中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (2): 191-197.DOI: 10.13304/j.nykjdb.2022.0796
• 生物制造 资源生态 • 上一篇
胡家钰1(), 杨阳2, 张红燕1, 高兵阳1, 王灵璐1, 闫军营3, 孙笑梅3, 赵亚南1(
), 叶优良1(
)
收稿日期:
2022-09-18
接受日期:
2022-11-16
出版日期:
2024-02-15
发布日期:
2024-02-04
通讯作者:
赵亚南,叶优良
作者简介:
胡家钰 E-mail:Hujiayu960@163.com
基金资助:
Jiayu HU1(), Yang YANG2, Hongyan ZHANG1, Bingyang GAO1, Linglu WANG1, Junying YAN3, Xiaomei SUN3, Yanan ZHAO1(
), Youliang YE1(
)
Received:
2022-09-18
Accepted:
2022-11-16
Online:
2024-02-15
Published:
2024-02-04
Contact:
Yanan ZHAO,Youliang YE
摘要:
为研究砂质土壤上追施不同类型氮肥对麦套花生生长发育和产量的影响,在河南新乡市开展田间试验,分别设置不施肥(对照)、施用氯化铵、硫酸铵、硝酸铵钙、普通尿素、腐植酸尿素、控释尿素共7个处理,分析不同处理对花生株高、分枝数、复叶数、干物质和产量的影响。结果表明,与对照相比,施用不同类型氮肥均提高了花生的株高,其中尿素处理的株高在各个时期均较高;腐植酸尿素和控释尿素处理的株高在生育后期较高。施用氮肥能促进花生分枝,下针期以前以氯化铵、尿素和控释尿素处理的增幅较大。氮肥类型显著影响花生复叶数,其中硫酸铵和硝酸铵钙处理花生的复叶数在生育前期较少而后期较多;腐植酸尿素和控释尿素处理在前期较多但成熟期较少;氯化铵和尿素处理在整个生育期则较为平稳。施用各类型氮肥均显著提高了花生膨果期和成熟期的干物质量。与对照相比,追施不同类型氮肥可增产25.0%~61.0%,其中硝酸铵钙和腐植酸尿素增产幅度最大;尿素和控释尿素的增产效果高于硫酸铵和氯化铵;且施用硝酸铵钙、尿素和控释尿素处理花生的坏果率低于其他处理。综上所述,本研究条件下,麦套花生追施氮肥可促进花生生长并提高产量,其中硝酸铵钙的增产效果最佳;腐植酸尿素和控释尿素也具有较好效果。
中图分类号:
胡家钰, 杨阳, 张红燕, 高兵阳, 王灵璐, 闫军营, 孙笑梅, 赵亚南, 叶优良. 施用不同品种氮肥对麦套花生生长和产量的影响[J]. 中国农业科技导报, 2024, 26(2): 191-197.
Jiayu HU, Yang YANG, Hongyan ZHANG, Bingyang GAO, Linglu WANG, Junying YAN, Xiaomei SUN, Yanan ZHAO, Youliang YE. Effect of Topdressing Different Types of Nitrogen Fertilizer on Growth and Yield of Intercropped Peanut with Wheat[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 191-197.
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 20.2±1.04 c | 26.7±1.13 c | 32.3±3.06 b | 50.3±7.23 b | 53.3±2.25 ab |
AN | 23.8±1.04 b | 28.2±4.13 bc | 33.5±1.64 b | 58.3±5.57 ab | 58.3±5.46 ab |
AS | 22.6±1.9 b | 28.2±1.45 bc | 31.5±3.16 b | 54.7±6.71 ab | 58.8±5.58 ab |
CAN | 23.0±1.79 b | 33.3±4.59 a | 33.3±4.59 b | 53.1±5.65 ab | 50.6±1.91 b |
UR | 26.1±1.75 a | 31.8±3.23 ab | 37.3±3.00 a | 57.0±7.29 ab | 60.8±4.45 ab |
UHA | 22.6±1.14 b | 28.8±3.83 bc | 29.7±2.33 c | 61.3±1.85 a | 57.3±3.88 ab |
SRU | 22.0±1.71 bc | 29.5±1.65 bc | 34.4±1.32 ab | 60.0±6.24 ab | 63.9±6.26 a |
表1 不同氮肥处理下各生育期花生的株高 (cm)
Table 1 Plant height of peanut in different growth stages under different nitrogen fertilizer treatments
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 20.2±1.04 c | 26.7±1.13 c | 32.3±3.06 b | 50.3±7.23 b | 53.3±2.25 ab |
AN | 23.8±1.04 b | 28.2±4.13 bc | 33.5±1.64 b | 58.3±5.57 ab | 58.3±5.46 ab |
AS | 22.6±1.9 b | 28.2±1.45 bc | 31.5±3.16 b | 54.7±6.71 ab | 58.8±5.58 ab |
CAN | 23.0±1.79 b | 33.3±4.59 a | 33.3±4.59 b | 53.1±5.65 ab | 50.6±1.91 b |
UR | 26.1±1.75 a | 31.8±3.23 ab | 37.3±3.00 a | 57.0±7.29 ab | 60.8±4.45 ab |
UHA | 22.6±1.14 b | 28.8±3.83 bc | 29.7±2.33 c | 61.3±1.85 a | 57.3±3.88 ab |
SRU | 22.0±1.71 bc | 29.5±1.65 bc | 34.4±1.32 ab | 60.0±6.24 ab | 63.9±6.26 a |
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 7.8±1.6 b | 9.5±1.9 a | 9.5±1.4 b | 8.5±2.7 b | 9.6±2.4 a |
AN | 10.4±0.5 ab | 9.8±1.5 a | 12.5±2.8 a | 10.0±2.3 a | 11.2±2.3 a |
AS | 9.6±2.6 ab | 9.3±1.4 a | 10.2±0.8 b | 10.0±1.3 a | 11.8±1.8 a |
CAN | 8.2±2.8 ab | 9.3±1.5 a | 9.7±1.9 b | 10.5±1.4 a | 10.0±1.5 a |
UR | 10.8±0.8 a | 10.5±1.4 a | 10.8±1.5 ab | 10.2±1.5 a | 10.0±1.7 a |
UHA | 8.8±2.3 ab | 9.0±2.9 a | 10.0±2.3 b | 10.8±2.8 a | 10.0±1.5 a |
SRU | 8.6±1.9 ab | 10.8±2.1 a | 11.3±1.2 ab | 10.0±2.0 a | 10.2±2.4 a |
表2 不同氮肥处理下各生育期花生的分枝数
Table 2 Number of branches of peanut at different fertility stages under different nitrogen fertilization treatment
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 7.8±1.6 b | 9.5±1.9 a | 9.5±1.4 b | 8.5±2.7 b | 9.6±2.4 a |
AN | 10.4±0.5 ab | 9.8±1.5 a | 12.5±2.8 a | 10.0±2.3 a | 11.2±2.3 a |
AS | 9.6±2.6 ab | 9.3±1.4 a | 10.2±0.8 b | 10.0±1.3 a | 11.8±1.8 a |
CAN | 8.2±2.8 ab | 9.3±1.5 a | 9.7±1.9 b | 10.5±1.4 a | 10.0±1.5 a |
UR | 10.8±0.8 a | 10.5±1.4 a | 10.8±1.5 ab | 10.2±1.5 a | 10.0±1.7 a |
UHA | 8.8±2.3 ab | 9.0±2.9 a | 10.0±2.3 b | 10.8±2.8 a | 10.0±1.5 a |
SRU | 8.6±1.9 ab | 10.8±2.1 a | 11.3±1.2 ab | 10.0±2.0 a | 10.2±2.4 a |
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 33.2±6.4 a | 49.3±9.2 a | 66.3±9.4 ab | 80.8±16.6 a | 74.2±10.0 ab |
AN | 34.0±4.1 a | 49.2±9.2 a | 73.0±11.3 a | 84.8±12.3 a | 79.2±14.3 ab |
AS | 29.4±9.7 a | 38.2±8.1 ab | 57.3±4.8 bc | 84.5±17.9 a | 89.5±12.5 a |
CAN | 30.3±9.4 a | 31.0±5.5 b | 56.2±5.0 bc | 92.8±5.5 a | 72.2±14.4 ab |
UR | 39.4±5.6 a | 41.5±4.8 ab | 69.2±12.1 ab | 82.8±10.4 a | 75.8±8.0 ab |
UHA | 39.0±9.7 a | 44.8±4.3 a | 51.8±8.9 c | 87.4±9.3 a | 64.2±8.5 b |
SRU | 35.8±5.9 a | 43.8±7.8 a | 71.0±5.2 a | 84.0±16.1 a | 66.5±14.5 ab |
表3 不同氮肥处理下各生育期花生的复叶数
Table 3 Number of compound leaves of peanut at different stages under different nitrogen fertilization treatments
处理 Treatment | 初花期 Initial flowering stage | 盛花期 Full flowering stage | 下针期 Needling stage | 膨果期 Fruit swelling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|
CK | 33.2±6.4 a | 49.3±9.2 a | 66.3±9.4 ab | 80.8±16.6 a | 74.2±10.0 ab |
AN | 34.0±4.1 a | 49.2±9.2 a | 73.0±11.3 a | 84.8±12.3 a | 79.2±14.3 ab |
AS | 29.4±9.7 a | 38.2±8.1 ab | 57.3±4.8 bc | 84.5±17.9 a | 89.5±12.5 a |
CAN | 30.3±9.4 a | 31.0±5.5 b | 56.2±5.0 bc | 92.8±5.5 a | 72.2±14.4 ab |
UR | 39.4±5.6 a | 41.5±4.8 ab | 69.2±12.1 ab | 82.8±10.4 a | 75.8±8.0 ab |
UHA | 39.0±9.7 a | 44.8±4.3 a | 51.8±8.9 c | 87.4±9.3 a | 64.2±8.5 b |
SRU | 35.8±5.9 a | 43.8±7.8 a | 71.0±5.2 a | 84.0±16.1 a | 66.5±14.5 ab |
图1 不同氮肥处理下各生育期花生的干物质积累量注: 不同小写字母表示同一时期下不同氮肥处理间在P<0.05水平差异显著。
Fig. 1 Dry matter accumulation of peanut at different stages under different nitrogen fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different N fertilizer treatments of the same stage at the P<0.05 level.
图2 追施不同类型氮肥下花生产量和病果率注: 不同小写字母表示不同氮肥处理间在P<0.05水平差异显著。
Fig. 2 Yield and fruit disease rate of peanut under different nitrogen fertilizer treatmentsNote: Different lowercase letters indicate significant differences between different N fertilizer treatments at the P<0.05 level.
1 | 刘娟, 汤丰收, 张俊, 等. 国内花生生产技术现状及发展趋势研究[J]. 中国农学通报, 2017, 33(22): 13-18. |
LIU J, TANG F S, ZHANG J, et al.. Current status and development trends of peanut production technology in China [J]. Chin. Agric. Sci. Bull., 2017, 33(22): 13-18. | |
2 | 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2): 161-166. |
LIAO B T. A review on progress and prospects of peanut industry in China [J]. Chin. J. Oil Crop Sci., 2020, 42(2): 161-166. | |
3 | 周帅, 韩彬, 李帅, 等. 河南省花生生产现状与发展对策[J]. 天津农业科学, 2021, 27(8): 56-59. |
ZHOU S, HAN B, LI S, et al.. Current situation and development countermeasure of peanut in Henan Province [J]. Tianjin Agric. Sci., 2021, 27(8): 56-59. | |
4 | 王凯, 吴正锋, 郑亚萍, 等. 我国花生优质高效栽培技术研究进展与展望[J]. 山东农业科学, 2018, 50(12): 138-143. |
WANG K, WU Z F, ZHENG Y P, et al.. Research progress and prospect of high quality and high efficiency cultivation technology for peanut in China [J]. Shandong Agric. Sci., 2018, 50(12): 138-143. | |
5 | 吴继华, 李可, 王艳敏, 等. 河南省麦套花生简化栽培技术规程[J]. 花生学报, 2008, 37(3): 37-40. |
WU J H, LI K, WANG Y M, et al.. The simplified cultural practices prescriptive procedure of peanut intercropped with wheat in Henan [J]. J. Peanut Sci., 2008, 37(3): 37-40. | |
6 | 郭峰, 万书波, 王才斌, 等. 麦套花生产量形成期固氮酶和保护酶活性特征研究[J]. 西北植物学报, 2007, 27(2): 309-314. |
GUO F, WAN S B, WANG C B, et al.. Nitrogenase and protective enzyme activities during the yield forming stage of high yield peanut intercropped with wheat [J]. Acta Bot. Bor-Occid. Sin., 2007, 27(2): 309-314. | |
7 | 左元梅, 刘永秀, 张福锁. NO 3 - 态氮对花生结瘤与固氮作用的影响[J]. 生态学报, 2003(4): 758-764. |
ZUO Y M, LIU Y X, ZHANG F S, et al.. Effects of NO 3 - -N on nodule formation and nitrogen fixing of peanut [J]. Acta Ecolog. Sin., 2003(4): 758-764. | |
8 | 杨吉顺, 李尚霞, 张智猛, 等. 施氮对不同花生品种光合特性及干物质积累的影响[J]. 核农学报, 2014, 28(1): 154-160. |
YANG J S, LI S X, ZHANG Z M, et al.. Effect of nitrogen application on canopy photosysthetic and dry matter accumulation of peanut [J]. J. Acta. Agric. Nucl. Sci., 2014, 28(1): 154-160. | |
9 | 武庆慧, 汪洋, 赵亚南, 等. 氮磷钾配比对潮土区高产夏播花生产量、养分吸收和经济效益的影响[J]. 中国土壤与肥料, 2019(2): 98-104. |
WU Q H, WANG Y, ZHAO Y N, et al.. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvoaquic soil [J]. China Soils Fert., 2019(2): 98-104. | |
10 | 章明奎, 方利平. 砂质农业土壤养分积累和迁移特点的研究[J]. 水土保持学报, 2006(2): 46-49. |
ZHANG M K, FANG L P. Accumulation and transport of nutrients in agricultural sandy soils [J]. J. Soil. Water. Conserv., 2006(2): 46-49. | |
11 | 杨稚娟, 贴建伟, 张康永, 等. 延津、原阳两县砂质土壤养分特征研究[J]. 河南农业科学, 2011, 40(9): 62-65. |
YANG Z J, TIE J W, ZHANG Y K, et al.. Characteristics of sandy soil nutrition in Yanjin and Yuanyang counties [J] J. Henan Agric. Sci., 2011, 40(9): 62-65. | |
12 | 毕振方, 杨富军, 闫萌萌, 等. 不同追肥时期对花生光合特性及产量的影响[J]. 农学学报, 2011, 1(9): 6-10. |
BI Z F, YANG F J, YAN M M, et al.. Effects of different top-dressing time on photosynthetic physiological properties and yield of peanut [J]. J. Agric., 2011, 1(9): 6-10. | |
13 | 齐欣, 司玉坤, 赵亚南, 等. 不同氮肥在不同土壤中对小麦氮素利用及产量的影响[J]. 中国农业科技导报, 2021, 23(7): 172-181. |
QI X, SI Y K, ZHAO Y N, et al.. Impacts of nitrogen forms on nitrogen utilization and yield of wheat in different types of soil [J]. J. Agric. Sci. Technol., 2021, 23(7): 172-181. | |
14 | 吴正锋, 陈殿绪, 郑永美, 等. 花生不同氮源供氮特性及氮肥利用率研究[J].中国油料作物学报, 2016, 38(2): 207-213. |
WU Z F, CHEN D X, ZHENG Y M, et al.. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut [J]. Chin. J. Oil Crop Sci., 2016, 38(2): 207-213. | |
15 | 张思苏, 余美炎, 王在序, 等. 应用15N示踪法研究花生对氮素的吸收利用[J]. 中国油料, 1988(2): 54-58. |
ZHANG S Q, YU M Y, WANG Z X, et al.. Study the absorption of N in peanut by a 15N-tracer method [J]. Chin. J. Oil Crop Sci., 1988(2): 54-58. | |
16 | 武继承, 杨永辉, 刘东亮, 等. 砂质潮土不同土体构型对花生生长和土壤养分的影响[J]. 河南农业科学, 2011, 40(10): 76-80, 95. |
WU J C, YANG Y H, LIU D L, et al.. Effects of different soil configurations on peanut growth and soil nutrients in sandy soil [J]. J. Henan Agric. Sci., 2011, 40(10): 76-80, 95. | |
17 | 郑永美, 王才斌, 万更波, 等. 不同形态氮肥对花生氮代谢及氮积累的影响[J]. 山东农业科学, 2012, 44(2): 57-62. |
ZHENG Y M, WANG C B, WAN G B, et al.. Effects of nitrogen forms on nitrogen metabolism and accumulation in peanut [J]. Shandong Agric. Sci., 2012, 44(2): 57-62. | |
18 | 张翔, 郭中义, 毛家伟, 等. 品种与氮肥形态对花生叶片铁含量和SPAD值及产量的影响[J]. 中国土壤与肥料, 2014(2): 45-48. |
ZHANG X, GUO Z Y, MAO J W, et al.. Effects of cultivars and nitrogen forms on active iron content, SPAD values of young leaves and yield in peanut [J]. China Soils Fert., 2014(2): 45-48. | |
19 | ISLAM S, ISLAM R, KANDWAL P, et al.. Nitrate transport and assimilation in plants: a potential review [J]. Arch. Agron. Soil Sci., 2022, 68(1): 133-150. |
20 | 王飞, 王建国, 李林, 等. 不同施肥模式对花生Ca、Zn吸收、积累及分配的影响[J]. 中国农业科技导报, 2020, 22(5): 166-173. |
WANG F, WANG J G, LI L, et al.. Effects of different fertilization methods on the absorption, accumulation and distribution of Ca and Zn in peanut [J]. J. Agric. Sci. Technol., 2020, 22(5): 166-173. | |
21 | 司贤宗, 张翔, 索炎炎, 等. 施硫对花生产质量和硫吸收利用的影响[J]. 江苏农业科学, 2020, 48(6): 59-63. |
SI X Z, ZHANG X, SUO Y Y, et al.. Influences of sulfur fertilizer on yield, quality, and sulfur absorption and utilization of peanut [J]. Jiangsu Agric. Sci., 2020, 48(6): 59-63. | |
22 | 丁方军, 王洪凤, 吴钦泉, 等. 腐植酸缓释肥料对花生农艺性状、品质性状及产量的影响[J]. 腐植酸, 2013(2): 13-16. |
DING F J, WANG H F, WU Q Q, et al.. Effect of humic acid slow-released fertilizer on growth and yield of peanut [J]. Humic Acid, 2013(2): 13-16. | |
23 | 董元杰, 张民, 万勇善, 等. 3种控释掺混肥对花生农艺性状和品质性状的影响[J]. 北京农学院学报, 2008, 23(4): 12-16. |
DONG Y J, ZHANG M, WAN Y S, et al.. Effect of three kind controlled release blend bulk fertilizers on the agronomic characters and quality in peanut [J]. J. Beijing Univ. Agric., 2008, 23(4): 12-16. | |
24 | 冯梦诗, 谢吉先, 王书勤, 等. 绿聚能复合肥品种及用量对花生生育和产量的影响[J]. 江苏农业科学, 2020, 48(8): 89-93. |
FENG M S, XIE J X, WANG S Q, et al.. Influences of Lvjuneng fertilizers on growth and yield of peanuts [J]. Jiangsu Agric. Sci., 2020, 48(8): 89-93. | |
25 | 张博文, 穆青, 刘登望, 等. 施钙对瘠薄红壤旱地花生土壤理化性质的影响[J]. 中国油料作物学报, 2020, 42(5): 896-902. |
ZHANG B W, MU Q, LIU D W, et al.. Effects of calcium application on physical and chemical properties of peanut in barren upland red soil [J]. Chin. J. Oil Crop Sci., 2020, 42(5): 896-902. | |
26 | 周录英, 李向东, 王丽丽, 等. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008(5): 879-885. |
ZHOU L Y, LI X D, WANG L L, et al.. Effects of different Ca applications on physiological characteristics, yield and quality in peanut [J]. Acta Agron. Sin., 2008(5): 879-885. | |
27 | 万美亮, 吴生桂, 田廷亮, 等. 花生苗期对硝态氮和铵态氮的适应程度探讨[J]. 中国油料, 1992(1): 68-69. |
WAN M L, WU S G, TIAN T L, et al.. Study on the adaptability of peanut to nitrate and ammonium nitrogen at seedling stage [J]. Chin. Oil Crop, 1992(1): 68-69. |
[1] | 陈春林, 王琳洋, 单梦伟, 裴甜甜, 王吉庆, 肖怀娟, 李娟起, 李猛, 杜清洁. 发酵花生壳和牛粪替代草炭基质的番茄育苗效果分析[J]. 中国农业科技导报, 2023, 25(4): 205-214. |
[2] | 王颖, 李珺, 马力通, 曹晓冰. 黄腐植酸对泥炭产甲烷的影响[J]. 中国农业科技导报, 2023, 25(1): 128-133. |
[3] | 齐丽, 何振嘉. 北方农牧交错带花生种植模式对荒漠化的影响[J]. 中国农业科技导报, 2022, 24(9): 177-187. |
[4] | 戴良香, 张冠初, 丁红, 徐扬, 张智猛. 有机肥和钙肥对盐碱土花生根际细菌群落结构的影响[J]. 中国农业科技导报, 2022, 24(5): 189-201. |
[5] | 潘梦诗, 郭文阳, 周留柱, 邓丽, 苗建利, 徐宏光, 张宗源, 亓兰达. 贝莱斯芽孢杆菌菌剂对花生白绢病的田间防效及作用机理研究[J]. 中国农业科技导报, 2022, 24(11): 130-136. |
[6] | 胡婷, 全伟, 吴明亮, 李林. 双垄四行花生垄作播种机种沟开沟器设计与试验[J]. 中国农业科技导报, 2021, 23(9): 129-137. |
[7] | 伊淼1,2§,王建国 2§,尹金1,郭峰2,张佳蕾2,唐朝辉2,李新国2,3*,万书波2,3*. 减氮增钙及施用时期对花生生长发育及生理特性的影响[J]. 中国农业科技导报, 2021, 23(4): 164-172. |
[8] | 周巾英,王丽,祝水兰,罗晶,樊琪平,冯健雄*. 不同贮藏方式对花生仁品质的影响[J]. 中国农业科技导报, 2021, 23(2): 134-140. |
[9] | 王钰云,王宏富*,李智,段宏凯,黄珊珊. 谷子花生间作对谷子光合特性及产量的影响[J]. 中国农业科技导报, 2020, 22(5): 153-165. |
[10] | 王飞1,王建国2,李林1*,刘登望1*,万书波2,张昊1. 不同施肥模式对花生Ca、Zn吸收、积累及分配的影响[J]. 中国农业科技导报, 2020, 22(5): 166-173. |
[11] | 李庆凯1,2,3,刘苹2,3*,赵海军3,宋效宗2,林海涛2,沈玉文2,李林1,万书波1,3*. 玉米根系分泌物对连作花生土壤酚酸类物质化感作用的影响[J]. 中国农业科技导报, 2020, 22(3): 119-130. |
[12] | 庞春花1,2,华艳宏1,张永清1,贺笑1,薛蓉2. 不同磷水平下施加腐植酸对藜麦生理特性及产量的影响[J]. 中国农业科技导报, 2019, 21(4): 143-150. |
[13] | 张冠初1,2,张智猛1*,慈敦伟1,丁红1,杨吉顺1,史晓龙1,3,田家明1,3,戴良香1*. 不同品种花生耐盐性及Na+吸收动力学特性[J]. 中国农业科技导报, 2019, 21(2): 34-40. |
[14] | 王琢1*,原克波1,李增绪1,闫培生2*. 抑制黄曲霉毒素前体合成的芽孢杆菌鉴定及其抑制活性研究[J]. 中国农业科技导报, 2019, 21(11): 111-120. |
[15] | 张俊,刘娟,臧秀旺,郝西,汤丰收,董文召*,张忠信,苗利娟,刘华. 不同种植方式密植对花生开花结实的影响[J]. 中国农业科技导报, 2019, 21(1): 125-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||