 8 | 0.043 9 | 1 |
表4 基因型与环境条件交互作用的主成分值及稳定性参数
Table 4 Principal component values and stability parameters of the genotype-environment interactions
因素 Factor | 编号 No. | 地上部 Aboveground parts | 地下部 Underground parts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
iPCA1 | iPCA2 | iPCA3 | Di | 排序 Ranking | iPCA1 | iPCA2 | iPCA3 | Di | 排序Ranking | ||
品种 Variety | G1 | -0.020 9 | 0.026 7 | -0.044 0 | 0.055 5 | 4 | -0.091 2 | 0.031 4 | 0.092 4 | 0.133 6 | 4 |
G2 | -0.008 6 | -0.069 9 | -0.012 6 | 0.071 5 | 5 | 0.114 7 | 0.130 9 | -0.013 8 | 0.174 5 | 6 | |
G3 | -0.000 7 | 0.043 0 | -0.000 9 | 0.043 1 | 1 | 0.026 0 | -0.075 0 | 0.010 7 | 0.080 1 | 2 | |
G4 | 0.000 2 | 0.006 8 | 0.052 8 | 0.053 2 | 3 | 0.031 8 | -0.039 3 | 0.001 1 | 0.050 6 | 1 | |
G5 | -0.047 0 | -0.004 0 | 0.011 3 | 0.048 5 | 2 | -0.157 2 | 0.022 7 | -0.071 0 | 0.174 0 | 5 | |
G6 | 0.076 9 | -0.002 6 | -0.006 6 | 0.077 2 | 6 | 0.076 0 | -0.070 7 | -0.019 3 | 0.105 5 | 3 | |
试验点 Experimental site | E1 | 0.068 6 | -0.027 8 | 0.007 1 | 0.074 4 | 6 | -0.204 6 | 0.028 9 | -0.014 4 | 0.207 1 | 6 |
E2 | -0.042 1 | 0.015 8 | 0.021 1 | 0.049 7 | 2 | 0.009 6 | -0.013 0 | 0.107 3 | 0.108 5 | 4 | |
E3 | -0.016 7 | -0.043 4 | 0.033 1 | 0.057 1 | 4 | 0.087 1 | 0.140 5 | -0.015 3 | 0.166 0 | 5 | |
E4 | -0.038 0 | -0.015 8 | -0.030 2 | 0.051 1 | 3 | 0.043 9 | -0.059 3 | -0.012 2 | 0.074 8 | 2 | |
E5 | 0.018 0 | 0.065 8 | 0.016 5 | 0.070 2 | 5 | 0.039 9 | -0.078 8 | -0.033 7 | 0.094 5 | 3 | |
E6 | 0.010 2 | 0.005 5 | -0.047 6 | 0.049 0 | 1 | 0.024 1 | -0.018 2 | -0.031 8 | 0.043 9 | 1 |
1 | 李海华,刘建武,李树人,等.土壤—植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34. |
LI H H, LIU J W, LI S R, et al.. The present progness of research on heavy metal pollution and plant enrichment in soil-plant system [J]. J. Henan Agric. Univ., 2000, 34(1):30-34. | |
2 | 景延秋,袁秀秀,王宇辰,等.农田土壤重金属污染及防治对策[J].湖南农业科学,2016(3):42-45. |
JING Y Q, YUAN X X, WANG Y C, et al.. Heavy metal contamination in cropland soil and control measures [J]. Hunan Agric. Sci., 2016(3):42-45. | |
3 | 陈俭霖,史公军.城郊菜地土壤和蔬菜重金属污染研究进展[J].北方园艺,2005(3):8-9. |
CHEN J L, SHI G J. Research advances on heavy metal pollution in vegetables and soils for vegetable cultivation in urban areas [J]. Northern Hortic., 2005(3):8-9. | |
4 | 张莉,周康.贵州省土壤重金属污染现状与对策[J].贵州农业科学,2005,33(5):114-115. |
ZHANG L, ZHOU K. Current status and countermeasures for heavy metal contamination in soil in Guizhou [J]. Guizhou Agric. Sci., 2005, 33(5):114-115. | |
5 | 常鹏云,谢英荷,程红艳,等.镉对6种根菜类蔬菜生长状况及品质的影响研究[J].天津农业科学,2012,18(1):126-130. |
CHANG P Y, XIE Y H, CHENG H Y, et al.. Study of effect of cadmium on growth condition and quality of six kinds of rooted vegetables [J]. Tianjin Agric. Sci., 2012, 18(1):126-130. | |
6 | 代平,安曈昕,吴伯志,等.云南通海蔬菜区土壤和蔬菜中重金属及农药残留分析[J].安徽农业科学,2012,40(1):161-163, 170. |
DAI P, AN T X, WU B Z, et al.. Investigations of heavy metals and pesticide contents in soils and vegetables in Tonghai county of Yunnan [J]. J. Anhui Agric. Sci., 2012, 40(1):161-163, 170. | |
7 | 张娇.湖南洞庭湖地区铅等重金属地球化学行为分析[D].北京:中国地质大学,2007. |
ZHANG J. Study on geochemistry behavior of Pb et al heavy metals in the Dongting lake region of Hunan province [D]. Beijing: China University of Geosciences, 2007. | |
8 | 田秀红.我国城郊蔬菜重金属污染研究进展[J].食品科学,2009,30(21):449-453. |
TIAN X H. Research progress of heavy-metal contamination of vegetables grown in Chinese suburb [J]. Food Sci., 2009, 30(21):449-453. | |
9 | 曾希柏,李莲芳,梅旭荣.中国蔬菜土壤重金属含量及来源分析[J].中国农业科学,2007,10(11):2507-2517. |
ZENG X B, LI L F, MEI X R. Heavy metal content in soils of vegetable-growing lands in China and source analysis [J]. Sci. Agric. Sin., 2007, 40(11):2507-2517. | |
10 | 陈瑛,李廷强,杨肖娥,等.不同品种小白菜对镉的吸收积累差异[J].应用生态学报,2009,20(3):736-740. |
CHEN YING, LI T Q, YANG X E, et al.. Differences in cadmium absorption and accumulation of Brassica varieties on cadmium-polluted soil [J]. Chin. J. Appl. Ecol., 2009, 20(3):736-740. | |
11 | 何飞飞,杨君.小白菜吸收积累镉的品种差异研究[J].中国农学通报,2011,27(22):172-175. |
HE F F, YANG J. Study on the cultivar difference of Cd uptake and accumulation of Brassica chinensis [J]. Chin. Agric. Sci. Bull., 2011, 27(22):172-175. | |
12 | 赵建忠,李冉,封朝晖.镉在小白菜体内的累积规律及其生物效应的研究[J].中国土壤与肥料,2009(4):40-43. |
ZHAO J Z, LI R, FENG C H. A study on the physiological effects of cadmium on bok choy and its accumulation therein [J]. Soils Fert. Sci. China, 2009(4):40-43. | |
13 | 张菊平,崔文朋,焦新菊,等. 低浓度镉对小白菜生长及营养元素吸收积累的影响[J]. 江西农业大学学报,2011,33(1):22-28. |
ZHANG J P, CUI W P, JIAO X J, et al.. Effect of low concentration cadmium on the growth and accumulation of nutrient elements in pakchoi [J]. Acta Agric. Univ. Jiangxiensis, 2011, 33(1):22-28. | |
14 | 代成成.镉低积累小白菜品种的筛选[D].武汉:华中农业大学,2010. |
DAI C C. Screening of low cadmium accumulation Chinese cabbage varieties [D]. Wuhan: Huazhong Agricultural University, 2010. | |
15 | 孙光闻.小白菜镉积累及毒害生理机制的研究[D].杭州:浙江大学,2004. |
SUN G W. Investigation of physiological mechanisms of cadmium accumulation and toxicity in pakchoi [D]. Hhangzhou: Zhejiang University, 2004. | |
16 | 冯英梅,曹建华,彭辉.镉对不同品种小白菜生长及其品质的影响[J].广西师范大学学报(自然科学版),2010,28(2):112-116. |
FENG Y M, CAO J H, PENG H. Effects of cadmium on the growth and quality of different variety of pakchoi [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2010, 28(2):112-116. | |
17 | 陈志雄,胡润芳,林国强.菜用大豆新品种区域试验的AMMI模型分析[J].大豆通报,2007(1):32-33. |
CHEN Z X, HU R F, LIN G Q. AMMI model analysis on regional test for new vegetable soybean varieties [J]. Soybean Bull., 2007(1):32-33. | |
18 | 国家卫生和计划生育委员会. 食品安全国家标准食品中镉的测定: [S].北京:中国标准出版社,2014. |
19 | 柯庆明.水稻对镉累积的遗传生态学特性研究[D].福州:福建农林大学,2006. |
KE Q M. The properties of genetic ecology on cadmium accumulation in rice (Oryza sativa L.) [D]. Fuzhou: Agriculture & Forestry University, 2006. | |
20 | 张彦威,张军,徐冉,李伟,等.籽粒有毒重金属低富集大豆品种筛选及与环境作用效应分析[J].大豆科学,2019,38(6):839-846. |
ZHANG Y W, ZHANG J, XU R, et al.. Screening of low enriched soybean varieties with toxic heavy metals and the interaction with the environment [J]. Soybean Sci., 2019, 38(6):839-846. | |
21 | 滕振宁,张玉烛,方宝华,等.应用AMMI双标图分析早稻稻米镉含量的基因型与环境互作效应[J].生态环境学报,2016,25(4):692-697. |
TENG Z N, ZHANG Y Z, FANG B H, et al.. AMMI-Biplot analysis of genotypic and environmental effects on cadmium content in early rice [J]. Ecol. Environ., 2016, 25(4):692-697. | |
22 | 程旺大,张国平,姚海根,等.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性[J].作物学报,2006,32(4):573-579. |
CHENG W D, ZHANG G P, YAO H G, et al.. Genotypic and environmental variation and their stability of As, Cr, Cd, Ni and Pb concentrations in the grains of Japonica rice [J]. Acta Agron. Sin., 2006, 32(4):573-579. | |
23 | 伍钧,吴传星,孟晓霞,等.重金属低积累玉米品种的稳定性和环境适应性分析[J].农业环境科学学报,2011,30(11):2160-2167. |
WU J, WU C X, MENG X X, et al.. The analysis of stability and adaptability on low accumulation of heavy metals in various cultivars of Zea mays [J]. J. Agro-Environ. Sci., 2011, 30(11):2160-2167. | |
24 | 王炜,王怀昕,张元琴,等.基于AMMI模型的贵州省水稻区试品种稳定性及适应性分析[J].现代农业科技,2020(16):1-2. |
25 | 陈俊山,陈欣,刘佩锋,等.基于AMMI模型的二化地区部分一化性柞蚕品种产茧量性状的稳定性分析[J].蚕业科学,2021,47(1):88-93. |
CHEN J S, CHEN X, LIU P F, et al.. Analysis on cocoon yield stability of some univoltine tussah varieties in Bivoltine region based on AMMI model [J]. Acta Sericol. Sin., 2021, 47(1):88-93. | |
26 | DASGUPTA T, HOSSAIN S A, PRICE M A H, et al.. An arsenate tolerance gene on chromosome 6 of rice [J]. New Phytologist, 2004, 163(1):45-49. |
27 | 关共凑,徐颂,黄金国.重金属在土壤-水稻体系中的分布、变化及迁移规律分析[J].生态环境,2006,15(2):315-318. |
GUAN G C, XU S, HUANG J G. The regularity of distribution, change and migration of heavy metals in soil-rice plant system [J]. Ecol. Environ., 2006, 15(2):315-318. | |
28 | 秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325. |
QIN T C, WU Y S, WANG H X, et al.. Effect of cadmium, lead and their interactionson the physiological and ecological characteristics of root system of Brassica chinensis [J]. Acta Ecol. Sin., 1998, 18(3):320-325. | |
29 | 张敬锁,李花粉,衣纯真,等.有机酸对活化土壤中镉和小麦吸收镉的影响[J].土壤学报,1999,36(1):61-66. |
ZHANG J S, LI H F, YI C Z, et al.. Effect of organic acids on mobilization of cadmium in soil and cadmiun uptake by wheat plant [J]. Acta Ecol. Sin., 1999, 36(1):61-66. | |
30 | 林大松,徐应明,孙国红,等.土壤重金属污染复合效应对小白菜生长及重金属累积的影响[J].农业环境科学学报,2006,25(z1):72-75. |
LIN D S, XU Y M, SUN G H, et al.. Combined effects and bioaccumulation of heavy metals in pakchoi grown in polluted soil [J]. J. Agro-Environ. Sci., 2006, 25(z1):72-75. | |
31 | 白庆中,宋燕光,王晖.有机物对重金属在粘土中吸附的影响[J].环境科学,2000,21(5):64-67. |
BAI Q Z, SONG Y G, WANG H. Effect of organic acids on heavy metal migration in clay [J]. Chin. J. Environ. Sci., 2000, 21(5):64-67. | |
32 | 张秀梅,唐以剑,章申.白洋淀地区土壤-植物系统中污染物含量与变化规律研究[J].地理科学进展, 1997,16(2):62-69. |
ZHANG X M, TANG Y J, ZHANG S. Study on the content and distribution of contamination in soil-plant system in Baiyangdian region [J]. Progress Geography, 1997, 16(2):62-69. | |
33 | 温娜,王景安,刘仲齐.利用AMMI模型分析稻米镉含量的基因型与环境互作效应[J].农业环境科学学报, 2015,34(5):817-823. |
WEN N, WANG J A, LIU Z Q. Analysis of genotypic and environmental effects on cadmium content in rice by AMMI model [J]. J. Agro-Environ. Sci., 2015, 34(5):817-823. | |
34 | 唐桃霞,王致和,施志国,等.不同基因型甜高粱对重金属的吸收规律研究[J].作物杂志,2019(6):50-56. |
TANG T X, WANG Z H, SHI Z G, et al.. Research on the absorption of heavy metals by different genotypes in sweet sorghum [J]. Crops, 2019(6):50-56. |
[1] | 贾睿琪, 郭子昂, 姚晨, 李璞, 腊贵晓, 陆夏梓, 郭虹妤, 李烜桢. 低磷胁迫对小麦镉吸收的影响[J]. 中国农业科技导报, 2022, 24(8): 154-160. |
[2] | 赵瑞雪, 孙坦, 杨晓蓉, 王剑. 数据密集型环境下农业科研信息化发展路径研究[J]. 中国农业科技导报, 2022, 24(7): 1-7. |
[3] | 白思琦, 邹晓荣, 丁鹏, 林铭. 基于环境因子的东南太平洋智利竹筴鱼剩余产量模型建立[J]. 中国农业科技导报, 2022, 24(7): 197-204. |
[4] | 张晓晴, 李壮壮, 陈世宝, 孟昱, 任大军, 张淑琴. 灌木幼苗对镉毒害的敏感性差异[J]. 中国农业科技导报, 2022, 24(4): 173-184. |
[5] | 徐君, 李婷, 胡敏骏, 蒋玉根, 闫慧莉, 许文秀, 虞轶俊, 何振艳. 水稻籽粒镉积累KASP分子标记LCd-38的开发与利用[J]. 中国农业科技导报, 2022, 24(3): 40-47. |
[6] | 李慧泉, 毛世平. 我国主要农作物绿色全要素生产率分析[J]. 中国农业科技导报, 2022, 24(2): 58-67. |
[7] | 杨胜龙, 史慧敏, 范秀梅, 崔雪森, 王斐, 张衡. 热带中西太平洋黄鳍金枪鱼栖息水层空间分析[J]. 中国农业科技导报, 2022, 24(1): 183-191. |
[8] | 朱燕芳, 白耀栋, 王元元, 李玉斌, 马麒龙, 郝燕, 赵明新. 遮阴处理对酿酒葡萄‘西拉’果实皱缩的影响[J]. 中国农业科技导报, 2022, 24(1): 54-62. |
[9] | 饶晓燕, 吴建伟, 李春朋, 熊晓菲, 霍洪彦, . 智慧苹果园“空-天-地”一体化监控系统设计与研究[J]. 中国农业科技导报, 2021, 23(6): 59-66. |
[10] | 岳琳祺,郭佳晖,白雄辉,施卫萍,郭平毅*,郭杰*. 叶面喷施硒肥对不同基因型谷子农艺性状及籽粒硒含量的影响[J]. 中国农业科技导报, 2021, 23(4): 154-163. |
[11] | 张茂,徐彦红,席溢*,裴应杰,黄本用,杨克超,李金孟. 铅、锌、镉胁迫对多年生黑麦草生长及生理生化特性的影响[J]. 中国农业科技导报, 2021, 23(3): 41-50. |
[12] | 张英, 马玉申, 汪娅梅, 刘泽航, 许岳军, 邢虎成, 揭雨成. 苎麻种质资源镉富集能力基因型差异研究[J]. 中国农业科技导报, 2021, 23(12): 54-65. |
[13] | 李婷, 胡敏骏, 徐君, 蒋玉根, 闫慧莉, 虞轶俊, 何振艳. 镉低积累水稻品种选育研究进展[J]. 中国农业科技导报, 2021, 23(11): 36-46. |
[14] | 郝正刚,赵会君,魏玉清*,曾周琦,王志恒. 甜高粱对镉胁迫的生理生化响应及镉富集研究[J]. 中国农业科技导报, 2021, 23(1): 30-42. |
[15] | 罗勇1,焦桂珍1,刘胜波2*,魏跃伟1,邵惠芳1,贾宏昉1*. 不同浓度镉对烟草幼苗生长发育及生长素相关基因表达的影响[J]. 中国农业科技导报, 2021, 23(1): 58-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||