中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (2): 56-66.DOI: 10.13304/j.nykjdb.2022.0373
刘博1,2(), 王旺田1,2(
), 马骊2, 武军艳2, 蒲媛媛2, 刘丽君2, 方彦2, 孙万仓2(
), 张岩1,2, 刘睿敏1, 曾秀存3
收稿日期:
2022-05-05
接受日期:
2022-07-23
出版日期:
2024-02-15
发布日期:
2024-02-04
通讯作者:
王旺田,孙万仓
作者简介:
刘博 E-mail:2081826780@qq.com
基金资助:
Bo LIU1,2(), Wangtian WANG1,2(
), Li MA2, Junyan WU2, Yuanyuan PU2, Lijun LIU2, Yan FANG2, Wancang SUN2(
), Yan ZHANG1,2, Ruimin LIU1, Xiucun ZENG3
Received:
2022-05-05
Accepted:
2022-07-23
Online:
2024-02-15
Published:
2024-02-04
Contact:
Wangtian WANG,Wancang SUN
摘要:
异戊烯基转移酶(isopentenyltransferase,IPT)是细胞分裂素生物合成的第一限速酶,为分析IPT基因家族在白菜型油菜生长中的功能,利用生物信息学方法从其基因组中鉴定出13个BrIPT基因,它们不均匀地分布在7条染色体上。BrIPTs可分为4个亚族,各家族成员均含有8~10个保守基序和1~2个UTR区。BrIPT基因的启动子区域包含众多响应元件。BrIPT基因家族成员受环境因子、生物激素及防御与应激调控。qRT-PCR结果显示,tRNA-IPT基因BrIPT4、BrIPT6、BrIPT9在白菜型油菜体内各个部位均有表达。相比于苗期,成熟期白菜型油菜IPT基因的表达量更高,为后续深入研究IPT基因家族成员的生理生化功能提供了理论依据。
中图分类号:
刘博, 王旺田, 马骊, 武军艳, 蒲媛媛, 刘丽君, 方彦, 孙万仓, 张岩, 刘睿敏, 曾秀存. 白菜型油菜IPT基因家族鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(2): 56-66.
Bo LIU, Wangtian WANG, Li MA, Junyan WU, Yuanyuan PU, Lijun LIU, Yan FANG, Wancang SUN, Yan ZHANG, Ruimin LIU, Xiucun ZENG. Identification and Characterization of IPT Gene Family in Brassica rapa L.[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 56-66.
基因名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Gene name | Forward primer sequence (5’-3’) | Reverse primer sequence (5’-3’) |
BrIPT1 | CAAGATTCTCCCAAGCCTCGTCTG | CGCCTGAGCAAGAAGTGGAAGTC |
BrIPT2 | TCCTTCATTCATGCCCTCCTTGTTG | CACCCAGAGGAAGCAGCAATCG |
BrIPT3 | GTGAACGGTTACACGGTGGATTAGG | CCTAACACATATCGGACGGCAACC |
BrIPT4 | AGGATTGTTCATCGGTGTTGGAGTG | GCAAGTGGTGTTACGTTGTTGTTCC |
BrIPT5 | CCTCACATTCCCTTCTTCCCTTCAC | GGTTGCTCCTAAGATGACGACGATC |
BrIPT6 | GCAACCGCCGTGCCTTATAC | GCCGGTGGGACCAGATATCA |
BrIPT7 | GCAGCTCGTTTCTCCGGAGA | TGCGGAGTAGATGGTGAGCG |
BrIPT8 | ATGGGTGCTACCGGAACAGG | GCAACTCTCCTCGGTCGTGA |
BrIPT9 | GCGGAATCGACGAAGCGAAG | CGCCAAGTCTACGGCTAGCT |
BrIPT10 | TCGCATGATGGAAGCAGGATTACTC | TGTACCACGGTCCACTAGAGATTCG |
BrIPT11 | GGAGAAGGAGGGAGAGTGGGATTC | CTTCACTACCTGTCTCTTCGCCAAC |
BrIPT12 | TCCGACAAGATCCAAGTTCACCAAG | GAGGCGGCAAAACACTGAGGAG |
BrIPT13 | ATCGTCACCAACAAAGTCACTCCAG | GTAATCCTCCGCCGTGAAATCCTC |
Actin | TGTGCCAATCTACGAGGGTTT | TTTCCCGCTCGGCTGTTGT |
表1 试验所用引物序列
Table 1 Primer sequences used in the study
基因名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Gene name | Forward primer sequence (5’-3’) | Reverse primer sequence (5’-3’) |
BrIPT1 | CAAGATTCTCCCAAGCCTCGTCTG | CGCCTGAGCAAGAAGTGGAAGTC |
BrIPT2 | TCCTTCATTCATGCCCTCCTTGTTG | CACCCAGAGGAAGCAGCAATCG |
BrIPT3 | GTGAACGGTTACACGGTGGATTAGG | CCTAACACATATCGGACGGCAACC |
BrIPT4 | AGGATTGTTCATCGGTGTTGGAGTG | GCAAGTGGTGTTACGTTGTTGTTCC |
BrIPT5 | CCTCACATTCCCTTCTTCCCTTCAC | GGTTGCTCCTAAGATGACGACGATC |
BrIPT6 | GCAACCGCCGTGCCTTATAC | GCCGGTGGGACCAGATATCA |
BrIPT7 | GCAGCTCGTTTCTCCGGAGA | TGCGGAGTAGATGGTGAGCG |
BrIPT8 | ATGGGTGCTACCGGAACAGG | GCAACTCTCCTCGGTCGTGA |
BrIPT9 | GCGGAATCGACGAAGCGAAG | CGCCAAGTCTACGGCTAGCT |
BrIPT10 | TCGCATGATGGAAGCAGGATTACTC | TGTACCACGGTCCACTAGAGATTCG |
BrIPT11 | GGAGAAGGAGGGAGAGTGGGATTC | CTTCACTACCTGTCTCTTCGCCAAC |
BrIPT12 | TCCGACAAGATCCAAGTTCACCAAG | GAGGCGGCAAAACACTGAGGAG |
BrIPT13 | ATCGTCACCAACAAAGTCACTCCAG | GTAATCCTCCGCCGTGAAATCCTC |
Actin | TGTGCCAATCTACGAGGGTTT | TTTCCCGCTCGGCTGTTGT |
基因ID Gene ID | 基因名 Gene name | 氨基酸 Amino acids/aa | 分子量 Molecular weight/Da | 等电点PI | 带负电荷残基数 Total number of negatively charged residues | 带正电荷残基数 Total number of positively charged residue | 不稳定 指数Instability index | 脂肪指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
Brapa01T003069.1 | BrIPT1 | 332 | 37 126.59 | 8.77 | 37 | 42 | 39.85 | 91.87 |
Brapa01T003426.1 | BrIPT2 | 324 | 36 886.28 | 8.50 | 41 | 44 | 44.02 | 81.45 |
Brapa02T000813.1 | BrIPT3 | 334 | 37 920.51 | 5.75 | 50 | 44 | 34.85 | 94.55 |
Brapa02T000886.1 | BrIPT4 | 542 | 61 015.95 | 7.09 | 66 | 66 | 46.35 | 80.76 |
Brapa02T001911.1 | BrIPT5 | 348 | 39 700.26 | 8.72 | 49 | 52 | 54.61 | 81.24 |
Brapa03T000921.1 | BrIPT6 | 463 | 52 426.39 | 7.50 | 59 | 60 | 50.28 | 78.98 |
Brapa03T003913.1 | BrIPT7 | 326 | 37 116.50 | 9.34 | 37 | 45 | 48.52 | 82.48 |
Brapa04T000031.1 | BrIPT8 | 334 | 37 337.14 | 8.11 | 42 | 44 | 44.57 | 90.42 |
Brapa04T002174.1 | BrIPT9 | 496 | 56 182.83 | 6.15 | 75 | 68 | 41.78 | 89.78 |
Brapa07T001138.1 | BrIPT10 | 335 | 37 477.17 | 8.48 | 40 | 44 | 35.54 | 91.34 |
Brapa07T003284.1 | BrIPT11 | 333 | 37 800.18 | 8.40 | 46 | 48 | 44.07 | 88.68 |
Brapa09T001382.1 | BrIPT12 | 332 | 37 568.44 | 8.40 | 44 | 47 | 37.94 | 91.27 |
Brapa10T001241.1 | BrIPT13 | 334 | 37 876.59 | 5.96 | 48 | 44 | 35.22 | 92.22 |
表2 白菜型油菜IPT蛋白理化性质
Table 2 Protein physical and chemical properties of IPT in Brassica rapa L.
基因ID Gene ID | 基因名 Gene name | 氨基酸 Amino acids/aa | 分子量 Molecular weight/Da | 等电点PI | 带负电荷残基数 Total number of negatively charged residues | 带正电荷残基数 Total number of positively charged residue | 不稳定 指数Instability index | 脂肪指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
Brapa01T003069.1 | BrIPT1 | 332 | 37 126.59 | 8.77 | 37 | 42 | 39.85 | 91.87 |
Brapa01T003426.1 | BrIPT2 | 324 | 36 886.28 | 8.50 | 41 | 44 | 44.02 | 81.45 |
Brapa02T000813.1 | BrIPT3 | 334 | 37 920.51 | 5.75 | 50 | 44 | 34.85 | 94.55 |
Brapa02T000886.1 | BrIPT4 | 542 | 61 015.95 | 7.09 | 66 | 66 | 46.35 | 80.76 |
Brapa02T001911.1 | BrIPT5 | 348 | 39 700.26 | 8.72 | 49 | 52 | 54.61 | 81.24 |
Brapa03T000921.1 | BrIPT6 | 463 | 52 426.39 | 7.50 | 59 | 60 | 50.28 | 78.98 |
Brapa03T003913.1 | BrIPT7 | 326 | 37 116.50 | 9.34 | 37 | 45 | 48.52 | 82.48 |
Brapa04T000031.1 | BrIPT8 | 334 | 37 337.14 | 8.11 | 42 | 44 | 44.57 | 90.42 |
Brapa04T002174.1 | BrIPT9 | 496 | 56 182.83 | 6.15 | 75 | 68 | 41.78 | 89.78 |
Brapa07T001138.1 | BrIPT10 | 335 | 37 477.17 | 8.48 | 40 | 44 | 35.54 | 91.34 |
Brapa07T003284.1 | BrIPT11 | 333 | 37 800.18 | 8.40 | 46 | 48 | 44.07 | 88.68 |
Brapa09T001382.1 | BrIPT12 | 332 | 37 568.44 | 8.40 | 44 | 47 | 37.94 | 91.27 |
Brapa10T001241.1 | BrIPT13 | 334 | 37 876.59 | 5.96 | 48 | 44 | 35.22 | 92.22 |
基因ID Gene ID | 基因名Gene name | 最大亲水值Maximum hydrophilic value | 位置Position/aa | 最大疏水值Maximum hydrophobic value | 位置Position/aa | 亲水性平均系数 Grand average of hydropathicity |
---|---|---|---|---|---|---|
Brapa01T003069.1 | BrIPT1 | 1.956 | 40 | -2.922 | 276 | -0.262 |
Brapa01T003426.1 | BrIPT2 | 1.856 | 47 | -2.311 | 214 | -0.338 |
Brapa02T000813.1 | BrIPT3 | 2.122 | 318 | -2.489 | 263 | -0.224 |
Brapa02T000886.1 | BrIPT4 | 3.300 | 63,64 | -3.100 | 124 | -0.390 |
Brapa02T001911.1 | BrIPT5 | 2.389 | 66 | -3.411 | 57 | -0.412 |
Brapa03T000921.1 | BrIPT6 | 1.700 | 274 | -3.489 | 50 | -0.433 |
Brapa03T003913.1 | BrIPT7 | 2.144 | 48 | -2.356 | 214 | -0.331 |
Brapa04T000031.1 | BrIPT8 | 2.144 | 47 | -2.522 | 153 | -0.137 |
Brapa04T002174.1 | BrIPT9 | 2.822 | 17 | -3.744 | 482 | -0.458 |
Brapa07T001138.1 | BrIPT10 | 1.956 | 40 | -2.756 | 276 | -0.210 |
Brapa07T003284.1 | BrIPT11 | 2.389 | 52 | -3.078 | 308 | -0.343 |
Brapa09T001382.1 | BrIPT12 | 2.144 | 47 | -2.456 | 153 | -0.187 |
Brapa10T001241.1 | BrIPT13 | 1.956 | 43 | -2.489 | 263 | -0.225 |
表3 氨基酸亲疏水性
Table 3 Amino acid hydrophilicity and hydrophobicity
基因ID Gene ID | 基因名Gene name | 最大亲水值Maximum hydrophilic value | 位置Position/aa | 最大疏水值Maximum hydrophobic value | 位置Position/aa | 亲水性平均系数 Grand average of hydropathicity |
---|---|---|---|---|---|---|
Brapa01T003069.1 | BrIPT1 | 1.956 | 40 | -2.922 | 276 | -0.262 |
Brapa01T003426.1 | BrIPT2 | 1.856 | 47 | -2.311 | 214 | -0.338 |
Brapa02T000813.1 | BrIPT3 | 2.122 | 318 | -2.489 | 263 | -0.224 |
Brapa02T000886.1 | BrIPT4 | 3.300 | 63,64 | -3.100 | 124 | -0.390 |
Brapa02T001911.1 | BrIPT5 | 2.389 | 66 | -3.411 | 57 | -0.412 |
Brapa03T000921.1 | BrIPT6 | 1.700 | 274 | -3.489 | 50 | -0.433 |
Brapa03T003913.1 | BrIPT7 | 2.144 | 48 | -2.356 | 214 | -0.331 |
Brapa04T000031.1 | BrIPT8 | 2.144 | 47 | -2.522 | 153 | -0.137 |
Brapa04T002174.1 | BrIPT9 | 2.822 | 17 | -3.744 | 482 | -0.458 |
Brapa07T001138.1 | BrIPT10 | 1.956 | 40 | -2.756 | 276 | -0.210 |
Brapa07T003284.1 | BrIPT11 | 2.389 | 52 | -3.078 | 308 | -0.343 |
Brapa09T001382.1 | BrIPT12 | 2.144 | 47 | -2.456 | 153 | -0.187 |
Brapa10T001241.1 | BrIPT13 | 1.956 | 43 | -2.489 | 263 | -0.225 |
图6 白菜型油菜IPT基因顺式作用元件位点图注:GT1-motif—光响应元件;LTR—低温响应元件;ABRE—脱落酸响应元件;O2-site—玉米醇溶蛋白响应元件;TGACG-motif—茉莉酸甲酯响应元件;TC-rich repeats—防御和应激反应响应元件;TATC-box—赤霉素响应元件;ARE—厌氧诱导响应元件;CGTCA-motif—茉莉酸响应元件;MRE—光响应元件;G-box—光响应元件;TCA-element—水杨酸响应元件;RY-element—种子特异性调控响应元件;G-Box—光响应元件;AuxRR-core—生长素响应元件;MBS—干旱诱导响应元件;ACE—光响应元件;circadian—昼夜节律控制响应元件;3-AF1 binding site—光响应元件;CAT-box—分生组织表达响应元件;MBSI—类黄酮生物合成基因调控响应元件;GC-motif—缺氧诱导响应元件;Sp1—光响应元件;GCN4-motif—胚乳表达响应元件。
Fig. 6 Site map of IPT gene element in Brassica rapa L.Note:GT1-motif—Light responsiveness; LTR—Low-temperature responsiveness; ABRE—Abscisic acid responsiveness; O2-site—Zein metabolism regulation; TGACG-motif—MeJA-responsiveness; TC-rich repeats—Defense and stress responsiveness; TATC-box—Gibberellin-responsiveness; ARE—Anaerobic induction; CGTCA-motif—MeJA-responsiveness; MRE—Light responsiveness; G-box—Light responsiveness; TCA-element—Salicylic acid responsiveness; RY-element—Seed-specific regulation; G-Box—Light responsiveness; AuxRR-core—Auxin responsiveness; MBS—Drought-induced response element; ACE—Light responsiveness; circadian—Circadian control; 3-AF1 binding site—Light responsive element; CAT-box—Meristem expression; MBSI—Flavonoid biosynthetic genes regulation; GC-motif—Anoxic specific inducibility; Sp1—Light responsive element; GCN4-motif—Endosperm expression.
图7 白菜型油菜IPT基因家族成员在不同组织中的表达注:cDNA1—苗期根;cDNA2—苗期下胚轴;cDNA3—苗期子叶;cDNA4—盛花期根;cDNA5—盛花期下胚轴;cDNA6—盛花期叶。
Fig. 7 Expression of IPT gene family in different tissuesNote:cDNA1—Seedling root;cDNA2—Seedling hypocotyl;cDNA3—Seedling cotyledons;cDNA4—Blooming root;cDNA5—Blooming hypocotyl;cDNA6—Blooming leaf.
1 | 刘成,冯中朝,肖唐华,等.我国油菜产业发展现状、潜力及对策[J].中国油料作物学报,2019,41(4):485-489. |
LIU C, FENG Z C, XIAO T H, et al.. Development, potential and adaptation of Chinese rapeseed industry [J]. Chin. J. Oil Crop Sci., 2019, 41(4):485-489. | |
2 | 吕艳,黄涌,邹锡玲,等.油菜抗低温的评价指标与分子生理机制研究进展[J].中国油料作物学报,2020,42(4):527-535. |
LYU Y, HUANG Y, ZOU X L, et al.. Reaserches on evaluation, physiological and molecular mechanism of rapeseed low-tempreature resistance [J]. Chin. J. Oil Crop Sci., 2020, 42(4):527-535. | |
3 | 马骊,孙万仓,刘自刚,等.白菜型与甘蓝型冬油菜抗寒机理差异的研究[J].华北农学报,2016,31(1):147-154. |
MA L, SUN W C, LIU Z G, et al.. Study of difference in mechanism of cold resistance of winter rapeseed of Brassica rape and Brassica napus [J]. Acta Agric. Boreali-Sin., 2016, 31(1):147-154. | |
4 | MOK D W, MOK M C. Cytokinin metabolism and action [J]. Annu. Rev. Plant Physiol., 2001, 52:89-118. |
5 | HAI N N, LAI N, KISIALA A B, et al.. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement [J]. Plant Biotechnol. J., 2021, 19:1297-1313. |
6 | KAMADA-NOBUSADA T, SAKAKIBARA H. Molecular basis for cytokinin biosynthesis [J]. Phytochemistry, 2009, 70(4):444-449. |
7 | BEZNEC A, FACCIO P, MIRALLES D J, et al.. Stress-induced expression of IPT gene in transgenic wheat reduces grain yield penalty under drought [J]. J. Genet. Eng. Biotech., 2021, 19(1):67-84. |
8 | 赵佩,高成香,张娜,等.转IPT基因棉花衰老相关基因的差异表达分析[J].分子植物育种,2012,10(3):324-330. |
ZHAO P, GAO C X, ZHANG N, et al.. Study on differential expression patterns of senescence-associated genes in transgenic cotton with IPT gene [J]. Mol. Plant Breeding, 2012, 10(3):324-330. | |
9 | QIAN C L, REN N N, WANG J Y, et al.. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.) [J]. Food Chem., 2018, 243(3):410-413. |
10 | CORTLEVEN A, LEUENDORF J E, FRANK M, et al.. Cytokinin action in response to abiotic and biotic stress in plants [J]. Plant Cell Environ., 2019, 42(11):998-1018. |
11 | 李海林, 赵德刚. 转IPT基因油菜提高抗蚜虫能力[J].分子植物育种,2012,9(3):343-349. |
LI H L, ZHAO D G. IPT gene expression increased the aphid-resistant of transgenic plant in oilseed [J]. Mol. Plant Breeding, 2012, 9(3):343-349. | |
12 | MIYAWAKI K, TARKOWSKI P, MATSUMOTO-KITANO M, et al.. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(44):16598-16603. |
13 | 冯杰.水稻RPL1基因相关突变体鉴定及水稻IPT蛋白家族分析[D].南宁:广西大学,2020. |
FENG J. Identification of rice RPL1 gene related mutants and analysis of rice IPT protein family [D]. Nanning: Guangxi University, 2020. | |
14 | 黄文晓,翁飞,査满荣,等.水稻突变体D12W191多分蘖表型产生与细胞分裂素的关系[J].南京农业大学学报,2016,39(5):711-721. |
HUANG W X, WENG F, ZHA M R, et al.. Relationship of the multi-tiller phenotype of a rice mutant D12W191 with cytokinin [J]. J. Nanjing Agric. Univ., 2016, 39(5):711-721. | |
15 | 许明,黄昕,郑华坤,等.高世代转PSAG12-IPT基因水稻生育后期的延衰性[J].福建农林大学学报(自然科学版),2010,39(1):1-5. |
XU M, HUANG X, ZHENG H K, et al.. Study on senescence delay characteristics of transgenic rice containing anti-senescence chimeric gene PSAG12-IPT in high generation at later developmental stages [J]. J. Fujian Agric. For. Univ. (Nat. Sci.), 2010, 39(1):1-5. | |
16 | 玉山江·麦麦提,熊叶辉,麦合木提江·米吉提,等.转IPT基因水稻的抗旱性研究[J].中国农业科技导报,2012,14(6):30-35. |
Maimaiti Yushanjiang, XIONG Y H, Mijiti Maihemutijiang, et al.. Studies on drought tolerance of IPT transgenic rice [J]. J. Agric. Sci. Technol., 2012, 14(6):30-35. | |
17 | 徐春梅,邹娅,刘自刚,等.白菜型冬油菜萌动种子低温春化的生理生化特征[J].中国农业科学,2020,53(5):929-941. |
XU C M, ZOU Y, LIU Z G, et al.. Physiological and biochemical characteristics of low temperature vernalization of germinating seeds of Brassica rapa [J]. Sci. Agric. Sin., 2020, 53(5):929-941. | |
18 | 张停林,李季,崔利,等.黄瓜细胞分裂素合成关键酶IPT基因家族序列特征及其表达分析[J].园艺学报,2013,40(1):58-68. |
ZHANG T L, LI J, CUI L, et al.. Identification and characterization of CsIPT genes in cucumber [J]. Acta Hortic. Sin., 2013, 40(1):58-68. | |
19 | TAN M, LI G F, QI S Y, et al.. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.) [J]. Gene, 2018, 651:106-117. |
20 | 蔡兆明,程春红,廖静静,等.茎瘤芥异戊烯基转移酶家族基因全基因组鉴定及表达分析[J].西北植物学报,2022,42(1):38-47. |
CAI Z M, CHENG C H, LIAO J J, et al.. Genome-wide identification and expression analysis of isopentenyl transferases genes in tuber mustard [J]. Acta Bot. Bor-Occid. Sin., 2022, 42(1):38-47. | |
21 | MUN J H, KWON S J, YANG T J, et al.. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication [J/OL]. Genome Biol., 2009, 10(10):R111 [2022-03-15]. . |
22 | LIU Z N, LYU Y X, ZHANG M, et al.. Identification, expression and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. BMC Genomics, 2013, 14(1):594-614. |
23 | LE D T, NISHIYAMA R, WATANABE Y, et al.. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels [J/OL]. PLoS One, 2012, 7(8):e42411 [2022-03-15]. . |
24 | SAKAMOTO T, SAKAKIBARA H, KOJIMA M, et al.. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice [J]. Plant Physiol., 2006, 142(1):54-62. |
25 | BRUGIERE N, HUMBERT S, RIZZO N, et al.. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development [J]. Plant Mol. Biol., 2008, 67(3):215-229. |
26 | 吕享,叶睿华,田海露,等.生长素介导细胞分裂素(玉米素)调控杜鹃兰侧芽萌发[J].农业生物技术学报,2018,26(11):1872-1879. |
LYU X, YE R H, TIAN H L, et al.. Auxin regulated lateral buds germination in cremastra appendiculata via the regulation of cytokinin (zeatin) [J]. J. Agric. Biotech., 2018, 26(11):1872-1879. | |
27 | HIROSE N, TAKEI K, KUROHA T. Regulation of cytokinin biosynthesis, compartmentalization and translocation [J]. J. Exp. Bot., 2008, 59(1):75-83. |
28 | MIYAWAKI K, MATSUMOTO-KITANO M, KAKIMOTO T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate [J]. Plant J., 2004, 37(1):128-138. |
29 | YE C J, WU S W, KONG F N, et al.. Identification and characterization of an isopentenyltransferase (IPT) gene in soybean (Glycine max L.) [J]. Plant Sci., 2006, 170(3):542-550. |
[1] | 邓玉荣, 韩联, 王金龙, 韦兴翰, 王旭东, 赵颖, 魏小红, 李朝周. 藜麦SOD家族基因的鉴定及其对混合盐碱胁迫的响应[J]. 中国农业科技导报, 2024, 26(1): 28-39. |
[2] | 王琴琴, 陈修贵, 陆许可, 王帅, 张悦新, 范亚朋, 陈全家, 叶武威. 陆地棉GhPKE1的生物信息学分析及功能验证[J]. 中国农业科技导报, 2022, 24(1): 38-45. |
[3] | 关思静, 王楠, 徐蓉蓉, 葛甜甜, 高静, 颜永刚, 张岗, 陈莹, 张明英. 甘草PRR基因家族鉴定及表达分析[J]. 中国农业科技导报, 2021, 23(12): 66-75. |
[4] | 李霞1,2,范鑫2,梁成真2,王远2,张锐2,孟志刚2*,刘晓东1*,孙国清2*. BS2基因在烟草中的功能解析[J]. 中国农业科技导报, 2019, 21(11): 43-50. |
[5] | 杨笑敏,芮存,张悦新,王德龙,王俊娟,陆许可,陈修贵,郭丽雪,王帅,陈超,叶武威*. 棉花DNA甲基转移酶GhDMT9抗逆性分析[J]. 中国农业科技导报, 2019, 21(10): 12-19. |
[6] | 玉山江·麦麦提1,熊叶辉1,麦合木提江·米吉提1,Sehroon khan1,. 转IPT基因水稻的抗旱性研究[J]. , 2012, 14(6): 30-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||