中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (6): 165-173.DOI: 10.13304/j.nykjdb.2021.1025
• 生物制造 资源生态 • 上一篇
王旭东1(), 任雪冰1, 汤舒1, 郭琴1, 薛梦瑶1, 金鹏2, 张云华1(
)
收稿日期:
2021-12-02
接受日期:
2022-05-06
出版日期:
2023-06-01
发布日期:
2023-07-28
通讯作者:
张云华
作者简介:
王旭东 E-mail:651283191@qq.com;
基金资助:
Xudong WANG1(), Xuebing REN1, Shu TANG1, Qin GUO1, Mengyao XUE1, Peng JIN2, Yunhua ZHANG1(
)
Received:
2021-12-02
Accepted:
2022-05-06
Online:
2023-06-01
Published:
2023-07-28
Contact:
Yunhua ZHANG
摘要:
污泥作为污水处理的副产物,随着工业化、城镇化的快速发展其产量在不断地增加,污泥内的有机污染物和重金属给污泥的无害化、资源化带来一定的难度。污泥热解制备生物炭作为近年来新型的污泥处理方式,具有稳定、减量、可循环利用等优势。污泥生物炭是性能良好的土壤改良材料,能够对土壤容重、酸碱度、阳离子交换量、重金属含量等理化性质进行改善,提高土壤肥力,促进植物生长。总结了污泥的成分来源和污泥生物炭热解的生产方式及表征,讨论了施用污泥生物炭对土壤理化性质和重金属含量的影响机制,并分析了目前单一及共热污泥生物炭的研究应用进展,提出污泥生物炭在土壤改良中面临的主要问题及未来的发展方向。
中图分类号:
王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173.
Xudong WANG, Xuebing REN, Shu TANG, Qin GUO, Mengyao XUE, Peng JIN, Yunhua ZHANG. Application of Sludge Biochar in Soil Improvement[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 165-173.
方法 Method | 加热速率 Heating rate/(℃·s-1) | 反应时间 Response time | 温度 Temperature/℃ | 原材料粒径 Particle size/mm | 成炭率 Solid/% | 生物油 Liquid/% | 合成气 Syngas/% |
---|---|---|---|---|---|---|---|
慢速热解 Slow pyrolysis | 0.1~1 | 1~2 d | 300~700 | 5~50 | 35 | 30 | 35 |
中速热解 Medium pyrolysis | 1~10 | 0.5~20 s | 450~550 | 1~5 | 25 | 50 | 25 |
快速热解 Fast pyrolysis | 10~1 000 | <20 s | 420~600 | <1 | 10 | 70 | 20 |
闪速热解 Flash pyrolysis | >1 000 | <0.5 s | 750~1 000 | <1 | 10~25 | 50~75 | 10~30 |
表1 常规热解制备生物炭方法[11,14,19?20]
Table 1 Preparation of biochar by conventional pyrolysis[11,14,19?20]
方法 Method | 加热速率 Heating rate/(℃·s-1) | 反应时间 Response time | 温度 Temperature/℃ | 原材料粒径 Particle size/mm | 成炭率 Solid/% | 生物油 Liquid/% | 合成气 Syngas/% |
---|---|---|---|---|---|---|---|
慢速热解 Slow pyrolysis | 0.1~1 | 1~2 d | 300~700 | 5~50 | 35 | 30 | 35 |
中速热解 Medium pyrolysis | 1~10 | 0.5~20 s | 450~550 | 1~5 | 25 | 50 | 25 |
快速热解 Fast pyrolysis | 10~1 000 | <20 s | 420~600 | <1 | 10 | 70 | 20 |
闪速热解 Flash pyrolysis | >1 000 | <0.5 s | 750~1 000 | <1 | 10~25 | 50~75 | 10~30 |
重金属 Heavy metal | 含量 Content/(mg·kg-1) | 国家标准(pH≥6.5) National standard (pH≥6.5)/(mg·kg-1) | 超标率 Over standard rate/% | 国家标准(pH<6.5) National standard (pH<6.5)/(mg·kg-1) | 超标率 Over standard rate/% |
---|---|---|---|---|---|
铜Cu | 55.7~2 867.4 | 1 500 | 2.3 | 800 | 7.1 |
镉Cd | 0.4~39.9 | 20 | 5.5 | 5 | 27.4 |
锌Zn | 42.1~3 568.3 | 3 000 | 5.9 | 2 000 | 10.3 |
铅Pb | 9.3~370.0 | 1 000 | 1.0 | 300 | 1.3 |
砷As | 0.9~61.8 | 75 | 0.0 | 75 | 0.0 |
泵Hg | 0.1~15.8 | 15 | 2.9 | 5 | 20.0 |
镍Ni | 13.1~495.3 | 200 | 3.5 | 100 | 12.1 |
铬Cr | 10.6~639.0 | 1 000 | 0.0 | 600 | 1.6 |
表2 中国城市污泥重金属含量分布(2006—2013)[60]
Table 2 Concentration of heavy metals in sewage sludge of China (2006—2013)[60]
重金属 Heavy metal | 含量 Content/(mg·kg-1) | 国家标准(pH≥6.5) National standard (pH≥6.5)/(mg·kg-1) | 超标率 Over standard rate/% | 国家标准(pH<6.5) National standard (pH<6.5)/(mg·kg-1) | 超标率 Over standard rate/% |
---|---|---|---|---|---|
铜Cu | 55.7~2 867.4 | 1 500 | 2.3 | 800 | 7.1 |
镉Cd | 0.4~39.9 | 20 | 5.5 | 5 | 27.4 |
锌Zn | 42.1~3 568.3 | 3 000 | 5.9 | 2 000 | 10.3 |
铅Pb | 9.3~370.0 | 1 000 | 1.0 | 300 | 1.3 |
砷As | 0.9~61.8 | 75 | 0.0 | 75 | 0.0 |
泵Hg | 0.1~15.8 | 15 | 2.9 | 5 | 20.0 |
镍Ni | 13.1~495.3 | 200 | 3.5 | 100 | 12.1 |
铬Cr | 10.6~639.0 | 1 000 | 0.0 | 600 | 1.6 |
1 | 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020,72(6): 30-34. |
2 | CHEN Y D, WANG R P, DUAN X G, et al.. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation [J/OL]. Water Res., 2020, 187: 116390 [2021-11-05]. . |
3 | PANDEY D, DAVEREY A, ARUNACHALAM K. Biochar: production, properties and emerging role as a support for enzyme immobilization [J/OL]. J. Clean. Prod., 2020, 255:120267 [2021-11-05]. . |
4 | CHA J S, PARK S H, JUNG S C, et al.. Production and utilization of biochar: a review [J]. J. Ind. Eng. Chem., 2016, 40:1-15. |
5 | KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications [J]. Renew. Sust. Energ. Rev., 2015, 45:359-378. |
6 | GURWICK N P, MOORE L A, KELLY C, et al.. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy [J/OL]. PLoS ONE, 2013, 8(9): e75932 [2021-11-05]. . |
7 | BRASSARD P, GODBOUT S, RAGHAVAN V. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved [J]. J. Environ. Manage., 2016, 181(10):484-497. |
8 | 林琳, 万金忠, 李群, 等. 生物炭负载纳米零价铁材料的制备及还原降解性能[J]. 生态与农村环境学报, 2017, 33(7): 660-664. |
LIN L, WAN J Z, LI Q, et al.. Preparation and reductive degradation properties of biochar loaded with nano zero-valent iron [J]. J. Ecol. Rural Environ., 2017,33(7):660-664. | |
9 | 杨婧, 钟慧, 潘欢, 等. 富磷型猪粪基生物炭肥对土壤-萝卜系统的影响[J]. 生态与农村环境学报, 2020, 36(9): 1169-1176. |
YANG J, ZHONG H, PAN H, et al.. Effect of phosphorus enriched biochar fertilizer prepared from pig-manure on the soil-radish system [J]. J. Ecol. Rural Environ., 2020, 36(9):1169-1176. | |
10 | SYED-HASSAN S S A, WANG Y, HU S, et al.. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations [J]. Renew. Sust. Energ. Rev., 2017, 80(12):888-913. |
11 | CANTINHO P, MATOS M, TRANCOSO M A, et al.. Behaviour and fate of metals in urban wastewater treatment plants: a review [J]. Int. J. Environ. Sci. Tech., 2016, 13(1):359-386. |
12 | RULKENS W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options [J]. Energy Fuels, 2008, 22(1):9-15. |
13 | CHEN Y D, LI S P, HO S H, et al.. Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery [J]. Renew. Sust. Energ. Rev., 2018, 96(11):76-90. |
14 | TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review [J]. Renew. Sust. Energ. Rev., 2016, 55:467-481. |
15 | PARMAR A, NEMA P K, AGARWAL T. Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management [J]. Curr. Sci., 2014, 107(25):1673-1682. |
16 | GAO L Y, DENG J H, HUANG G F, et al.. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge [J]. Bioresour. Technol., 2019, 272:114-122. |
17 | MANARA P, ZABANIOTOU A. Towards sewage sludge based biofuels via thermochemical conversion-a review [J]. Renew. Sust. Energ. Rev., 2012, 16(5):2566-2582. |
18 | PALANIVELU K, RAMACHANDRAN A, RAGHAVAN V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions-a review [J]. Biomass. Convers. Bior., 2021, 11(5):2247-2267. |
19 | MOHAN D, SARSWAT A, OK Y S, et al.. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review [J]. Bioresour. Technol., 2014, 160:191-202. |
20 | RAJA S A, KENNEDY Z R, PILLAI B C, et al.. Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor [J]. Energy, 2010, 35(7): 2819-2823. |
21 | NOVOTNY E H, MAIA C M B F, CARVALHO M T M, et al.. Biochar: pyrogenic carbon for agricultural use-a critical review [J]. Rev. Bras. Ciênc. Solo., 2015, 39: 321-344. |
22 | WANG X Y, QIN G X, CHEN M Q, et al.. Microwave-assisted pyrolysis of cotton stalk with additives [J]. BioResources, 2016, 11(3): 6125-6136. |
23 | BHATTACHARYA M, BASAK T. A review on the susceptor assisted microwave processing of materials [J]. Energy, 2016, 97: 306-338. |
24 | ZHANG Y N, CHEN P, LIU S Y, et al.. Effects of feedstock characteristics on microwave-assisted pyrolysis-a review [J]. Bioresour. Technol., 2017, 230:143-151. |
25 | ZAKER A, CHEN Z, WANG X L, et al.. Microwave-assisted pyrolysis of sewage sludge: a review [J]. Fuel Process. Technol., 2019, 187:84-104. |
26 | YIN C. Microwave-assisted pyrolysis of biomass for liquid biofuels production [J]. Bioresour. Technol., 2012, 120:273-284. |
27 | ZHANG Y, CUI Y, LIU S, et al.. Fast microwave-assisted pyrolysis of wastes for biofuels production-a review [J/OL]. Bioresour. Technol., 2020, 297: 122480 [2021-11-05]. . |
28 | FANG Z Q, LIU F F, LI Y L, et al.. Influence of microwave-assisted pyrolysis parameters and additives on phosphorus speciation and transformation in phosphorus-enriched biochar derived from municipal sewage sludge [J/OL]. J. Clean. Prod., 2021, 287:125550 [2021-11-05]. . |
29 | WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review [J]. Renew. Sust. Energ. Rev., 2019, 108:423-440. |
30 | CORREA C R, KRUSE A. Biobased functional carbon materials: production, characterization, and applications-a review [J/OL]. Materials, 2018, 11(9):11091568 [2021-11-05]. . |
31 | REZA M T, ANDERT J, WIRTH B, et al.. Hydrothermal carbonization of biomass for energy and crop production [J/OL]. Appl. Bioenergy, 2014, 1(1):1 [2021-11-05]. . |
32 | HE C, ZHANG Z, GE C F, et al.. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior [J]. Waste Manag., 2019, 100:171-181. |
33 | 王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):126-133. |
WANG R F, ZHAO L X, SHEN Y J, et al.. Research progress on preparing biochar and its effect on soil physio-chemical properties [J]. J. Agric. Sci. Technol., 2015, 17(2):126-133. | |
34 | MÉNDEZ A, TERRADILLOS M, GASCÓ G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures [J]. J. Anal. Appl. Pyrolysis, 2013, 102:124-130. |
35 | LU H, ZHANG W, WANG S Z, et al.. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. J. Anal. Appl. Pyrolysis, 2013, 102:137-143. |
36 | 桂成民, 李萍, 王亚炜, 等. 剩余污泥微波热解技术研究进展[J]. 化工进展, 2015, 34(9): 3435-3443, 3475. |
GUI C M, LI P, WANG Y W, et al.. Technology developments of sewage sludge pyrolysis by microwave [J]. Chem. Ind. Eng. Prog., 2015,34(9):3435-3443, 3475. | |
37 | ÖZÇIMEN D, ERSOY-MERIÇBOYU A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials [J]. Renewable Energy., 2010, 35(6):1319-1324. |
38 | 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3):1392-1399. |
LI Z W, WANG X D, LIN J J, et al.. Transformation of nitrogen,phosphorus,potassium and heavy metals during sewage sludge biochar preparation [J]. Chin. J. Environ. Eng., 2016, 10(3):1392-1399. | |
39 | JATAV H S, SINGH S K. Effect of biochar application in soil amended with sewage sludge on growth, yield and uptake of primary nutrients in rice (Oryza sativa L.) [J]. J. Indian Soc. Soil Sci., 2019, 67(1):115-119. |
40 | NOVAK J M, LIMA I, XING B, et al.. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand [J]. Ann. Environ. Sci., 2009, 3(2):195-206. |
41 | ZHANG M, LI J H, WANG Y C, et al.. Impacts of different biochar types on the anaerobic digestion of sewage sludge [J]. RSC Adv., 2019, 72(9):42375-42386. |
42 | 董智伟, 左宁, 王彦, 等. 热解污泥生物炭化学组成及环境效应研究进展[J]. 环境污染与防治, 2019, 41(4): 479-484. |
DONG Z W, ZUO N, WANG Y, et al.. Research progress in chemical properties and environmental effects of pyrolysis sludge biochar [J]. Environ. Pollut. Control, 2019, 41(4):479-484. | |
43 | REHMAN R A, RIZWAN M, QAYYUM M F, et al.. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum) [J]. J. Environ. Manag., 2018, 223:607-613. |
44 | ZIELINSKA A, OLESZCZUK P, CHARMAS B, et al.. Effect of sewage sludge properties on the biochar characteristic [J]. J. Anal. Appl. Pyrolysis, 2015, 112:201-213. |
45 | 姜秀艳. 污泥基生物炭制备表征及土壤改良应用研究[D].哈尔滨: 哈尔滨工业大学, 2014. |
JIANG X Y. Reaearch on the preparation and characterization of sludge-based biochar and its application of soil [J]. Harbin: Harbin Institute of Technology, 2014. | |
46 | YUAN H R, LU T, HUANG H Y, et al.. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge [J]. J. Anal. Appl. Pyrolysis, 2015, 112:284-289. |
47 | BRUNO G, JOHANNES L, WOLFGANG Z. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review [J]. Biol. Fert. Soils, 2002, 35(4):219-230. |
48 | SU C C, MA J F, CHEN Y P. Biochar can improve the soil quality of new creation farmland on the Loess Plateau [J]. Environ. Sci. Pollut. Res., 2019, 26(3):2662-2670. |
49 | ZONG Y T, WANG Y F, SHENG Y, et al.. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar [J]. Environ. Sci. Pollut. Res., 2018, 25(26):25726-25733. |
50 | BLANCO-CANQUI H. Biochar and soil physical properties [J]. Soil Sci. Soc. Am. J., 2017, 81(4):687-711. |
51 | OMONDI M O, XIA X, NAHAYO A, et al.. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data [J]. Geoderma, 2016, 274:28-34. |
52 | ZAFFAR M, ZONG Y T, LU S G, et al.. Effect of biochar and quicklime on growth of wheat and physicochemical properties of Ultisols [J]. Arab. J. Geosci, 2018, 11(17): 1-12. |
53 | 齐秀静, 许晓静, 徐杨. 利用热解炭化污水厂污泥对废弃盐池土改良绿化研究[J]. 现代园艺, 2021, 44(9): 31-32, 92. |
54 | 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79. |
WU Y, XU G, LYU Y C, et al.. Effects of biochar amendment on soil physical and chemical properties: current status and knowledge gaps [J]. Adv. Earth Sci., 2014, 29(1):68-79. | |
55 | 饶霜, 卢阳, 黄飞, 等. 生物炭对土壤微生物的影响研究进展[J]. 生态与农村环境学报, 2016, 32(1): 53-59. |
RAO S, LU Y, HUANG F, et al.. A review of researches on effects of biochars on soil microorganisms [J]. J. Ecol. Rural Environ., 2016, 32(1):53-59. | |
56 | HOSSAIN M K, STREZOV V, CHAN K Y, et al.. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere, 2010, 78(9):1167-1171. |
57 | MÉNDEZ A, CÁRDENAS-AGUIAR E, PAZ-FERREIRO J, et al.. The effect of sewage sludge biochar on peat-based growing media [J]. Biol. Agric. Hortic., 2017, 33(1):40-51. |
58 | REHMAN R A, RIZWAN M, QAYYUM M F, et al.. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum) [J]. J. Environ. Manag., 2018, 223:607-613. |
59 | SINGH R P, AGRAWAL M. Potential benefits and risks of land application of sewage sludge [J]. Waste Manage., 2008, 28(2):347-358. |
60 | 杨艳琴. 市政污泥与农林废弃物共热解制备生物炭及其对土壤中重金属迁移转化的影响[D]. 无锡: 江南大学, 2020. |
YANG Y Q. Biochar preparation by co-pyrolysis of municipal sludge and agricultural and forestry waste and its impact on the migration and transformation of heavy metal in soil [J].Wuxi: Jiangnan University, 2020. | |
61 | SINGH R P, AGRAWAL M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants [J]. Chemosphere, 2007, 67(11):2229-2240. |
62 | WANG X D, LI C X, LI Z W, et al.. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge [J]. Ecotoxicol. Environ. Saf., 2019, 168:45-52. |
63 | LU T, YUAN H R, WANG Y Z, et al.. Characteristic of heavy metals in biochar derived from sewage sludge [J]. J. Mater. Cycles Waste Manag., 2016, 18(4):725-733. |
64 | MÉNDEZ A, GOMEZ A, PAZ-FERREIRO J, et al.. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil [J]. Chemosphere, 2012, 89(11):1354-1359. |
65 | CHAGAS J K M, DE FIGUEIREDO C C, SILVA J D A, et al.. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: evidence from a three-year field experiment [J/OL]. J. Environ. Manage., 2021, 279: 111824 [2021-11-05]. . |
66 | YUE Y, CUI L, LIN Q M, et al.. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth [J]. Chemosphere, 2017, 173:551-556. |
67 | KHAN S, CHAO C, WAQAS M, et al.. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil [J]. Environ. Sci. Technol., 2013, 47(15):8624-8632. |
68 | ZIELIŃSKA A, OLESZCZUK P. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils [J]. Environ. Sci. Pollut. Res., 2016, 23(21):21822-21832. |
69 | XING J, XU G, LI G. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars [J/OL]. Ecotoxicol. Environ. Saf., 2021, 208: 111756 [2021-11-05]. . |
70 | 王忠科, 陆江银, 王建俊. 响应面法优化污泥-花生壳共热解工艺条件[J]. 环境工程学报, 2017, 11(10): 5663-5670. |
WANG Z K, LU J Y, WANG J J, et al.. Optimizing co-pyrolysis process conditions of sludge-peanut shells by response surface methodology [J]. Chin. J. Environ. Eng., 2017, 11(10):5663-5670. | |
71 | 洪亚军, 徐祖信, 冯承莲, 等. 水葫芦/污泥共热解法制备生物炭粒及其对Cr3+的吸附特性[J]. 环境科学研究, 2020, 33(4):1052-1061. |
HONG Y J, XU Z X, FENG C L, et al.. Co-pyrolysis of water hyacinth and sewage sludge for preparation of biochar particles and its adsorption properties for Cr3+ [J]. Res. Environ. Sci., 2020, 33(4):1052-1061. | |
72 | JIN J W, WANG M Y, CAO Y C, et al.. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals [J]. Bioresour. Technol., 2017, 228:218-226. |
73 | 韩剑宏, 李艳伟, 姚卫华, 等. 玉米秸秆和污泥共热解制备的生物质炭及其对盐碱土壤理化性质的影响[J]. 水土保持通报, 2017, 37(4): 92-98. |
HAN J H, LI Y W, YAO W H, et al.. Co-pyrolysis preparing biochar with corn straw and sewage sludge and its effects onsaline soil improvement [J]. Bull. Soil Water Conserv., 2017, 37(4):92-98. | |
74 | HUANG H J, YANG T, LAI F Y, et al.. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar [J]. J. Anal. Appl. Pyrolysis, 2017, 125:61-68. |
75 | 赵伟繁, 戴亮, 王刚, 等. 污泥生物炭重金属吸附剂的制备及改性研究进展[J]. 功能材料, 2020, 51(11): 11083-11088. |
ZHAO W F, DAI L, WANG G, et al.. Advances in fabrication and modification of heavymetal adsorbents for sludge biochar [J]. J. Funct. Mater., 2020, 51(11):11083-11088. |
[1] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
[2] | 柴冠群, 王丽, 刘桂华, 罗沐欣键, 蒋亚, 梁红, 范成五. 3类朝天椒重金属健康风险评价与镉吸收累积差异[J]. 中国农业科技导报, 2023, 25(3): 169-177. |
[3] | 柴冠群, 刘桂华, 周玮, 张秀锦, 李龙品, 范成五. 贵州乌蒙山区设施土壤重金属污染风险评估与来源解析[J]. 中国农业科技导报, 2022, 24(8): 144-153. |
[4] | 马俊桃, 周文, 李静浩, 景艺卓, 韩丹, 邵惠芳. 外源硒调控植物重金属胁迫机制的研究进展[J]. 中国农业科技导报, 2022, 24(6): 27-35. |
[5] | 魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217. |
[6] | 李敏, 李钢铁, 张宏武, 陈家欢. 平茬对3种苗木来源蛋白桑林地土壤理化性质的影响[J]. 中国农业科技导报, 2022, 24(1): 172-182. |
[7] | 胡朝华, 刘曰明, 庞孜钦, 袁照年. 农田土壤活性氮损失现状和生物炭调控途径研究进展[J]. 中国农业科技导报, 2021, 23(6): 120-129. |
[8] | 保志娟,金蓉,杨金清,张琦,朱永立,赵正雄*. Pb、Zn复合作用对烤烟抗氧化酶及碳氮代谢的影响[J]. 中国农业科技导报, 2021, 23(2): 65-72. |
[9] | 王鑫宇1,2,张曦2,孟海波2,沈玉君2,解恒燕1*,周海宾2,程红胜2,宋立秋2. 温度对生物炭吸附重金属特性的影响研究[J]. 中国农业科技导报, 2021, 23(2): 150-158. |
[10] | 黄艳飞, 陈君梅, 辛亚宁, 吴庆丽. 石膏对苏打盐碱土壤理化性质的影响[J]. 中国农业科技导报, 2021, 23(11): 139-146. |
[11] | 杨晶晶,张青青*,吐尔逊娜依·热依木,阿马努拉·依明尼亚孜,雪热提江·麦提努日. 游牧和定居对伊犁绢蒿荒漠草地土壤真菌群落多样性的影响[J]. 中国农业科技导报, 2020, 22(7): 166-173. |
[12] | 张蕾,李洋,张阳*. 常用肥料对作物重金属积累的影响及其机理研究进展[J]. 中国农业科技导报, 2020, 22(2): 123-131. |
[13] | 黄芝1,2,刘湘南2*,赵爽3,张仙4. 基于地面光谱水稻重金属胁迫监测光谱特征尺度识别[J]. 中国农业科技导报, 2020, 22(12): 58-67. |
[14] | 王薇,李泳,王伟,边雪,李熙英*. Y-S-Y12发酵液和生物质热解液混配对辣椒炭疽病的防治及作用机理[J]. 中国农业科技导报, 2020, 22(10): 129-138. |
[15] | 张俊叶1,2,俞菲3,刘晓东1,俞元春1*. 城市森林植物叶面颗粒物中重金属和多环芳烃的研究进展[J]. 中国农业科技导报, 2019, 21(10): 140-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||