中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (1): 92-99.DOI: 10.13304/j.nykjdb.2021.1001
收稿日期:
2021-11-25
接受日期:
2022-03-03
出版日期:
2023-01-15
发布日期:
2023-04-17
通讯作者:
廖桂平
作者简介:
卢信 E-mail:1103291439@qq.com;
基金资助:
Xin LU(), Guiping LIAO(
), Fan LIU
Received:
2021-11-25
Accepted:
2022-03-03
Online:
2023-01-15
Published:
2023-04-17
Contact:
Guiping LIAO
摘要:
高油酸油菜籽品种是当前油菜育种方向之一,为开发高效、无损测定油酸含量的方法,提高油菜高油酸种质资源筛选效率,选用3个油菜品种为材料,分别采集其种子光谱成像信息及油酸含量数据,首先对光谱信息进行11种预处理,确定多元散射校正(MSC)最佳预处理方法,然后基于主成分分析(PCA)、连续投影(SPA)、竞争性自适应重加权采样(CARS)方法对数据进行降维,最后分别建立支持向量机(SVM)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)3种定量分析模型,对油菜油酸含量进行无损检测。通过改变训练样本的数量来测试模型,为验证模型的稳定性,用相关系数(R)、均方根误差(RMSE)进行效果评价。结果表明,在所有模型中,多元散射校正+竞争性自适应重加权采样+极限学习机(MSC+CARS+ELM)模型预测效果最好,校正集相关系数(Rc)、均方根误差(RMSEc)分别为0.894、1.993 4%,预测集相关系数(Rp)为0.868,均方根误差(RMSEp)为1.069 8%,可更加准确地预测油酸含量,创建一种快速、无损检测油菜种子油酸含量的方法,为利用高光谱技术进行油菜营养品质无损检测提供理论依据。
中图分类号:
卢信, 廖桂平, 刘凡. 基于高光谱成像技术的油菜种子油酸含量反演模型[J]. 中国农业科技导报, 2023, 25(1): 92-99.
Xin LU, Guiping LIAO, Fan LIU. Inversion Model of Oleic Acid Content in Rape Seeds Based on Hyperspectral Imaging Technology[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 92-99.
样本 Sample | 样本数 Sample number | 均值 Mean/% | 最大值 Max/% | 最小值 Min/% | 标准偏差 Standard deviation | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
校正集Correction set | 66 | 64.176 | 70.582 | 60.152 | 3.867 | 0.578 |
预测集Prediction set | 33 | 64.573 | 71.256 | 59.262 | 3.526 | 0.599 |
表1 油菜籽样品油酸含量
Table 1 Statistical characteristic of oleic acid content rapeseed samples
样本 Sample | 样本数 Sample number | 均值 Mean/% | 最大值 Max/% | 最小值 Min/% | 标准偏差 Standard deviation | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
校正集Correction set | 66 | 64.176 | 70.582 | 60.152 | 3.867 | 0.578 |
预测集Prediction set | 33 | 64.573 | 71.256 | 59.262 | 3.526 | 0.599 |
方法Method | 校正集Correction set | 预测集Prediction set | |||||
---|---|---|---|---|---|---|---|
PC | RC | RMSEC | RP | RMSEP | RPD | ||
均值中心化MC | 6 | 0.811 | 1.281 | 0.563 | 1.477 | 1.532 | |
标准化Autoscales | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
标准正态变量交化SNV | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
SG平滑Savitzk-golay | 5 | 0.534 | 2.935 | 0.601 | 2.514 | 1.554 | |
多元散射校正MSC | 5 | 0.765 | 1.214 | 0.743 | 1.421 | 2.124 | |
移动平均平滑MA | 7 | 0.721 | 1.645 | 0.563 | 1.458 | 1.542 | |
归一化Normalize | 10 | 0.779 | 1.911 | 0.350 | 2.212 | 1.143 | |
直接差分二阶求导DDSD | 8 | 0.685 | 1.412 | 0.523 | 1.442 | 1.723 | |
直接差分一阶求导DDFD | 9 | 0.652 | 1.321 | 0.624 | 2.031 | 1.586 | |
二阶求导2nd-derivative | 14 | 0.356 | 3.451 | 0.528 | 1.584 | 1.295 | |
一阶求导1st-derivative | 12 | 0.632 | 1.356 | 0.634 | 1.536 | 1.846 |
表2 不同预处理方法的油酸PLS模型
Table 2 PLS model of acidity content by different pretreatment methods
方法Method | 校正集Correction set | 预测集Prediction set | |||||
---|---|---|---|---|---|---|---|
PC | RC | RMSEC | RP | RMSEP | RPD | ||
均值中心化MC | 6 | 0.811 | 1.281 | 0.563 | 1.477 | 1.532 | |
标准化Autoscales | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
标准正态变量交化SNV | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
SG平滑Savitzk-golay | 5 | 0.534 | 2.935 | 0.601 | 2.514 | 1.554 | |
多元散射校正MSC | 5 | 0.765 | 1.214 | 0.743 | 1.421 | 2.124 | |
移动平均平滑MA | 7 | 0.721 | 1.645 | 0.563 | 1.458 | 1.542 | |
归一化Normalize | 10 | 0.779 | 1.911 | 0.350 | 2.212 | 1.143 | |
直接差分二阶求导DDSD | 8 | 0.685 | 1.412 | 0.523 | 1.442 | 1.723 | |
直接差分一阶求导DDFD | 9 | 0.652 | 1.321 | 0.624 | 2.031 | 1.586 | |
二阶求导2nd-derivative | 14 | 0.356 | 3.451 | 0.528 | 1.584 | 1.295 | |
一阶求导1st-derivative | 12 | 0.632 | 1.356 | 0.634 | 1.536 | 1.846 |
主成分 Principal component | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|
P1 | 87.77 | 87.77 |
P2 | 9.77 | 97.54 |
P3 | 1.26 | 98.81 |
P4 | 0.27 | 99.08 |
P5 | 0.14 | 99.23 |
表3 前5个主成分累计贡献率
Table 3 Cumulative contribution rate of the first five principal components
主成分 Principal component | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|
P1 | 87.77 | 87.77 |
P2 | 9.77 | 97.54 |
P3 | 1.26 | 98.81 |
P4 | 0.27 | 99.08 |
P5 | 0.14 | 99.23 |
图3 CARS的特征选择A:变量优化过程;B: RMSECV变化;C:回归系数变化
Fig. 3 Feature selection of CARSA: Process of variable optimization; B: Change of RMSECV; C: Change of regression coefficient
模型 Model | 处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | ||
SVM | MSC+PCA+SVM | 0.844 | 1.124 4 | 0.648 | 3.563 8 |
MSC+CARS+SVM | 0.796 | 4.234 7 | 0.721 | 3.894 5 | |
MSC+SPA+SVM | 0.772 | 2.423 5 | 0.760 | 2.562 6 | |
ELM | MSC+PCA+ELM | 0.774 | 3.473 4 | 0.735 | 2.143 4 |
MSC+CARS+ELM | 0.894 | 0.993 4 | 0.868 | 1.069 8 | |
MSC+SPA+ELM | 0.763 | 1.836 2 | 0.778 | 1.783 4 | |
LSSVM | MSC+PCA+LSSVM | 0.820 | 1.146 3 | 0.596 | 4.233 9 |
MSC+CARS+LSSVM | 0.742 | 1.968 2 | 0.667 | 3.847 2 | |
MSC+SPA+LSSVM | 0.801 | 1.804 5 | 0.791 | 1.769 8 |
表4 光谱变量多种处理下建模预测效果
Table 4 Modeling and prediction effect of spectral variable processing
模型 Model | 处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | ||
SVM | MSC+PCA+SVM | 0.844 | 1.124 4 | 0.648 | 3.563 8 |
MSC+CARS+SVM | 0.796 | 4.234 7 | 0.721 | 3.894 5 | |
MSC+SPA+SVM | 0.772 | 2.423 5 | 0.760 | 2.562 6 | |
ELM | MSC+PCA+ELM | 0.774 | 3.473 4 | 0.735 | 2.143 4 |
MSC+CARS+ELM | 0.894 | 0.993 4 | 0.868 | 1.069 8 | |
MSC+SPA+ELM | 0.763 | 1.836 2 | 0.778 | 1.783 4 | |
LSSVM | MSC+PCA+LSSVM | 0.820 | 1.146 3 | 0.596 | 4.233 9 |
MSC+CARS+LSSVM | 0.742 | 1.968 2 | 0.667 | 3.847 2 | |
MSC+SPA+LSSVM | 0.801 | 1.804 5 | 0.791 | 1.769 8 |
1 | 李娜,杨涛.我国油菜籽产业发展现状及趋势展望[J].农业生产展望,2009,5 (2):15-17. |
LI N, YANG T. Rapeseed industry development present situation and trend in our country [J]. Agric. Production Outlook, 2009,5 (2):15-17. | |
2 | 张垚,李云昌,梅德圣,等.油菜油脂研究进展[J].植物学通报,2007,24(4):435-443. |
ZHANG Y, LI Y C, MEI D S, et al.. Advances in liplid research of rapesced [J]. Chin. Bull. Bot., 2007,24(4):435-443. | |
3 | 王东,王坤,吴静珠,等.基于光谱及成像技术的种子品质无损速测研究进展[J].光谱学与光谱分析,2021,41(1):52-59. |
WANG D, WANG K, WU J Z, et al.. Progress in nondestructive rapid measurement of seed quality based on spectroscopy and imaging technology [J]. Spect. Spectral. Anal., 2021,41(1):52-59. | |
4 | 徐扬帆,张秋平,徐明水,等.高含油高油酸油菜新品种‘帆鸣1号’选育及品质分析[J].分子植物育种,2020,18(15):5184-5190. |
XU Y F, ZHANG Q P, XU M S, et al.. The breeding and quality analysis of a new rape va iety fanming 1 with high oil conte nt and oleic acid content [J]. Mol. Plant Breeding, 2020,18(15):5184-5190. | |
5 | 杨柳,李东欣,谭太龙.不同油酸含量油菜脂肪酸含量分析[J].作物研究,2018,32(5):390-394, 402. |
YANG L, LI D X, TAN T L. Analysis of fat ty acid content in rapeseed with different oleic acid contents [Jl. Crop Res., 2018,32(5):390-394, 402. | |
6 | 曾静,伊雄海,曲栗,等.基于脂肪酸含量分析结合化学计量学的橄榄油等级鉴别方法[J].分析测试学报,2021,40(10):1432-1438. |
ZENG J, YI X H, QU L, et al.. Identification of olive oil grade based on fatty acid content analysis combined with stoichiometry [J]. J. Anal. Test., 2021,40(10):1432-1438. | |
7 | 李施蒙,王耐红,张敏.等 .甘蓝型油菜脂肪酸组分近红外分析模型构建[J].广东农业科学,2014(21):22-27. |
LI S M, WANG N H, ZHANG M, et al.. Establishment of near infrared analytic model formajor fatty acids content of Brassica napus L. [J]. Guangdong Agric. Sci., 2014(21):22-27. | |
8 | 吴永清,李明,张波,等. 高光谱成像技术在谷物品质检测中的应用进展[J]. 中国粮油学报. 2021,36(5)165-173. |
WU Y Q, LI M, ZHANG B, et al.. Progress in application of hyperspectral imaging technology in grain quality detection [J]. J. Chin. Cereals Oils, 2021,36(5)165-173. | |
9 | SUN J F, WANG G X, ZHANG H, et al.. Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology [J/OL]. Infrared Phys. Technol., 2020,105:103226 [2022-10-21]. . |
10 | TALLADA J G, PALACIOS-ROJAS N, ARMSTRONG P R. Prediction of maize seed attributes using a rapid single kernel near infrared instrument [J]. J. Cereal Sci., 2009,50(3):381-387. |
11 | 芦兵,孙俊,杨宁,等.基于SAGA-SVR 预测模型的水稻种子水分含量高光谱检测[J].南方农业学报,2018,49(11):2342-2348. |
LU B, SUN J, YANG N, et al.. Hyperspectral detection of water content in rice seeds based on Saga-SVR prediction model [J]. J. Southern Agric., 2018,49(11):2342-2348. | |
12 | 刘婷,王传堂,唐月异,等.花生自然风干种子维生素E含量近红外分析模型构建[J].山东农业科学,2018,50(6):163-166. |
LIU T, WANG C T, TANG Y Y, et al.. Construction of near-infrared analysis model for vitamin E content in peanut naturally dried seeds [J]. Shandong Agric. Sci., 2018,50(6):163-166. | |
13 | 唐月异,王秀贞,刘婷,等.花生自然风干种子蔗糖含量近红外定量分析模型构建[J].山东农业科学,2018,50(6):159-162. |
TANG Y Y, WANG X Z, LIU T, et al.. Establishment of near-infrared quantitative a nalysis model for sucrose content in peanut naturally air-dried seeds [J]. Shandong Agric. Sci.,2018,50(6):159-162. | |
14 | 张欣,唐月异,胡东青,等.花生自然风干种子芥酸含量近红外分析模型构建[J].山东农业科学,2018,50(10):138-141. |
ZHANG X, TANG Y Y, HU D Q, et al.. Construction of near infrared analysis model for erucic acid content in peanut naturally dried seeds [J]. Shandong Agric. Sci., 2018,50(10):138-141. | |
15 | 吴静珠,申舒,董晶晶,等.AOTF 高光谱成像探测作物氮素含量方法[J].传感器与微系统,2017,36(11):64-66, 69. |
WU J Z, SHEN S, DONG J J, et al.. Detection of nitrogen content in crops by AOTF hyperspectral imaging [J]. Sensors Microsys., 2017,36(11):64-66, 69. | |
16 | 蒋蘋,罗亚辉,胡文武,等.基于高光谱的油茶籽内部品质检测最优预测模型研究[J].农机化研究,2015,37(7):56-60. |
JIANG P, LUO Y H, HU W W, et al.. Study on optimal prediction model of camellia oleifera seed internal quality detection based on hyperspectrum [J]. J. Agric. Mechan. Res.,2015,37(7):56-60. | |
17 | 郝勇,吴文辉,商庆园,等.山茶油中油酸和亚油酸近红外光谱分析模型[J].光学学报,2019,39(9):381-386. |
HAO Y, WU W H, SHANG Q Y, et al.. Analysis model of oleic acid and linoleic acid in camellia oil by near infrared spectroscopy [J]. Acta Optica Sin.,2019,39(9):381-386. | |
18 | 李建国,薛晓梦,张照华,等.单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J].作物学报,2019,45(12):1891-1898. |
LI J G, XUE X M, ZHANG Z H, et al.. Establishment and application of near-infrared prediction model of main fatty acid content in single peanut [J]. Acta Agron. Sin.,2019,45(12):1891-1898. | |
19 | RAVIKANTH L, CHELLADURAI V, JAYAS D S, et al.. Detection of broken kernels content in Bulk wheat samples using near-infrared imaging [J]. Agric. Res., 2016,5(3):285-292. |
20 | 郭飞,许镇,马宏宏,等.基于PCA的土壤Cd含量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2021,41(5):1625-1630. |
GUO F, XU Z, MA H H, et al.. Comparison of hyperspectral inversion models for soil Cd content based on PCA [J]. Spectroscopy Spectral Anal., 201,41(5):1625-1630. | |
21 | NAWAR S, MOUAZEN A M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scale s by using spiking and data mining techniques [J]. Catena, 2017,151:118-129. |
22 | 程介虹,陈争光,张庆华.不同波长选择方法在土壤有机质含量检测中对比研究[J].中国农业科技导报, 2020,22(1):162-170. |
CHENG J H, CHEN Z G, ZHANG Q H. Comparative study of different wavelength selection methods in soil organic matter determination [J]. J. Agric. Sci. Technol., 2020,22(1):162-170. | |
23 | 张磊,陈国兴,何学文.基于改进的网格搜索法的SVM参数优化[J].应用科技,2012,39(3):28-31. |
ZHANG L, CHEN G X, HE X W. A parameter optimization method for an SVM based on improved grid search algorithm [J]. Appl. Security, 2012,39(3):28-31. | |
24 | BAIANO A, TERRACONE C, PERI G, et al.. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes [J]. Comput. Electron. Agric., 2012,87:142-151. |
25 | PU H, CHEN Z, WANG B, et al.. A novel spatial-spectral similarity measure of dimensionality reduction and classification of hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2014,52(11):7008-7022. |
26 | 李维香,张继光,吴万富,等.粮食脂肪酸值测定影响因素分析及优化[J].中国粮油学报, 2021,36(3): 154-160. |
LI W X, ZHANG J G, WU W F, et al.. Analysis and optimization of influencing factors of fatty acid value in grain [J]. J. Chin. Cereals Oils Soc., 201,36(3):154-160. |
[1] | 燕辉. 基于叶绿素荧光分析的油菜响应低温胁迫机制研究[J]. 中国农业科技导报, 2023, 25(1): 58-64. |
[2] | 胡灵炆, 周忠发, 尹林江, 朱孟, 黄登红. 基于无人机RGB影像的苗期油菜识别[J]. 中国农业科技导报, 2022, 24(9): 116-128. |
[3] | 魏全全, 高英, 芶久兰, 张萌, 饶勇, 杨斌, 凡迪, 冯文豪, 肖华贵. 播种量和播种方式对冬油菜养分吸收利用及产量的影响[J]. 中国农业科技导报, 2022, 24(8): 182-191. |
[4] | 张繁, 谷悦, 曹琛, 刘保华. 油菜秸秆纤维对水泥胶砂孔隙特征的影响[J]. 中国农业科技导报, 2022, 24(6): 189-195. |
[5] | 吴志勇, 顾红, 程大伟, 李兰, 何莎莎, 李明, 陈锦永. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68-76. |
[6] | 万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用[J]. 中国农业科技导报, 2022, 24(12): 59-67. |
[7] | 王靖会, 程娇娇, 刘洋, 常佳乐, 王朝辉 . 基于高光谱成像技术鉴别大米品种[J]. 中国农业科技导报, 2021, 23(9): 121-128. |
[8] | 孙梦遥, 徐岚俊, 李小龙, 李传友, 陈华, 张传帅, 刘婞韬. 不同节水方式对油菜水分利用、分配及产量的影响[J]. 中国农业科技导报, 2021, 23(9): 138-143. |
[9] | 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报, 2021, 23(8): 1-7. |
[10] | 骆丽莎, 廖桂平, 刘凡, 官春云. 基于冠层光谱特征参数的油菜品种识别[J]. 中国农业科技导报, 2021, 23(7): 93-106. |
[11] | 于洋, 张珏, 田海清, 王迪, 王轲, 张红旗. 基于高光谱成像技术的冷鲜羊肉嫩度检测方法研究[J]. 中国农业科技导报, 2021, 23(12): 101-108. |
[12] | 全伟, 吴明亮, 官春云, 罗海峰. 油菜钵苗移栽机成穴器外形优化试验研究[J]. 中国农业科技导报, 2021, 23(10): 97-106. |
[13] | 杨婧,廖桂平*,刘凡,官春云. 基于高光谱成像技术的油菜叶片叶绿素含量预测[J]. 中国农业科技导报, 2020, 22(5): 86-96. |
[14] | 沈宇1,2,房胜2,王风云1,李哲2,张琛1,2,郑纪业1*. 基于高光谱成像技术识别苹果轻微损伤的有效波段研究[J]. 中国农业科技导报, 2020, 22(3): 64-71. |
[15] | 金姣姣1,侯献飞2,李强2,贾东海2,顾元国2,王轩1,曾瑞1,蒲媛媛1,武军艳1,方彦1,李学才1,马骊1,刘丽君1,孙万仓1*. 影响北方白菜型冬油菜主要农艺性状变异的气象因子分析[J]. 中国农业科技导报, 2020, 22(3): 140-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||