中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (1): 28-39.DOI: 10.13304/j.nykjdb.2022.0558
邓玉荣1(), 韩联1, 王金龙1, 韦兴翰1, 王旭东1, 赵颖1,2, 魏小红1,2(
), 李朝周1(
)
收稿日期:
2022-07-05
接受日期:
2022-10-08
出版日期:
2024-01-15
发布日期:
2024-01-08
通讯作者:
魏小红,李朝周
作者简介:
邓玉荣 E-mail:2940834096@qq.com
基金资助:
Yurong DENG1(), Lian HAN1, Jinlong WANG1, Xinghan WEI1, Xudong WANG1, Ying ZHAO1,2, Xiaohong WEI1,2(
), Chaozhou LI1(
)
Received:
2022-07-05
Accepted:
2022-10-08
Online:
2024-01-15
Published:
2024-01-08
Contact:
Xiaohong WEI,Chaozhou LI
摘要:
超氧化物歧化酶(superoxide dismutase,SOD)是植物抗氧化系统的关键酶,在保护植物免受生物和非生物胁迫方面发挥重要作用。以拟南芥SOD为基础,通过序列比对在藜麦基因组中鉴定出12个SOD基因,分别定位于细胞核、微体及线粒体,在11条染色体上不均匀分布,其编码蛋白质三级结构显示Cu/Zn-SODs与Fe-SODs为同源二聚体,Mn-SODs为同源四聚体。CqSOD基因内含子/外显子分布模式不尽相同,内含子数介于4~7个,保守基序差异明显。系统发育关系显示,SOD蛋白可分为Cu/Zn-SODs、Fe-SODs及Mn-SODs 3个亚族。此外,所有的CqFe-SODs及CqMn-SODs启动子区都含有脱落酸激素反应顺式元件,CqSOD12与11个CqSOD蛋白及4个CqCAT蛋白存在相互作用。表达谱分析表明,12个CqSOD基因对混合盐碱及硝普钠均有较强响应。研究结果为SOD基因在植物发育和胁迫响应中的作用及分子机制研究奠定基础。
中图分类号:
邓玉荣, 韩联, 王金龙, 韦兴翰, 王旭东, 赵颖, 魏小红, 李朝周. 藜麦SOD家族基因的鉴定及其对混合盐碱胁迫的响应[J]. 中国农业科技导报, 2024, 26(1): 28-39.
Yurong DENG, Lian HAN, Jinlong WANG, Xinghan WEI, Xudong WANG, Ying ZHAO, Xiaohong WEI, Chaozhou LI. Identification of SOD Family Genes in Chenopodium quinoa and Their Response to Mixed Saline-alkali Stress[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 28-39.
处理 Treatment | 盐分组成Salt composition | ||||
---|---|---|---|---|---|
氯化钠NaCl/ (200 mmol·L-1) | 硫酸钠Na2SO4/ (200 mmol·L-1) | 碳酸氢钠NaHCO3/ (200 mmol·L-1) | 碳酸钠Na2CO3/(200 mmol·L-1) | 硝普纳SNP/ (150 μmol·L-1) | |
CK | 0 | 0 | 0 | 0 | - |
A | 1 | 1 | 0 | 0 | - |
B | 1 | 2 | 1 | 0 | - |
C | 1 | 9 | 9 | 1 | - |
D | 1 | 1 | 1 | 1 | - |
E | 9 | 1 | 1 | 9 | - |
CK+ | 0 | 0 | 0 | 0 | + |
A+ | 1 | 1 | 0 | 0 | + |
B+ | 1 | 2 | 1 | 0 | + |
C+ | 1 | 9 | 9 | 1 | + |
D+ | 1 | 1 | 1 | 1 | + |
E+ | 9 | 1 | 1 | 9 | + |
表1 各处理盐分组成及摩尔比
Table 1 Salt composition and molar ratio of different treatment
处理 Treatment | 盐分组成Salt composition | ||||
---|---|---|---|---|---|
氯化钠NaCl/ (200 mmol·L-1) | 硫酸钠Na2SO4/ (200 mmol·L-1) | 碳酸氢钠NaHCO3/ (200 mmol·L-1) | 碳酸钠Na2CO3/(200 mmol·L-1) | 硝普纳SNP/ (150 μmol·L-1) | |
CK | 0 | 0 | 0 | 0 | - |
A | 1 | 1 | 0 | 0 | - |
B | 1 | 2 | 1 | 0 | - |
C | 1 | 9 | 9 | 1 | - |
D | 1 | 1 | 1 | 1 | - |
E | 9 | 1 | 1 | 9 | - |
CK+ | 0 | 0 | 0 | 0 | + |
A+ | 1 | 1 | 0 | 0 | + |
B+ | 1 | 2 | 1 | 0 | + |
C+ | 1 | 9 | 9 | 1 | + |
D+ | 1 | 1 | 1 | 1 | + |
E+ | 9 | 1 | 1 | 9 | + |
基因 Gene | 正向引物 Forward primer(5’-3’) | 反向引物 Reverse primer(5’-3’) | 退火温度 Tm/℃ | 产物长度 Amplicon size/bp |
---|---|---|---|---|
CqActin | CCCTCACCACTTTCCGATCT | TCCTCACCCTCACCCATTTT | 62.6 | 62 |
CqSOD01 | ACTGGGAATGTCTCGGGTCT | GTAGCGGTACCATCATCCCC | 61.6 | 141 |
CqSOD02 | AGGAGATGGCCCAACAACTG | GGCGAACTTCGTCTTCAGGA | 61.8 | 89 |
CqSOD03 | TGCTGGTGGAAGATTGGCTT | TGTGGTGACTCGGTGAACTG | 62.7 | 107 |
CqSOD04 | CGGAAGATGAAGTCCGGCAT | CACAAGGGCTCTACCGACAA | 61.9 | 138 |
CqSOD05 | TTCAGAGAGACATGCGGGTG | CAGCATGCACCACAATAGCC | 62.3 | 111 |
CqSOD06 | TCATCTCCGGCGCCAATAAC | GCCATGAAGACCAGGAGTGA | 62.0 | 87 |
CqSOD07 | GGGGCCTAAACACTTTTCGC | TCCAGGTTGCATGGATTCCC | 63.1 | 125 |
CqSOD08 | GGGGCCTAAACACTTTTCGC | CGGCTCCAAGGCATCAAATG | 63.5 | 86 |
CqSOD09 | GGAGTCACATTGGGGAGAGC | TCCAGGTTGCATGGATTCCC | 62.2 | 90 |
CqSOD10 | CGTACGACTATGGCGCTCTT | ACATGACCTCCGCCATTGAA | 61.4 | 118 |
CqSOD11 | GCTGGGCTTGGCTTGTTTAC | TGCTCCCAAACGTCGATAGT | 63.5 | 140 |
CqSOD12 | CGTACGACTATGGCGCTCTT | GATTCACATGACCTCCGCCA | 63.2 | 114 |
表2 CqSODs的qRT-PCR引物
Table 2 qRT-PCR primers of CqSODs
基因 Gene | 正向引物 Forward primer(5’-3’) | 反向引物 Reverse primer(5’-3’) | 退火温度 Tm/℃ | 产物长度 Amplicon size/bp |
---|---|---|---|---|
CqActin | CCCTCACCACTTTCCGATCT | TCCTCACCCTCACCCATTTT | 62.6 | 62 |
CqSOD01 | ACTGGGAATGTCTCGGGTCT | GTAGCGGTACCATCATCCCC | 61.6 | 141 |
CqSOD02 | AGGAGATGGCCCAACAACTG | GGCGAACTTCGTCTTCAGGA | 61.8 | 89 |
CqSOD03 | TGCTGGTGGAAGATTGGCTT | TGTGGTGACTCGGTGAACTG | 62.7 | 107 |
CqSOD04 | CGGAAGATGAAGTCCGGCAT | CACAAGGGCTCTACCGACAA | 61.9 | 138 |
CqSOD05 | TTCAGAGAGACATGCGGGTG | CAGCATGCACCACAATAGCC | 62.3 | 111 |
CqSOD06 | TCATCTCCGGCGCCAATAAC | GCCATGAAGACCAGGAGTGA | 62.0 | 87 |
CqSOD07 | GGGGCCTAAACACTTTTCGC | TCCAGGTTGCATGGATTCCC | 63.1 | 125 |
CqSOD08 | GGGGCCTAAACACTTTTCGC | CGGCTCCAAGGCATCAAATG | 63.5 | 86 |
CqSOD09 | GGAGTCACATTGGGGAGAGC | TCCAGGTTGCATGGATTCCC | 62.2 | 90 |
CqSOD10 | CGTACGACTATGGCGCTCTT | ACATGACCTCCGCCATTGAA | 61.4 | 118 |
CqSOD11 | GCTGGGCTTGGCTTGTTTAC | TGCTCCCAAACGTCGATAGT | 63.5 | 140 |
CqSOD12 | CGTACGACTATGGCGCTCTT | GATTCACATGACCTCCGCCA | 63.2 | 114 |
基因登录号 Gene accession No. | 基因名称 Gene name | 氨基酸数 Size/aa | 分子量 Molecular weight /kD | 等电点 pI | 不稳定指数Instability index | 脂肪酸指数Aliphatic index | 疏水性Hydrophobicity | 亚细胞定位Subcellular localization | 磷酸化位点数量Phosphorylation site number |
---|---|---|---|---|---|---|---|---|---|
AUR62000929 | CqSOD01 | 152 | 15.26 | 5.28 | 15.37 | 76.91 | -0.19 | 细胞质Cytoplasm | 14 |
AUR62005041 | CqSOD02 | 152 | 15.27 | 5.28 | 15.37 | 76.91 | -0.21 | 细胞质Cytoplasm | 11 |
AUR62014976 | CqSOD03 | 287 | 29.96 | 8.34 | 41.28 | 78.61 | -0.19 | 细胞质Cytoplasm | 77 |
AUR62029152 | CqSOD04 | 246 | 25.26 | 6.02 | 28.11 | 85.28 | -0.01 | 细胞质Cytoplasm | 56 |
AUR62032030 | CqSOD05 | 157 | 16.01 | 6.38 | 22.92 | 87.52 | -0.18 | 细胞质Cytoplasm | 16 |
AUR62032721 | CqSOD06 | 130 | 13.41 | 6.33 | 16.19 | 89.23 | -0.16 | 细胞质Cytoplasm | 16 |
AUR62001685 | CqSOD07 | 262 | 29.89 | 8.33 | 38.29 | 81.15 | -0.35 | 微体Microbody | 36 |
AUR62010480 | CqSOD08 | 280 | 31.65 | 6.19 | 35.50 | 69.71 | -0.46 | 微体Microbody | 25 |
AUR62020097 | CqSOD09 | 262 | 30.00 | 7.73 | 39.44 | 82.63 | -0.33 | 微体Microbody | 34 |
AUR62030413 | CqSOD10 | 281 | 31.66 | 6.40 | 36.42 | 70.85 | -0.47 | 微体Microbody | 31 |
AUR62024917 | CqSOD11 | 295 | 32.43 | 8.80 | 37.17 | 93.63 | -0.12 | 线粒体Mitochondrial | 46 |
AUR62030627 | CqSOD12 | 233 | 25.89 | 6.79 | 39.36 | 87.98 | -0.35 | 线粒体Mitochondrial | 30 |
表3 藜麦CqSOD蛋白基本理化性质
Table 3 Basic physicochemical properties of CqSOD proteins
基因登录号 Gene accession No. | 基因名称 Gene name | 氨基酸数 Size/aa | 分子量 Molecular weight /kD | 等电点 pI | 不稳定指数Instability index | 脂肪酸指数Aliphatic index | 疏水性Hydrophobicity | 亚细胞定位Subcellular localization | 磷酸化位点数量Phosphorylation site number |
---|---|---|---|---|---|---|---|---|---|
AUR62000929 | CqSOD01 | 152 | 15.26 | 5.28 | 15.37 | 76.91 | -0.19 | 细胞质Cytoplasm | 14 |
AUR62005041 | CqSOD02 | 152 | 15.27 | 5.28 | 15.37 | 76.91 | -0.21 | 细胞质Cytoplasm | 11 |
AUR62014976 | CqSOD03 | 287 | 29.96 | 8.34 | 41.28 | 78.61 | -0.19 | 细胞质Cytoplasm | 77 |
AUR62029152 | CqSOD04 | 246 | 25.26 | 6.02 | 28.11 | 85.28 | -0.01 | 细胞质Cytoplasm | 56 |
AUR62032030 | CqSOD05 | 157 | 16.01 | 6.38 | 22.92 | 87.52 | -0.18 | 细胞质Cytoplasm | 16 |
AUR62032721 | CqSOD06 | 130 | 13.41 | 6.33 | 16.19 | 89.23 | -0.16 | 细胞质Cytoplasm | 16 |
AUR62001685 | CqSOD07 | 262 | 29.89 | 8.33 | 38.29 | 81.15 | -0.35 | 微体Microbody | 36 |
AUR62010480 | CqSOD08 | 280 | 31.65 | 6.19 | 35.50 | 69.71 | -0.46 | 微体Microbody | 25 |
AUR62020097 | CqSOD09 | 262 | 30.00 | 7.73 | 39.44 | 82.63 | -0.33 | 微体Microbody | 34 |
AUR62030413 | CqSOD10 | 281 | 31.66 | 6.40 | 36.42 | 70.85 | -0.47 | 微体Microbody | 31 |
AUR62024917 | CqSOD11 | 295 | 32.43 | 8.80 | 37.17 | 93.63 | -0.12 | 线粒体Mitochondrial | 46 |
AUR62030627 | CqSOD12 | 233 | 25.89 | 6.79 | 39.36 | 87.98 | -0.35 | 线粒体Mitochondrial | 30 |
基因 Gene | 蛋白质二级结构Secondary structure of protein | 染色体定位 Chromosomal localization | ||
---|---|---|---|---|
α螺旋α helix | 延伸链Extension chain | 无规则卷曲Random coil | ||
CqSOD01 | 4 | 57 | 91 | Chr12 |
CqSOD02 | 4 | 57 | 91 | Chr05 |
CqSOD03 | 86 | 46 | 155 | Chr15 |
CqSOD04 | 47 | 55 | 144 | Chr00 |
CqSOD05 | 0 | 55 | 102 | Chr11 |
CqSOD06 | 4 | 42 | 84 | Chr07 |
CqSOD07 | 71 | 61 | 130 | Chr07 |
CqSOD08 | 93 | 49 | 138 | Chr13 |
CqSOD09 | 93 | 48 | 121 | Chr18 |
CqSOD10 | 94 | 51 | 136 | Chr16 |
CqSOD11 | 96 | 49 | 150 | Chr01 |
CqSOD12 | 89 | 43 | 101 | Chr04 |
表4 二级结构与染色体定位
Table 4 Secondary structure and chromosomal localization
基因 Gene | 蛋白质二级结构Secondary structure of protein | 染色体定位 Chromosomal localization | ||
---|---|---|---|---|
α螺旋α helix | 延伸链Extension chain | 无规则卷曲Random coil | ||
CqSOD01 | 4 | 57 | 91 | Chr12 |
CqSOD02 | 4 | 57 | 91 | Chr05 |
CqSOD03 | 86 | 46 | 155 | Chr15 |
CqSOD04 | 47 | 55 | 144 | Chr00 |
CqSOD05 | 0 | 55 | 102 | Chr11 |
CqSOD06 | 4 | 42 | 84 | Chr07 |
CqSOD07 | 71 | 61 | 130 | Chr07 |
CqSOD08 | 93 | 49 | 138 | Chr13 |
CqSOD09 | 93 | 48 | 121 | Chr18 |
CqSOD10 | 94 | 51 | 136 | Chr16 |
CqSOD11 | 96 | 49 | 150 | Chr01 |
CqSOD12 | 89 | 43 | 101 | Chr04 |
图3 藜麦与拟南芥、棉花、水稻、番茄、小麦SOD蛋白的系统发育树注: At—拟南芥;Ta—小麦;Sl—番茄;Cq—藜麦;Gh—陆地棉;Os—水稻。
Fig. 3 Phylogenetic of SOD proteins from quinoa and other plantsNote: At—Arabidopsis; Ta—Triticum aestivum; Sl—Solanum lycopersicum;Cq-Chenopodium quinoa; Gh-Gossypium hirsutum; Os-Oryza sativa.
图4 基于拟南芥中的同源蛋白预测CqSOD蛋白的互作网络
Fig. 4 Prediction of the interaction network of CqSOD proteins based on the interactions of their orthologs in Arabidopsis
基因 Gene | 激素响应元件 Phytohormone responsiveness element | 压力响应元件 Stress responsiveness element | 组织特异性表达元件 Tissue-specific expression element | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABA响应元件 ABRE | CGTCA 基序 CGTCA-motif | P盒 P-box | TATC盒TATC-box | TCA 元件 TCA-element | TGACG基序TGACG-motif | TGA 元件 TGA-element | 低温应答元件 LTR | MYB结合位点 MBS | 富含TC的重复序列 TC-rich repeats | 厌氧诱导作用元件 ARE | CAT盒CAT-box | MYB 结合位点MBSI | O2位点 O2-site | |
CqSOD01 | 3 | 1 | 3 | 1 | 1 | 1 | ||||||||
CqSOD02 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | ||||||
CqSOD03 | 5 | 2 | 1 | 2 | 2 | 7 | ||||||||
CqSOD04 | 2 | 3 | 1 | 1 | ||||||||||
CqSOD05 | 1 | 2 | 3 | 1 | 1 | |||||||||
CqSOD06 | 1 | 3 | 1 | 3 | 2 | 1 | 3 | |||||||
CqSOD07 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | ||||||
CqSOD08 | 1 | 2 | 1 | 1 | 1 | 1 | ||||||||
CqSOD09 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | |||||||
CqSOD10 | 3 | 4 | 1 | 1 | 4 | 2 | 1 | |||||||
CqSOD11 | 1 | 2 | 2 | 1 | 1 | 1 | 5 | 1 | ||||||
CqSOD12 | 3 | 1 | 1 | 1 | 1 | 2 | 1 |
表5 藜麦SOD基因启动子区顺式作用元件
Table 5 Cis-acting elements in the promoter region of CqSOD genes
基因 Gene | 激素响应元件 Phytohormone responsiveness element | 压力响应元件 Stress responsiveness element | 组织特异性表达元件 Tissue-specific expression element | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABA响应元件 ABRE | CGTCA 基序 CGTCA-motif | P盒 P-box | TATC盒TATC-box | TCA 元件 TCA-element | TGACG基序TGACG-motif | TGA 元件 TGA-element | 低温应答元件 LTR | MYB结合位点 MBS | 富含TC的重复序列 TC-rich repeats | 厌氧诱导作用元件 ARE | CAT盒CAT-box | MYB 结合位点MBSI | O2位点 O2-site | |
CqSOD01 | 3 | 1 | 3 | 1 | 1 | 1 | ||||||||
CqSOD02 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | ||||||
CqSOD03 | 5 | 2 | 1 | 2 | 2 | 7 | ||||||||
CqSOD04 | 2 | 3 | 1 | 1 | ||||||||||
CqSOD05 | 1 | 2 | 3 | 1 | 1 | |||||||||
CqSOD06 | 1 | 3 | 1 | 3 | 2 | 1 | 3 | |||||||
CqSOD07 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | ||||||
CqSOD08 | 1 | 2 | 1 | 1 | 1 | 1 | ||||||||
CqSOD09 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | |||||||
CqSOD10 | 3 | 4 | 1 | 1 | 4 | 2 | 1 | |||||||
CqSOD11 | 1 | 2 | 2 | 1 | 1 | 1 | 5 | 1 | ||||||
CqSOD12 | 3 | 1 | 1 | 1 | 1 | 2 | 1 |
图5 混合盐碱胁迫下CqSODs的qRT-PCR注: 不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 5 qRT-PCR of CqSODs in response to mixed saline-alkali stressNote: Different lowercase letters indicate significant differences among treatments at P<0.05 level.
1 | MILLER A. Superoxide dismutases: ancient enzymes and new insights [J]. FEBS Lett., 2012, 586(5): 585-595. |
2 | MITTLER R. ROS are good [J]. Trends Plant Sci., 2017, 22(1):11-19. |
3 | BAFANA A, DUTT S, KUMAR S, et al.. Superoxide dismutase: an industrial perspective [J]. Crit. Rev. Biotechnol., 2011, 31(1):65-76. |
4 | ZELKO I N, MARIANI T J, FOLZ R J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression [J]. Free Radic. Biol. Med., 2002, 33(3):337-349. |
5 | TEPPERMAN J M, DUNSMUIR P. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity [J]. Plant Mol. Biol., 1990, 14(4): 501-511. |
6 | SU W, RAZA A, GAO A, et al.. Genome-wide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (Brassica napus L.) under different hormones and abiotic stress conditions [J/OL]. Antioxidants (Basel), 2021, 10(8): 1182 [2022-06-03]. . |
7 | ABREU I A, CABELLI D E. Superoxide dismutases-a review of the metal-associated mechanistic variations [J]. Biochim. Biophys. Acta, 2010, 1804(2): 263-274. |
8 | SONG J, ZENG L, CHEN R, et al.. In silico identification and expression analysis of superoxide dismutase (SOD) gene family in Medicago truncatula [J/OL]. 3 Biotech., 2018, 8(8): 348 [2022-06-03]. . |
9 | 魏婧, 徐畅, 李可欣, 等. 超氧化物歧化酶的研究进展与植物抗逆性[J].植物生理学报, 2020, 56(12): 2571-2584. |
WEI J, XU C, LI K X, et al.. Progress on superoxide dismutase and plant stress resistance [J]. Plant Physiol. J., 2020, 56(12):2571-2584. | |
10 | ASENSIO A C, GIL-MONREAL M, PIRES L, et al.. Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes [J]. J. Plant Physiol., 2012, 169(13):1253-1260. |
11 | HAN L M, HUA W P, CAO X Y, et al.. Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza [J/OL]. Gene, 2020, 742:144603[2022-06-03]. . |
12 | ZHANG X, ZHANG L T, CHEN Y Y, et al.. Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley [J]. Plant Growth Regul., 2021, 94(1): 49-60. |
13 | FENG K, YU J H, CHENG Y, et al.. The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns [J/OL]. Front. Plant Sci., 2016(7): 1279 [2022-06-03]. . |
14 | ZHOU Y, HU L F, WU H, et al.. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses [J/OL]. Int. J. Genomics, 2017, 2017: 7243973 [2022-06-03]. . |
15 | MOLINA-RUEDA J J, TSAI C J, KIRBY E G. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a) [J/OL]. PLoS One, 2013, 8(2): e56421 [2022-06-03]. . |
16 | ZURITA-SILVA A, FUENTES F, ZAMORA P, et al.. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives [J]. Mol. Breed., 2014, 34(1): 13-30. |
17 | 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. |
ZHAO Y, WEI X H, LI T T. Efferts of exogenous nitric oxide on seed Emination and seedling growth of Chenopodium quinoa under complex saline-alkali stress [J]. Acta Pratac. Sin., 2020, 29(4): 92-101. | |
18 | 刘文瑜, 杨发荣, 黄杰, 等. NaCl 胁迫对藜麦幼苗生长和抗氧化酶活性的影响[J].西北植物学报, 2017, 37(9): 1797-1804. |
LIU W Y, YANG F R, HUANG J, et al.. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoa to salt stress [J]. Acta Bot. Bor-Occid. Sin., 2017, 37(9):1797-1804. | |
19 | RUIZ K B, BIONDI S, MARTÍNEZ E A, et al.. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes [J]. Plant Biosyst., 2016, 150(2): 357-371. |
20 | 李美丽, 宿俊吉, 杨永林, 等. 陆地棉COI家族基因鉴定及在干旱和盐胁迫下的表达分析[J].中国农业科技导报, 2022, 24(4):63-74. |
LI M L, SU J J, YANG Y L, et al.. Identification of COl family genes and their expression in Gossypium hirsutum L. under drought and salt stress [J]. J. Agric. Sci. Technol., 2022, 24(4): 63-74. | |
21 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using Real-time quantitative PCR [J]. Methods, 2002, 25(4): 402-408. |
22 | WANG T, SONG H, ZHANG B H, et al.. Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (Setaria italica L.) [J/OL]. 3 Biotech., 2018, 8(12): 486 [2022-06-03].. |
23 | DEHURY B, SARMA K, SARMAH R, et al.. In silico analyses of superoxide dismutases (SODs) of rice (Oryza sativa L.) [J]. J. Plant Biochem. Biotechnol., 2013, 22(1): 150-156. |
24 | GOSAVI G U, JADHAV A S, KALE A A, et al.. Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage [J]. Indian J. Biotechnol., 2014, 13(13): 356-363. |
25 | XMHA B, QXC B, QI Y B, et al.. Genome-wide analysis of superoxide dismutase genes in Larix kaempferi [J]. Gene, 2019, 686: 29-36. |
26 | TANG Y H, BAO X X, ZHI Y L, et al.. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice [J/OL]. Front. Plant Sci., 2019(10): 168 [2022-06-03]. . |
27 | LIN Y L, LAI Z X. Superoxide dismutase multigene family in longan somatic embryos: a comparison of CuZn-SOD, Fe-SOD, and Mn-SOD gene structure, splicing, phylogeny, and expression [J]. Mol. Breeding, 2013, 32(3): 595-615. |
28 | WANG W, ZHANG X, DENG F, et al.. Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum [J/OL]. BMC Genomics, 2017,18(1):376 [2022-06-03]. . |
29 | FINK R C, SCANDALIOS J G. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases [J]. Arch. Biochem. Biophys., 2002, 399(1): 19-36. |
30 | XU G X, GUO C C, SHAN H Y, et al.. Divergence of duplicate genes in exon-intron structure [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(4): 1187-1192. |
31 | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol. Biochem., 2010, 48(12): 909-930. |
32 | FENG X, LAI Z X, LIN Y L, et al.. Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv.Tianbaojiao (AAA group)[J/OL]. BCM Genomics, 2015, 16:823 [2022-06-03]. . |
33 | HU X X, HAO C Y, CHENG Z M, et al.. Genome-wide identification, characterization, and expression analysis of the grapevine superoxide dismutase (SOD) family [J/OL]. Int. J.Genomics, 2019:7350414 [2022-06-03]. . |
34 | PILON M, RAVET K, TAPKEN W. The biogenesis and physiological function of chloroplast superoxide dismutases [J]. Biochim. Biophys. Acta, 2011, 1807(8): 989-998. |
[1] | 卢倩倩, 阿布都外力·阿不力米提, 侯毅兴, 李志慧, 王爽, 周龙. 复合盐碱胁迫下7个鲜食葡萄品种光合特性研究[J]. 中国农业科技导报, 2023, 25(7): 63-76. |
[2] | 孙鲁鹏, 杨洋, 王卫超, 傅廷栋, 周广生, 张凤华. 油菜苗期对盐碱胁迫的离子响应机制[J]. 中国农业科技导报, 2023, 25(5): 46-54. |
[3] | 张曼, 王志城, 刘正文, 王国宁, 王省芬, 张艳. 陆地棉BGLU基因家族成员的全基因组鉴定与表达分析[J]. 中国农业科技导报, 2023, 25(2): 48-59. |
[4] | 梁培鑫, 唐榕, 刘建国. 混合盐碱胁迫对油莎豆光合生理及产量的影响[J]. 中国农业科技导报, 2023, 25(12): 195-204. |
[5] | 陈秋静, 杨招娣, 王仕玉, 郭凤根, 赵小雪, 陈凡, 丰扬. 植物生长延缓剂对藜麦抗倒伏能力及产量的影响[J]. 中国农业科技导报, 2023, 25(11): 42-48. |
[6] | 崔宏亮, 宋晓晓, 姚庆, 安万刚, 邢宝, 秦培友. 伊犁河谷不同藜麦品种对盐胁迫的生理响应及耐盐评价[J]. 中国农业科技导报, 2022, 24(5): 32-45. |
[7] | 齐天明, 李志坚, 秦培友, 任贵兴, 周帮伟. 藜麦栽培技术研究与应用展望[J]. 中国农业科技导报, 2022, 24(3): 157-165. |
[8] | 万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用[J]. 中国农业科技导报, 2022, 24(12): 59-67. |
[9] | 赵晋锋, 余爱丽, 李颜方, 杜艳伟, 王高鸿, 王振华. 谷子SiCBL3对非生物胁迫响应特征分析[J]. 中国农业科技导报, 2022, 24(11): 68-75. |
[10] | 王琴琴, 陈修贵, 陆许可, 王帅, 张悦新, 范亚朋, 陈全家, 叶武威. 陆地棉GhPKE1的生物信息学分析及功能验证[J]. 中国农业科技导报, 2022, 24(1): 38-45. |
[11] | 刘正文, 王省芬, 孟成生, 张艳, 孙正文, 吴立强, 马峙英, 张桂寅. 海岛棉GH9基因家族成员鉴定及分析[J]. 中国农业科技导报, 2021, 23(9): 30-45. |
[12] | 蒲全明, 杨鹏, 雍磊, 邓榆川, 何自涵, 林邦民, 施松梅, 向承勇, 方芳. 萝卜紫红叶色突变体的色素含量及光合特性研究[J]. 中国农业科技导报, 2021, 23(8): 45-54. |
[13] | 崔江慧§,杨溥原§,常金华*. 高粱GRF基因家族鉴定及在非生物胁迫下的表达分析[J]. 中国农业科技导报, 2021, 23(4): 37-46. |
[14] | 李媛媛1,陈博2,姚立蓉2,翟雪婷1,司二静2,汪军成2,马小乐2,孟亚雄2,王化俊2,李葆春1*,杨亮1. 283份小麦品种(系)萌发期耐盐碱性评价及种质筛选[J]. 中国农业科技导报, 2021, 23(3): 25-33. |
[15] | 关思静, 王楠, 徐蓉蓉, 葛甜甜, 高静, 颜永刚, 张岗, 陈莹, 张明英. 甘草PRR基因家族鉴定及表达分析[J]. 中国农业科技导报, 2021, 23(12): 66-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||