中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (6): 159-169.DOI: 10.13304/j.nykjdb.2023.0626
• 生物制造 资源生态 • 上一篇
强敬雯1(), 王晚晴1,2, 唐曼玉1, 张娜1,2, 武双1,2, 华威1,2, 邵恒煊1, 程艳玲1,2(
)
收稿日期:
2023-08-21
接受日期:
2024-02-06
出版日期:
2024-06-15
发布日期:
2024-06-12
通讯作者:
程艳玲
作者简介:
强敬雯 E-mail:1275578042@qq.com;
基金资助:
Jingwen QIANG1(), Wanqing WANG1,2, Manyu TANG1, Na ZHANG1,2, Shuang WU1,2, Wei HUA1,2, Hengxuan SHAO1, Yanling CHENG1,2(
)
Received:
2023-08-21
Accepted:
2024-02-06
Online:
2024-06-15
Published:
2024-06-12
Contact:
Yanling CHENG
摘要:
厨余垃圾可通过厌氧消化生产沼气,实现其减量化和可再生能源的循环利用,促使行业发展向“双碳”目标靠近。总结了厨余垃圾厌氧消化过程中主要水解产酸菌和各营养型产甲烷菌,讨论了厨余垃圾在产沼过程中环境因子对厌氧消化的影响及其与微生物活性间的关系,同时基于厨余垃圾厌氧消化全生命周期研究,分析了沼气生产及其应用对环境的影响。最后,针对厨余垃圾厌氧消化产沼效能低下的问题,在系统优化方面进行了展望,以达到高效回收及高值化利用厨余垃圾的目的,进而实现能源结构转型,推动城市绿色低碳发展。
中图分类号:
强敬雯, 王晚晴, 唐曼玉, 张娜, 武双, 华威, 邵恒煊, 程艳玲. 厨余垃圾厌氧消化对沼气微生物及环境的影响[J]. 中国农业科技导报, 2024, 26(6): 159-169.
Jingwen QIANG, Wanqing WANG, Manyu TANG, Na ZHANG, Shuang WU, Wei HUA, Hengxuan SHAO, Yanling CHENG. Effects of Anaerobic Digestion of Kitchen Waste on Biogas Microorganisms and Environment[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 159-169.
门Phylum | 属Genus | 类别 Type | |
---|---|---|---|
细菌Bacteria | 厚壁菌门Firmicutes | Acetanaerobacterium | 水解/发酵细菌 Hydrolytic/fermentative bacteria |
Anaerobacteriuma | |||
硫胺素芽孢杆菌属Aneurinibacillus | |||
Gracilibacter | |||
乳杆菌属Lactobacillus Pseudobacteroids | |||
瘤胃球菌属Ruminococcus Turicibacter | |||
克里斯滕森氏菌属Christensenella | |||
Lutispora | |||
梳状菌属Pectinatus | |||
沉淀杆菌属Sedimentibacter | |||
热厌氧杆菌属Thermacetogenium | |||
醋酸杆菌属Acetobacterium | 产氢产乙酸菌 Acetogenic bacteria | ||
优杆菌属Anaerovorax | |||
梭状芽孢杆菌属Clostridium | |||
脱硫肠状菌属Desulfotomaculum | |||
Hydrogenispora | |||
碳酸噬胞菌属Pelotomaculum | |||
Saccharofermentans | |||
Sporanaerobacter | |||
Syntrophaceticus | |||
互营单胞菌属Syntrophomonas | |||
互养菌门Synergistetes | Thermovirga lienii Cloacibacillus | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
变形菌门Proteobacteria | Acinetobacter | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Advenella | |||
Dechloromonas | |||
索氏菌属Thauera | |||
Pseudomonas | |||
硫肠状菌属Desulfobulbs | 产氢产乙酸菌 Acetogenic bacteria | ||
脱硫球菌属Desulfococcus | |||
氢噬菌属Hydrogenophaga | |||
根瘤菌属Rhizobium | |||
硫氧化菌属Sulfurovum | |||
互营杆菌属Syntrophobacter | |||
互营菌属Syntrophorhabdus | |||
放线菌门Actinobacteria | Olsenella | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
双歧杆菌属Bifidobacterium | |||
棒状杆菌属Corynebacterium | |||
绿弯菌门Chloroflexi | Bellilinea | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Levilinea | 产氢产乙酸菌 Acetogenic bacteria | ||
拟杆菌门Bacteroidetes | Lutaonella | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Petrimonas | |||
长杆菌属Prolixibacter | |||
Alkalitalea | |||
拟杆菌属Bacteroides | |||
Geofilum | |||
类芽孢杆菌属Macellibacteroides | 产氢产乙酸菌Acetogenic bacteria | ||
产乙酸嗜蛋白菌属Proteiniphilum | |||
古菌Archaea | 广古菌门Euryarchaeota | 甲烷八叠球菌属Methanosarcina | 混合甲烷菌 Mixotrophic methanogens |
甲烷微球菌属Methanimicrococcus | 氢营养型/甲基营养型产甲烷菌 Hydrogentrophic/methylotrophic methanogens | ||
甲烷杆菌属Methanobacterium | |||
甲烷短杆菌属Methanobrevibacter | |||
甲烷袋状菌属Methanoculleus | |||
甲烷叶菌属Methanolobus | |||
甲烷绳菌属Methanolinea | |||
甲烷嗜甲基菌属Methanomethylovorans | |||
甲烷球形菌属Methanosphaera | |||
甲烷螺菌属Methanosphaerula | |||
甲烷螺菌属Methanospirillum | |||
甲烷热杆菌属Methanothermobacter | |||
甲烷丝菌属Methanothrix | 乙酸营养型产甲烷菌 Acetolastic methanogens | ||
鬃毛甲烷菌属Methanosaeta |
表1 参与厌氧消化的主要细菌和古菌 (续表Continued)
Table 1 Main bacteria and archaea involved in the anaerobic digestion process
门Phylum | 属Genus | 类别 Type | |
---|---|---|---|
细菌Bacteria | 厚壁菌门Firmicutes | Acetanaerobacterium | 水解/发酵细菌 Hydrolytic/fermentative bacteria |
Anaerobacteriuma | |||
硫胺素芽孢杆菌属Aneurinibacillus | |||
Gracilibacter | |||
乳杆菌属Lactobacillus Pseudobacteroids | |||
瘤胃球菌属Ruminococcus Turicibacter | |||
克里斯滕森氏菌属Christensenella | |||
Lutispora | |||
梳状菌属Pectinatus | |||
沉淀杆菌属Sedimentibacter | |||
热厌氧杆菌属Thermacetogenium | |||
醋酸杆菌属Acetobacterium | 产氢产乙酸菌 Acetogenic bacteria | ||
优杆菌属Anaerovorax | |||
梭状芽孢杆菌属Clostridium | |||
脱硫肠状菌属Desulfotomaculum | |||
Hydrogenispora | |||
碳酸噬胞菌属Pelotomaculum | |||
Saccharofermentans | |||
Sporanaerobacter | |||
Syntrophaceticus | |||
互营单胞菌属Syntrophomonas | |||
互养菌门Synergistetes | Thermovirga lienii Cloacibacillus | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
变形菌门Proteobacteria | Acinetobacter | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Advenella | |||
Dechloromonas | |||
索氏菌属Thauera | |||
Pseudomonas | |||
硫肠状菌属Desulfobulbs | 产氢产乙酸菌 Acetogenic bacteria | ||
脱硫球菌属Desulfococcus | |||
氢噬菌属Hydrogenophaga | |||
根瘤菌属Rhizobium | |||
硫氧化菌属Sulfurovum | |||
互营杆菌属Syntrophobacter | |||
互营菌属Syntrophorhabdus | |||
放线菌门Actinobacteria | Olsenella | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
双歧杆菌属Bifidobacterium | |||
棒状杆菌属Corynebacterium | |||
绿弯菌门Chloroflexi | Bellilinea | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Levilinea | 产氢产乙酸菌 Acetogenic bacteria | ||
拟杆菌门Bacteroidetes | Lutaonella | 水解/发酵细菌 Hydrolytic/fermentative bacteria | |
Petrimonas | |||
长杆菌属Prolixibacter | |||
Alkalitalea | |||
拟杆菌属Bacteroides | |||
Geofilum | |||
类芽孢杆菌属Macellibacteroides | 产氢产乙酸菌Acetogenic bacteria | ||
产乙酸嗜蛋白菌属Proteiniphilum | |||
古菌Archaea | 广古菌门Euryarchaeota | 甲烷八叠球菌属Methanosarcina | 混合甲烷菌 Mixotrophic methanogens |
甲烷微球菌属Methanimicrococcus | 氢营养型/甲基营养型产甲烷菌 Hydrogentrophic/methylotrophic methanogens | ||
甲烷杆菌属Methanobacterium | |||
甲烷短杆菌属Methanobrevibacter | |||
甲烷袋状菌属Methanoculleus | |||
甲烷叶菌属Methanolobus | |||
甲烷绳菌属Methanolinea | |||
甲烷嗜甲基菌属Methanomethylovorans | |||
甲烷球形菌属Methanosphaera | |||
甲烷螺菌属Methanosphaerula | |||
甲烷螺菌属Methanospirillum | |||
甲烷热杆菌属Methanothermobacter | |||
甲烷丝菌属Methanothrix | 乙酸营养型产甲烷菌 Acetolastic methanogens | ||
鬃毛甲烷菌属Methanosaeta |
发酵体系 Reactor volume | 调控前 Before regulation | 调控方法 Regulation method | 调控结果 Regulation result | 参考文献 Reference |
---|---|---|---|---|
500 mL顶空瓶 500 mL serum bottle | 55 ℃产量为275 mL·g-1 VS Yield was 275 mL·g-1 VS at 55 ℃ | 调整温度到35 ℃ Adjust the temperature to 35 ℃ | 总产气量比55 ℃增加32% Gas production increased by 32% over 55 ℃ | [ |
500 mL蓝口瓶 500 mL experiment bottle | 对照组累积甲烷产量为22.59 mL·g-1 TS Cumulative methane yield in the control group was 22.59 mL·g-1 TS | 调pH到8.0 Adjust pH to 8.0 | 较对照组提高7.57倍 7.57 times higher than control group | [ |
1 L序批式反应器 1 L batch reactor | 氨含量>1.5 g·L-1时产气量<100 mL·g-1 VS Gas production < 100 mL·g-1 VS when ammonia content > 1.5 g·L-1 | 调整氨含量为0.5 g·L-1 Adjust ammonia content to 0.5 g·L-1 | 最大产气量为314.7 mL·g -1 VS Maximum gas production is 314.7 mL·g-1 VS | [ |
500 mL血清瓶 500 mL serum bottle | 对照组产甲烷速率为 0.15 mL·h-1 Methanogenesis rate in control group is 0.15 mL·h-1 | 碱预处理 Alkali pretreatment | 最大产甲烷速率为6.63 mL·h-1 Maximum methane production rate is 6.63 mL·h-1 | [ |
1 L反应器 1 L reactor | 厨余垃圾单独消化产气量为145 mL·g-1 VSS Gas production of kitchen waste alone is 145 mL·g-1 VSS | 与污水污泥共消化 Co-digestion with sewage sludge | 最大产甲烷量为233 mL·g-1 VSS Maximum gas production is 233 mL·g -1 VSS | [ |
表2 提高厨余垃圾厌氧消化过程中CH4产量的调控方法
Table 2 Regulation method of increasing KW end-products yield in anaerobic digestion process
发酵体系 Reactor volume | 调控前 Before regulation | 调控方法 Regulation method | 调控结果 Regulation result | 参考文献 Reference |
---|---|---|---|---|
500 mL顶空瓶 500 mL serum bottle | 55 ℃产量为275 mL·g-1 VS Yield was 275 mL·g-1 VS at 55 ℃ | 调整温度到35 ℃ Adjust the temperature to 35 ℃ | 总产气量比55 ℃增加32% Gas production increased by 32% over 55 ℃ | [ |
500 mL蓝口瓶 500 mL experiment bottle | 对照组累积甲烷产量为22.59 mL·g-1 TS Cumulative methane yield in the control group was 22.59 mL·g-1 TS | 调pH到8.0 Adjust pH to 8.0 | 较对照组提高7.57倍 7.57 times higher than control group | [ |
1 L序批式反应器 1 L batch reactor | 氨含量>1.5 g·L-1时产气量<100 mL·g-1 VS Gas production < 100 mL·g-1 VS when ammonia content > 1.5 g·L-1 | 调整氨含量为0.5 g·L-1 Adjust ammonia content to 0.5 g·L-1 | 最大产气量为314.7 mL·g -1 VS Maximum gas production is 314.7 mL·g-1 VS | [ |
500 mL血清瓶 500 mL serum bottle | 对照组产甲烷速率为 0.15 mL·h-1 Methanogenesis rate in control group is 0.15 mL·h-1 | 碱预处理 Alkali pretreatment | 最大产甲烷速率为6.63 mL·h-1 Maximum methane production rate is 6.63 mL·h-1 | [ |
1 L反应器 1 L reactor | 厨余垃圾单独消化产气量为145 mL·g-1 VSS Gas production of kitchen waste alone is 145 mL·g-1 VSS | 与污水污泥共消化 Co-digestion with sewage sludge | 最大产甲烷量为233 mL·g-1 VSS Maximum gas production is 233 mL·g -1 VSS | [ |
1 | LEBERSORGER S, SCHNEIDER F. Discussion on the methodology for determining food waste in household waste composition studies [J]. Waste Manage., 2011,31(9-10):1924-1933. |
2 | 高骏.城市生活垃圾分类评估研究述评:问题与展望[J].河北环境工程学院学报,2022,32(6):56-61. |
GAO J. Assessment research on the evaluation of municipal domestic waste sorting: issues and prospects [J]. J. Hebei Univ. Environ. Eng., 2022, 32(6): 56-61. | |
3 | WANG Y Y, ZANG B, LIU Y, et al.. Classification and management of kitchen waste: disposals and proposals in Chaoyang district, Beijing, China [J]. J. Mater. Cycles Waste Manage., 2018, 20: 461-468. |
4 | HU Y Y, LIU S S, WANG X F, et al.. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: Methane production enhancement and microbial mechanism [J/OL]. Bioresour. Technol., 2023, 369: 128369 [2023-07-22]. . |
5 | ISHA A, D’SILVA T C, SUBBARAO P M V, et al.. Stabilization of anaerobic digestion of kitchen wastes using protein-rich additives: study of process performance, kinetic modelling and energy balance [J/OL]. Bioresour. Technol., 2021, 337: 125331 [2023-07-22]. . |
6 | HUSSAIN A, FILATRAULT M, GUIOT S R. Acidogenic digestion of food waste in a thermophilic leach bed reactor: effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production [J]. Bioresour. Technol., 2017, 245: 1-9. |
7 | ZOU H J, JIANG Q, ZHU R L, et al.. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance [J/OL]. J. Environ. Manage., 2020, 254: 109830 [2023-07-22]. . |
8 | ZHANG L, GUO B, ZHANG Q, et al.. Co-digestion of blackwater with kitchen organic waste: effects of mixing ratios and insights into microbial community [J/OL]. J. Clean. Prod., 2019, 236: 117703 [2023-07-22]. . |
9 | LIANG Z W, XU G F, SHI J J, et al.. Sludge digestibility and functionally active microorganisms in methanogenic sludge digesters revealed by E. coli-fed digestion and microbial source tracking [J/OL]. Environ.. Res., 2021, 193: 110539 [2023-07-22]. . |
10 | XU R Z, FANG S, ZHANG L, et al.. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: a review [J/OL]. Bioresour. Technol., 2021, 341: 125823 [2023-07-22]. . |
11 | PANDEY P, BISWAS S, VADDELLA V K, et al.. Escherichia coli persistence kinetics in dairy manure at moderate, mesophilic, and thermophilic temperatures under aerobic and anaerobic environments [J]. Bioproc. Biosyst. Eng., 2015,38(3):457-467. |
12 | WANG S W, MA F, MA W W, et al.. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system [J/OL]. Water, 2019, 11(1):133 [2023-07-22]. . |
13 | DOLFING J. Syntrophic propionate oxidation via butyrate: a novel window of opportunity under methanogenic conditions [J]. Appl. Environ. Microbiol., 2013,79(14):4515-4516. |
14 | MOSET V, POULSEN M, WAHID R, et al.. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology [J]. Microb. Biotechnol., 2015,8(5):787-800. |
15 | 刘智斌,刘秀红,周桐,等. 温度对城市污水厌氧生物滤池运行效果与菌群结构的影响[J].环境科学, 2020, 41(9):4141-4149. |
LIU Z B, LIU X H, ZHOU T, et al.. Effect of temperature on performance and microbial community structure of anaerobic biofilter-treated domestic wastewater [J]. Environ. Sci., 2020,41(9):4141-4149. | |
16 | SAHU N, SHARMA G, CHANDRASHEKHAR B, et al.. Performance evaluation of methanogenic digester using kitchen waste for validation of optimized hydrolysis conditions for reduction in ammonia accumulation [J]. Renew. Energ., 2019, 139: 110-119. |
17 | 程寒,荆肇乾,张锺一,等. 厌氧消化过程中氨抑制及其调控策略[J].应用化工,2020,49(5):1308-1312. |
CHENG H, JING Z Q, ZHANG Z Y, et al.. Ammonia inhibition and its regulation strategy during anaerobic digestion [J]. Appl. Chem. Ind., 2020,49(5):1308-1312. | |
18 | OWUSU-AGYEMAN I, PLAZA E, CETECIOGLU Z. Long-term alkaline volatile fatty acids production from waste streams: impact of pH and dominance of Dysgonomonadaceae [J/OL]. Bioresour. Technol., 2022, 346: 126621 [2023-07-22]. . |
19 | WILLIAMS R T, CRAWFORD R L. Methanogenic bacteria, including an acid-tolerant strain, from peatlands [J]. Appl. Environ. Microbiol., 1985,50(6):1542-1544. |
20 | HAO L P, LU F, LI L, et al.. Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction [J]. Bioresour. Technol., 2013, 140: 319-327. |
21 | 李春艳. 分段处理对餐厨垃圾厌氧消化影响的研究[D].宜昌: 三峡大学, 2021. |
LI C Y. Study on the effect of segmented treatment on anaerobic digestion of food waste [D]. Yichang: China Three Gorges University, 2021. | |
22 | XU H P, LI Y, HUA D L, et al.. Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions [J/OL]. Bioresour. Technol., 2021, 328: 124852 [2023-07-22]. . |
23 | 于钦,冯磊,甄箫斐.有机负荷和温度波动对厌氧菌群及酶活影响[J].环境科学学报,2020,40(12):4358-4367. |
YU Q, FENG L, ZHEN X F. Effects of organic load and temperature fluctuation on anaerobic microbial community and enzyme activity [J]. Acta Sci. Circum., 2020,40(12):4358-4367. | |
24 | 宫亚斌,姚建刚,谭婧.餐厨垃圾中温与中高温过渡区厌氧产沼效率研究[J].环境工程,2022,40(3):132-138. |
GONG Y B. YAO J G. TAN J. Anaerobic biogas production efficiency of food waste at the medium temperature and intermediate temperature zone [J]. Environ. Eng., 2022,40(3):132-138. | |
25 | ZHEN X F, LUO M, DONG H Y, et al.. Effect of organic load regulation on anaerobic digestion performance and microbial community of solar-assisted system of food waste [J]. Water Reuse, 2022,12(2): 260-273. |
26 | BLAKE L I, SHERRY A, MEJEHA O K, et al.. An unexpectedly broad thermal and salinity-tolerant estuarine methanogen community [J/OL]. Microorganisms, 2020,8(10):1467 [2023-07-22]. . |
27 | 李晓丰,黄佳欣,刘轶鋆,等.半连续条件下食用盐对餐厨垃圾厌氧发酵按需供气影响研究[J].四川环境,2021,40(5):1-10. |
LI X F, HUANG J X, LIU Y Y, et al.. Study of edible salt effect on anaerobic fermentation of food waste from demand biogas production view under semi-continuous condition [J]. Sichuan Environ., 2021,40(5):1-10. | |
28 | FERNANDEZ J D, SIMMONS C W, VANDER J S. Characterization of digestate microbial community structure following thermophilic anaerobic digestion with varying levels of green and food wastes [J]. J. Ind. Microbiol. Biotechnol., 2020,47(12):1031-1044. |
29 | WANG K, DU M F, WANG Z, et al.. Effects of bulking agents on greenhouse gases and related genes in sludge composting [J/OL]. Bioresour. Technol., 2022, 344: 126270 [2023-07-22]. . |
30 | 刘健峰. 不同氮素对厌氧消化系统的影响及其转化机制研究[D].昆明:云南师范大学,2022. |
LIU J F. Effects of different nitrogen forms on the anaerobic digestion system and conversion mechanism [D]. Kunming: Yunnan Normal University, 2022. | |
31 | 徐家英.氨氮对厌氧发酵脂肪酸浓度的影响研究[J].中国沼气,2021,39(5):12-16. |
XU J Y. Study on the effect of ammonia nitrogen on fatty acid concentration in anaerobic digestion [J]. China Biogas, 2021,39(5):12-16. | |
32 | CHEN Q D, WANG N, HUANG D D, et al.. Enhancement of methane production from anaerobic digestion using different manganese species [J/OL]. Biomass Convers. Bior., 2021,13(11): 1839-6 [2023-07-22]. . |
33 | 黄霖琳,李润东,张万里. 餐厨垃圾厌氧系统失衡过程及金属微量元素强化效应研究[C]//2021年全国有机固废处理与资源化利用高峰论坛论文集. 中国环境科学学会,同济大学,清华大学,湖南农业大学, 2021: 9. |
34 | LI J W, ZHAO P T, LI T, et al.. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust [J/OL]. J. Appl. Pyrol., 2020, 146: 104771 [2023-07-22]. . |
35 | WANG S Q, YU S N, LU Q H, et al.. Development of an alkaline/acid pre-treatment and anaerobic digestion (APAD) process for methane generation from waste activated sludge [J/OL]. Sci. Total Environ., 2020, 708: 134564 [2023-07-22]. . |
36 | XING B S, HAN Y, CAO S, et al.. Effects of long-term acclimatization on the optimum substrate mixture ratio and substrate to inoculum ratio in anaerobic codigestion of food waste and cow manure [J/OL]. Bioresour. Technol., 2020,317:123994[2023-07-22]. . |
37 | ODEJOBI O, AJALA O, OSUOLALE F. Anaerobic co-digestion of kitchen waste and animal manure: a review of operating parameters, inhibiting factors, and pretreatment with their impact on process performance [J/OL]. Biomass Convers. Bioref., 2021,13(4): 1626-3 [2023-07-22]. . |
38 | CHEN Y D, JIANG Q, ZHU R L, et al.. Effects of green waste addition on waste activated sludge and fat, oil and grease co-digestion in mesophilic batch digester [J]. Environ. Technol., 2021, 42(18): 2870-2884. |
39 | WANG S J, XU C M, SONG L Y, et al.. Anaerobic digestion of food waste and its microbial consortia: a historical review and future perspectives [J/OL]. Int. J. Environ. Res. Public Health, 2022, 19(15):9519 [2023-07-22]. . |
40 | ANTONY D, MURUGAVELH S. Anaerobic co-digestion of kitchen waste and wastewater sludge: biogas-based power generation [J]. Biofuels, 2018, 9(2): 157-162. |
41 | YU D W, WANG T, LIANG Y S, et al.. Delivery and effects of proton pump inhibitor on anaerobic digestion of food and kitchen waste under ammonia stress [J/OL]. J. Hazard. Mater., 2021, 416: 126211 [2023-07-22]. . |
42 | SINGH P K, VERMA S K, OJHA S K, et al.. Intrinsic molecular insights to enhancement of biogas production from kitchen refuse using alkaline-microwave pretreatment [J/OL]. Sci. Rep., 2019, 9(1): 5968 [2023-07-22]. . |
43 | VARSHA S S V, SOOMRO A F, BAIG Z T, et al.. Methane production from anaerobic mono-and co-digestion of kitchen waste and sewage sludge: synergy study on cumulative methane production and biodegradability [J]. Biomass Convers. Bioref., 2020, 12: 3911-3919. |
44 | NANDA S, BERRUTI F. Municipal solid waste management and landfilling technologies: a review [J]. Environ. Chem. Lett., 2021, 19: 1433-1456. |
45 | WU M K, HU J G, SHEN F, et al.. Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management [J/OL]. J. Clean. Prod., 2021, 306: 127292 [2023-07-22]. . |
46 | BOER J, OBERSTEINER G, GOLLNOW S, et al.. Enhancement of food waste management and its environmental consequences [J/OL]. Energies, 2021, 14(6): 1790 [2023-07-22]. . |
47 | LEE E, OLIVEIRA D S B L, OLIVEIRA L S B L, et al.. Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management [J/OL]. Water Res., 2020, 171: 115443 [2023-07-22]. . |
48 | BALDE H, WAGNER R C, MAC D D, et al.. Fugitive methane emissions from two agricultural biogas plants [J]. Waste Manage., 2022, 151: 123-130. |
49 | SRIVASTAVA R K, SHETTI N P, REDDY K R, et al.. Biofuels, biodiesel and biohydrogen production using bioprocesses. a review [J]. Environ. Chem. Lett., 2020, 18: 1049-1072. |
50 | CZUBASZEK R, WYSOCKA A, BANASZUK P. GHG emissions and efficiency of energy generation through anaerobic fermentation of wetland biomass [J/OL]. Energies, 2020, 13(24): 6497 [2023-07-22]. . |
[1] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[2] | 张昱, 张洪波, 张瑜瑜, 陈丽娟, 赵明方, 夏云. 玫瑰秸秆与牲畜粪污厌氧消化特性及微生物群落研究[J]. 中国农业科技导报, 2024, 26(5): 201-211. |
[3] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[4] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[5] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[6] | 李慧君, 张伟健, 吴伟健, 李高洋, 陈艺杰, 黄枫城, 黄永相, 蔺中, 甄珍. 种植海水稻对滨海盐土化学性质和微生物群落影响[J]. 中国农业科技导报, 2023, 25(9): 147-156. |
[7] | 黄小云, 黄秀声, 陈源泉, 林晓红, 韩海东, 冯德庆, 罗涛. 金线莲杉木林下仿野生栽培的环境影响分析[J]. 中国农业科技导报, 2023, 25(8): 176-185. |
[8] | 李峰, 殷丛培, 殷冉, 王凡, 韩永亮, 杨志敏, 刘建成. 燕麦根际土壤细菌多样性对盐胁迫的响应[J]. 中国农业科技导报, 2023, 25(1): 153-165. |
[9] | 孟艳, 汪微, 葸全财, 李屹, 陈来生, 杜中平, 韩睿. 沼液预处理对蔬菜秸秆厌氧消化性能的影响[J]. 中国农业科技导报, 2022, 24(9): 188-196. |
[10] | 王莉莉, 殷丛培, 李峰, 杨志敏, 刘芳明, 林柏松, 刘晓静, 刘海军, 孙靖, 单东东, 崔江慧, 张振清. 马铃薯根际土壤细菌群落结构及其对干旱胁迫的响应[J]. 中国农业科技导报, 2022, 24(6): 58-69. |
[11] | 孙沉沉, 马兰, 吴永红, 俞元春. 吲哚乙酸对周丛生物去除水体中氮磷的影响及机理[J]. 中国农业科技导报, 2022, 24(3): 204-209. |
[12] | 苏迪,鲍恩俣,王进. 适钙植物报春苣苔根际土壤微生物群落结构[J]. 中国农业科技导报, 2020, 22(10): 149-156. |
[13] | 高林1,王新伟1,申国明1,田峰2,陈前锋2,张明发2,张成省1*. 不同连作年限植烟土壤细菌和真菌群落结构差异[J]. 中国农业科技导报, 2019, 21(8): 147-152. |
[14] | 刘结友1,2,曲亮1,3*. 基于全混合厌氧反应器厌氧发酵猪粪产生沼液的环境影响分析[J]. 中国农业科技导报, 2018, 20(11): 127-134. |
[15] | 王阳. 秸秆厌氧消化领域发展态势分析[J]. 中国农业科技导报, 2017, 19(4): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||