中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (8): 168-178.DOI: 10.13304/j.nykjdb.2024.0037
• 生物制造 资源生态 • 上一篇
曹航1(), 杨新兵1(
), 刘彦林2,3, 霍娜1, 刘小宽4, 李新月4
收稿日期:
2023-12-06
接受日期:
2024-03-28
出版日期:
2025-08-15
发布日期:
2025-08-26
通讯作者:
杨新兵
作者简介:
曹航 E-mail:1822679459@qq.com.
基金资助:
Hang CAO1(), Xinbing YANG1(
), Yanlin LIU2,3, Na HUO1, Xiaokuan LIU4, Xinyue LI4
Received:
2023-12-06
Accepted:
2024-03-28
Online:
2025-08-15
Published:
2025-08-26
Contact:
Xinbing YANG
摘要:
为探讨石灰岩矿山重构土壤肥力水平并重建矿山土壤生态系统,在石家庄市鹿泉区一石灰岩矿山采集矿渣与附近农田土按照一定比例混合,测定不同比例重构土理化性质及酶活性,并利用灰色关联度法综合评价重构土壤肥力。结果表明:不同重构土容重、孔隙度及持水量差异显著,总孔隙度、毛管孔隙度、各持水量指标等均随着农田土比例的增加而增加,容重、非毛管孔隙度规律与之相反;不同重构土pH、全磷、全钾及速效养分差异显著,有机碳、全氮则未呈现出差异性,pH随着农田土比例的增加逐渐减小,土壤全量养分、速效养分逐渐增加;除脱氢酶外,碱性磷酸酶活性、脲酶活性、蔗糖酶活性、多酚氧化酶活性、过氧化氢酶活性在不同重构土中的差异显著,且均在农田土、矿渣比例为7∶3时最大。经相关性分析可知,除脱氢酶活性外,重构土理化性质与其他酶活性显著相关。利用灰色关联度法对重构土壤肥力进行综合分析,发现农田土、矿渣比例为7∶3时土壤肥力水平最好。上述结果表明,利用农田土重构矿山土壤效果显著,添加农田土可显著改善矿山土壤物理、化学和生物特性,有利于矿山土壤肥力水平提升和土壤生态系统的保护。
中图分类号:
曹航, 杨新兵, 刘彦林, 霍娜, 刘小宽, 李新月. 石灰岩矿山重构土理化性质及酶活性变化[J]. 中国农业科技导报, 2025, 27(8): 168-178.
Hang CAO, Xinbing YANG, Yanlin LIU, Na HUO, Xiaokuan LIU, Xinyue LI. Physicochemical Properties and Enzyme Activities of Reconstituted Soils from Limestone Mines[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 168-178.
图1 不同重构土容重注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 1 Bulk density of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图2 不同重构土孔隙度注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 Porosity of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图3 不同重构土持水量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 3 Water holding capacity of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图4 不同重构土pH注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 PH of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图5 不同重构土有机碳含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Organic carbon content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图5 不同重构土全效养分含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Total nutrient content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图6 不同重构土速效养分含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 6 Available nutrient content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图7 不同重构土酶活性特征注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 7 Characteristics of enzyme activity in different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
图8 不同重构土酶活性特征注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 8 Characteristics of enzyme activity in different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase enzyme | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
容重Bulk density | -0.494 | -0.781* | -0.754* | -0.473 | -0.654* | 0.081 |
毛管孔隙度Capillary porosity | 0.761* | 0.951* | 0.842* | 0.593* | 0.894* | -0.102 |
非毛管孔隙度Noncapillary porosity | -0.685* | -0.821* | -0.813* | -0.672* | -0.682* | 0.121 |
总孔隙度Total porosity | 0.753* | 0.954* | 0.824* | 0.573* | 0.904* | -0.101 |
自然含水量Water content | 0.762* | 0.933* | 0.841* | 0.602* | 0.872* | -0.131 |
最大持水量Maximum moisture capacity | 0.731* | 0.932* | 0.830* | 0.581* | 0.842* | -0.14 |
毛管持水量Capillary capacity | 0.722* | 0.931* | 0.823* | 0.561* | 0.831* | -0.132 |
田间持水量Field capacity | 0.732* | 0.930* | 0.851* | 0.571* | 0.862* | -0.091 |
表 1 土壤酶活性和物理性质相关性
Table 1 Correlation between soil enzyme activity and physical properties
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase enzyme | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
容重Bulk density | -0.494 | -0.781* | -0.754* | -0.473 | -0.654* | 0.081 |
毛管孔隙度Capillary porosity | 0.761* | 0.951* | 0.842* | 0.593* | 0.894* | -0.102 |
非毛管孔隙度Noncapillary porosity | -0.685* | -0.821* | -0.813* | -0.672* | -0.682* | 0.121 |
总孔隙度Total porosity | 0.753* | 0.954* | 0.824* | 0.573* | 0.904* | -0.101 |
自然含水量Water content | 0.762* | 0.933* | 0.841* | 0.602* | 0.872* | -0.131 |
最大持水量Maximum moisture capacity | 0.731* | 0.932* | 0.830* | 0.581* | 0.842* | -0.14 |
毛管持水量Capillary capacity | 0.722* | 0.931* | 0.823* | 0.561* | 0.831* | -0.132 |
田间持水量Field capacity | 0.732* | 0.930* | 0.851* | 0.571* | 0.862* | -0.091 |
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
全氮Total nitrogen | 0.401 | 0.500 | 0.632 | 0.342 | 0.381 | 0.193 |
全磷Total phosphorus | 0.642* | 0.820* | 0.701* | 0.732* | 0.700* | -0.151 |
全钾Total potassium | 0.691* | 0.912* | 0.833* | 0.690* | 0.794* | -0.112 |
碱解氮Alkaline hydrolysis nitrogen | 0.721* | 0.774* | 0.731* | 0.562 | 0.711* | 0.044 |
有效磷Available phosphorus | 0.671* | 0.801* | 0.703* | 0.881* | 0.701* | -0.11 |
速效钾Rapidly available potassium | 0.483 | 0.711* | 0.682* | 0.403 | 0.582* | -0.151 |
有机碳Organic carbon | 0.632* | 0.630* | 0.672* | 0.401 | 0.602* | -0.171 |
pH | -0.421 | -0.682* | -0.511* | -0.530* | -0.474 | 0.293 |
表 2 土壤酶活性和化学性质相关性
Table 2 Correlation between soil enzyme activity and chemical propertie
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
全氮Total nitrogen | 0.401 | 0.500 | 0.632 | 0.342 | 0.381 | 0.193 |
全磷Total phosphorus | 0.642* | 0.820* | 0.701* | 0.732* | 0.700* | -0.151 |
全钾Total potassium | 0.691* | 0.912* | 0.833* | 0.690* | 0.794* | -0.112 |
碱解氮Alkaline hydrolysis nitrogen | 0.721* | 0.774* | 0.731* | 0.562 | 0.711* | 0.044 |
有效磷Available phosphorus | 0.671* | 0.801* | 0.703* | 0.881* | 0.701* | -0.11 |
速效钾Rapidly available potassium | 0.483 | 0.711* | 0.682* | 0.403 | 0.582* | -0.151 |
有机碳Organic carbon | 0.632* | 0.630* | 0.672* | 0.401 | 0.602* | -0.171 |
pH | -0.421 | -0.682* | -0.511* | -0.530* | -0.474 | 0.293 |
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
容重Bulk density | 0.47 | 0.85 | 0.55 | 0.52 | 0.49 |
毛管孔隙度Capillary porosity | 0.81 | 0.97 | 0.94 | 0.86 | 0.95 |
非毛管孔隙度Noncapillary porosity | 0.40 | 0.81 | 0.49 | 0.51 | 0.39 |
总孔隙度Total porosity | 0.92 | 0.97 | 0.87 | 0.94 | 0.91 |
自然含水量Water content | 0.78 | 0.98 | 0.91 | 0.87 | 0.91 |
最大持水量Maximum moisture capacity | 0.62 | 0.93 | 0.94 | 0.75 | 0.80 |
毛管持水量Capillary capacity | 0.56 | 0.86 | 0.88 | 0.70 | 0.75 |
田间持水量Field capacity | 0.56 | 0.89 | 0.80 | 0.63 | 0.69 |
全氮Total nitrogen | 0.62 | 0.68 | 0.68 | 0.75 | 0.69 |
全磷Total phosphorus | 0.71 | 0.94 | 0.71 | 0.79 | 0.78 |
全钾Total potassium | 0.50 | 0.83 | 0.80 | 0.84 | 0.55 |
表3 不同重构土理化性质及酶活性灰色关联系数
Table 3 Grey correlation coefficients of physical and chemical properties and enzyme activities of different reconstructed soils
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
容重Bulk density | 0.47 | 0.85 | 0.55 | 0.52 | 0.49 |
毛管孔隙度Capillary porosity | 0.81 | 0.97 | 0.94 | 0.86 | 0.95 |
非毛管孔隙度Noncapillary porosity | 0.40 | 0.81 | 0.49 | 0.51 | 0.39 |
总孔隙度Total porosity | 0.92 | 0.97 | 0.87 | 0.94 | 0.91 |
自然含水量Water content | 0.78 | 0.98 | 0.91 | 0.87 | 0.91 |
最大持水量Maximum moisture capacity | 0.62 | 0.93 | 0.94 | 0.75 | 0.80 |
毛管持水量Capillary capacity | 0.56 | 0.86 | 0.88 | 0.70 | 0.75 |
田间持水量Field capacity | 0.56 | 0.89 | 0.80 | 0.63 | 0.69 |
全氮Total nitrogen | 0.62 | 0.68 | 0.68 | 0.75 | 0.69 |
全磷Total phosphorus | 0.71 | 0.94 | 0.71 | 0.79 | 0.78 |
全钾Total potassium | 0.50 | 0.83 | 0.80 | 0.84 | 0.55 |
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
碱解氮 Alkaline hydrolysis nitrogen | 0.68 | 0.86 | 0.73 | 0.68 | 0.81 |
有效磷Available phosphorus | 0.56 | 0.96 | 0.88 | 0.66 | 0.44 |
速效钾Rapidly available potassium | 0.56 | 0.57 | 0.86 | 0.60 | 0.73 |
有机碳Organic carbon | 0.73 | 0.58 | 0.61 | 0.68 | 0.78 |
pH | 0.52 | 0.92 | 0.64 | 0.60 | 0.54 |
碱性磷酸酶AKP | 0.64 | 0.94 | 0.73 | 0.68 | 0.68 |
脲酶 UE | 0.81 | 0.89 | 0.89 | 0.85 | 0.81 |
蔗糖酶SC | 0.72 | 0.89 | 0.83 | 0.84 | 0.79 |
过氧化氢酶CAT | 0.65 | 0.94 | 0.70 | 0.57 | 0.87 |
多酚氧化酶PPO | 0.72 | 0.80 | 0.94 | 0.94 | 0.94 |
脱氢酶DHA | 0.58 | 0.92 | 0.65 | 0.62 | 0.58 |
关联度Degree of association | 0.64 | 0.86 | 0.77 | 0.72 | 0.72 |
表3 不同重构土理化性质及酶活性灰色关联系数 (续表Continued)
Table 3 Grey correlation coefficients of physical and chemical properties and enzyme activities of different reconstructed soils
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
碱解氮 Alkaline hydrolysis nitrogen | 0.68 | 0.86 | 0.73 | 0.68 | 0.81 |
有效磷Available phosphorus | 0.56 | 0.96 | 0.88 | 0.66 | 0.44 |
速效钾Rapidly available potassium | 0.56 | 0.57 | 0.86 | 0.60 | 0.73 |
有机碳Organic carbon | 0.73 | 0.58 | 0.61 | 0.68 | 0.78 |
pH | 0.52 | 0.92 | 0.64 | 0.60 | 0.54 |
碱性磷酸酶AKP | 0.64 | 0.94 | 0.73 | 0.68 | 0.68 |
脲酶 UE | 0.81 | 0.89 | 0.89 | 0.85 | 0.81 |
蔗糖酶SC | 0.72 | 0.89 | 0.83 | 0.84 | 0.79 |
过氧化氢酶CAT | 0.65 | 0.94 | 0.70 | 0.57 | 0.87 |
多酚氧化酶PPO | 0.72 | 0.80 | 0.94 | 0.94 | 0.94 |
脱氢酶DHA | 0.58 | 0.92 | 0.65 | 0.62 | 0.58 |
关联度Degree of association | 0.64 | 0.86 | 0.77 | 0.72 | 0.72 |
[1] | FU Q Z, YUE M, FENG M, et al.. Evaluating the sustainability of mine rehabilitation programs in China [J]. Restor. Ecol., 2020,28(5):1061-1066. |
[2] | 王佳欢,杨新兵,刘彦林,等.采石废弃地弃渣与农田土混合土壤粒径特征及水文效应[J].水土保持学报,2022,36(3):338-344. |
WANG J H, YANG X B, LIU Y L, et al.. Experimental study on particle size characteristics and hydrological effect of mixed soil of quarrying waste residue and farmland soil [J]. J. Soil Water Conserv., 2022, 36(3):338-344. | |
[3] | JIN W J, WEI Z Y, LIU X Z, et al.. Effects of constructing farmland with large amounts of iron tailings as soil reconstruction materials on soil properties and crop growth [J/OL]. Sci. Rep., 2022, 12(1):20205 [2024-08-05]. . |
[4] | HU Z Q, ZHU Q, LIU X R, et al.. Preparation of topsoil alternatives for open-pit coal mines in the Hulunbuir grassland area, China [J/OL]. Appl. Soil Ecol., 2020, 147:103431 [2024-08-05]. . |
[5] | 胡振琪.矿山复垦土壤重构的理论与方法[J].煤炭学报,2022,47(7):2499-2515. |
HU Z Q. Theory and method of soil reconstruction of reclaimed mined land [J]. J. China Coal Soc., 2022,47(7):2499-2515. | |
[6] | 胡振琪,肖武,赵艳玲.再论煤矿区生态环境“边采边复”[J].煤炭学报,2020,45(1):351-359. |
HU Z Q, XIAO W, ZHAO Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation [J]. J. China Coal Soc., 2020,45(1):351-359. | |
[7] | 荣颖,王淳,孙光林,等.不同重构土壤材料配比的土壤改良和苜蓿生长效应研究[J].金属矿山,2022 (6):197-204. |
RONG Y, WANG C, SUN G L, et al.. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth [J]. Met. Mine, 2022(6):197-204. | |
[8] | 王凡,曹银贵,王玲玲,等.土壤微生物及酶活性对露天矿不同土壤重构方式的响应特征[J].煤炭科学技术, 2022,50(6):249-260. |
WANG F, CAO Y G, WANG L L, et al.. Response characteristics of soil microorganisms and enzyme activities to different soil reconstruction methods in open-pit mines [J]. Coal Sci. Technol., 2022,50(9):249-260. | |
[9] | DE MEDEIROS E V, DE ALCANTARA NOTARO K, DE BARROS J A, et al.. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest,monoculture and intercropping areas [J]. Soil Tillage Res., 2015,145:208-215. |
[10] | LI J G, PU L J, HAN M F, et al.. Soil salinzation research in China: advances and prospects [J]. J. Geographical Sci., 2014,24(5):943-960. |
[11] | 张期奇,董希斌,张甜,等.抚育间伐强度对兴安落叶松林不同演替阶段水源涵养的影响[J].东北林业大学学报,2019,47(10):55-63. |
ZHANG Q Q, DONG X B, ZHANG T, et al.. Effects of tending thinning intensity on water conservation in different succession stages of Larix gmelinii forest [J]. J. Northeast For. Univ., 2019,47(10):55-63. | |
[12] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:30-114. |
[13] | 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:1-376. |
[14] | 刘晓敏,位志坤,王晓丽,等.基于灰色关联分析法的湖北烤烟还原糖含量与叶片形态特征关系研究[J].南方农业学报,2022,53(6):1536-1542. |
LIU X M, WEI Z K, WANG X L, et al.. Study on relationship between reducing sugar content and leaf morphological characteristics of flue-cured tobacco in Hubei Province based on grey correlation analysis [J]. J. South. Agric., 2022,53(6):1536-1542. | |
[15] | 陈兰兰,肖海平,刘鑫钰,等.灰色关联度支持下的露天矿边坡稳定性影响因素敏感性分析[J].测绘通报,2024(1):145-149. |
CHEN L L, XIAO H P, LIU X Y, et al.. Sensitivity analysis of influencing factors of open-pit mine slope stability based on grey correlation [J]. Bull. Surv. Map., 2024(1):145-149. | |
[16] | 周杨,杨永刚.不同重构方式下古交典型矿区土壤持水性差异研究[J].山西大学学报(自然科学版),2022,45(5):1369-1376. |
ZHOU Y, YANG Y G. Water-holding capacities of soil under different reconstruction patterns in Gujiao typical mining area, Shanxi [J]. J. Shanxi Univ. (Nat. Sci.), 2022,45(5):1369-1376. | |
[17] | 杨敏,阳珍,胥晓,等.不同植被恢复类型对四川泸石高速公路边坡土壤胞外酶及化学计量特征的影响[J].土壤通报,2024,55(1):161-172. |
YANG M, YANG Z, XU X, et al.. Effects of different vegetation restoration types on extracellular enzymes and stoichiometric characteristics of soil in Lu-Shi expressway slopes,Sichuan province [J]. Chin. J. Soil Sci., 2024,55(1):161-172. | |
[18] | 刘深妍,李凤麟,鲁静丽,等.我国主要有色金属矿区周边农田土壤酶活性及影响因素[J].农业环境科学学报,2022,41(12):2797-2804. |
LIU S Y, LI F L, LU J L, et al.. Soil enzyme activities and influencing factors in farmlands around metalliferous mine wastelands in China [J]. J. Agron. Environ. Sci., 2022,41(12):2797-2804. | |
[19] | SINSABAUGH R L. Phenol oxidase,peroxidase and organic matter dynamics of soil [J]. Soil Biol. Biochem., 2010,42(3):391-404. |
[20] | 董齐琪,王海燕,杜雪,等.东北低山区典型林分类型土壤脲酶活性特征 [J]. 应用与环境生物学报, 2023,29(3):690-695. |
DONG Q Q, WANG H Y, DU X, et al.. Characteristics of soil urease activity in typical forest types in low mountain area of Northeast China [J]. Chin. J. Appl. Environ., 2023,29(3):690-695. | |
[21] | PENG X Q, WANG W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China [J]. Soil Biol. Biochem., 2016,98:74-84. |
[22] | 田静,盛茂银,汪攀,等.西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响[J].环境科学,2019,40(9):4278-4286. |
TIAN J, SHENG M Y, WANG P, et al.. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in Karst ecosystem,southwest China [J]. Environ. Sci., 2019,40(9):4278-4286. | |
[23] | KIVLIN S N, TRESEDER K K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition [J]. Biogeochemistry, 2014,117(1):23-37. |
[24] | CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soll:is there a "redfield ratlofor the microblal blomass? [J]. Biogeochemistry, 2007,85:235-252. |
[25] | 闫宁,战宇,苗馨月,等.强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J].中国农业科技导报,2022,24(6):133-144. |
YAN N, ZHAN Y, MIAO X Y, et al.. Effects of reductive soil disinfestation on soil bacterial community structure and soil enzyme activity in continuous cropping of ginseng [J]. J. Agric. Sci. Technol., 2022, 24(6):133-144. | |
[26] | 蒲全明,杨鹏,邓榆川,等.不同施肥方式对冬春茬甘蓝根际土壤酶活性、土壤养分及品质的影响[J].中国农业科技导报, 2020,22(7):130-139. |
PU Q M, YANG P, DENG Y C, et al.. Effects of different fertilization methods on rhizosphere soil enzyme activities, soil nutrients and quality of winter-spring cabbage [J]. J. Agric. Sci. Technol., 2020,22(7):130-139. | |
[27] | BAENA CWIC, ANDRÉS-ABELLÁN M, LUCAS-BORJA M E, et al.. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain) [J]. For. Ecol. Manag., 2013,308:223-230. |
[28] | 刘艳,王成,彭镇华,等.北京市崇文区不同类型绿地土壤酶活性及其与土壤理化性质的关系[J].东北林业大学学报,2010,38(4):66-70. |
LIU Y, WANG C, PENG Z H, et al.. Soil enzyme activity and its relationship with soil physico-chemical properties in green areas of Chongwen district of Beijing [J]. J. Northeast. For. Univ., 2010,38(4):66-70. | |
[29] | 周礼恺,陈冠雄,陈利军,等.土壤酶学研究的新近进展[C]//中国土壤学会.中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇). 北京:科学出版社,2004,44-52. |
[30] | KOZHEVIN P A. Soil “Health” indicators in soil assessment (review) [J]. Moscow Univ. Soil Sci. Bull., 2023,78(2):84-92. |
[31] | DANIEL T, JAROSLAVA J, MARIE A M, et al.. Soil quality assessment using SAS (soil assessment system) [J]. Soil Water Res., 2023,18(1):1-15. |
[32] | 李国强,冯晓,郑国清,等.基于改进灰色关联模型的土壤肥力综合评价[J].河南农业科学,2013,42(4):71-74. |
LI G Q, FENG X, ZHENG G Q, et al.. Comprehensive evaluation of soil fertility based on improved grey relation model [J]. J. Henan Agric. Sci., 2013,42(4):71-74. | |
[33] | 肖豪,黄柏豪,孙凯,等.应用灰色关联法分析石灰配施有机肥对镉污染土壤-植物系统的影响[J].农业环境科学学报,2022,41(9):1966-1974. |
XIAO H, HUANG B H, SUN K, et al.. Grey relational analysis for evaluating the effects of lime combined with organic fertilizer on a cadmiumcontaminated soil-plant system [J]. J. Agro-Environ. Sci., 2022,41(9):1966-1974. |
[1] | 周琦, 刘强, 张靖, 邓超超, 王振龙, 柳洋, 吴芳, 常浩, 周彦芳, 宿翠翠, 施志国, 高正睿, 马凤捷. 有机肥替代化肥对土壤生物学特性及南瓜产量的影响[J]. 中国农业科技导报, 2025, 27(7): 190-203. |
[2] | 王二刚, 吕朋元, 周一, 战宇, 何贵祥, 王丽翔, 苗馨月, 陈长宝, 李琼. 生防细菌对人参连作土壤性质及细菌群落结构的影响[J]. 中国农业科技导报, 2025, 27(4): 140-148. |
[3] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
[4] | 吕志伟, 李冬梅, 金梅娟, 张燕辉, 陶玥玥, 周新伟, 王海候. 热解温度及时间对生物炭理化性质及吸附性能的影响[J]. 中国农业科技导报, 2025, 27(2): 211-217. |
[5] | 王兴松, 王娜, 杜宇, 周鹏, 王戈, 贾孟, 徐照丽, 白羽祥. 有机肥对玉溪植烟土壤有机质组分和微生物群落结构的影响[J]. 中国农业科技导报, 2024, 26(8): 201-212. |
[6] | 张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222. |
[7] | 杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135. |
[8] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[9] | 杜洋洋, 包媛媛, 刘项宇, 张新永. 荞麦轮作对云南栽培马铃薯根际土壤酶活和微生物的影响[J]. 中国农业科技导报, 2024, 26(5): 192-200. |
[10] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[11] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[12] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[13] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[14] | 马铭泽, 张帆, 王田, 李文芳, 毛娟, 陈佰鸿, 马宗桓. 不同肥料配施对樱桃园土壤及幼树生长的影响[J]. 中国农业科技导报, 2024, 26(11): 191-203. |
[15] | 胡墨明, 孟琰珺, 苗淑媛, 胡西宁, 许晴, 马红珍, 王鹏飞, 刘国芹, 康国章. 小麦淀粉合成关键基因TaAGPL1功能标记的开发[J]. 中国农业科技导报, 2024, 26(11): 43-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||