中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (7): 121-135.DOI: 10.13304/j.nykjdb.2022.1006
• 动植物健康 • 上一篇
杨娅琳1(), 吴峰婧琳1(
), 陈健鑫1, 武自强1(
), 刘丽1, 张东华1, 马焕成2, 伍建榕1(
)
收稿日期:
2022-11-18
接受日期:
2022-12-15
出版日期:
2024-07-15
发布日期:
2024-07-12
通讯作者:
武自强,伍建榕
作者简介:
杨杨娅琳 E-mail: 1319297640@qq.com;吴峰婧琳 E-mail: 1649493839@qq.com基金资助:
Yalin YANG1(), Fengjinglin WU1(
), Jianxin CHEN1, Ziqiang WU1(
), Li LIU1, Donghua ZHANG1, Huancheng MA2, Jianrong WU1(
)
Received:
2022-11-18
Accepted:
2022-12-15
Online:
2024-07-15
Published:
2024-07-12
Contact:
Ziqiang WU,Jianrong WU
摘要:
为明确患根腐病的油茶在不同病情等级下根系和根际土壤内真菌群落组成、多样性、功能特征及与环境因子的关系,以德宏州梁河县的油茶为研究对象,利用高通量测序技术对5个病情等级的油茶根系及根际土壤内真菌的转录间隔区(internal transcribed spacer,ITS)序列进行测序。结果表明,染病油茶根系及根际土壤内的真菌群落多样性(Shannon指数)降低,根系中真菌总OTUs(operational taxonomic units)、特有OTUs和丰富度(Chao1指数)呈先增加后减少的趋势;根际土壤中染病油茶真菌群落的均匀度和丰富度上升。门水平上,子囊菌门(Ascomycota)和担子菌门(Basidiomycota)为根系及根际土壤中共同的优势菌门,球囊菌门(Glomeromycota)和被孢囊门(Mortierellomycota)在根系中丰度表现为逐级递减的趋势。属水平上,患病后油茶根系内树状孢属(Dendrosporium)、暗双胞属(Cordana)、Matsushimamyces、无柄盘菌属(Pezicula)、黑孢盘属(Melanconium)的丰度明显上升。油茶林下土壤真菌群落结构的主要影响因子为速效钾、有机质、pH、速效磷,真菌群落与环境因子联合分析结果表明,部分有益菌和磷含量呈正相关,部分病原菌和钾含量呈负相关。FUNGuild 功能分析表明,油茶根系及根际土壤中真菌以腐生型为主,健康油茶中共生营养型真菌丰度最高,染病后逐渐降低;从Ⅱ级病害以后的油茶根系内植物病原功能群开始成为优势功能群。综上所述,油茶患病后真菌的多样性减少,根系内部分有益真菌丰度减少,植物病原菌和腐生菌增加,丛枝菌根真菌的定殖在调节油茶病健关系中发挥着重要的作用。针对德宏州梁河县的油茶基地,需要多施钾肥和磷肥,减少氮肥的施用,可提高部分有益菌的丰度,降低病原菌的丰度,从而减轻油茶根腐病的发生。
中图分类号:
杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135.
Yalin YANG, Fengjinglin WU, Jianxin CHEN, Ziqiang WU, Li LIU, Donghua ZHANG, Huancheng MA, Jianrong WU. Analysis on Structure and Diversity of Fungi Community in Rhizosphere Soil and Root System of Camellia oleifera Root Rot[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 121-135.
指标 Index | 病情等级 Disease level | ||||
---|---|---|---|---|---|
0 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | |
pH | 4.50±0.30 b | 4.60±0.10 b | 4.50±0.12 b | 4.90±0.06 a | 4.90±0.03 a |
有机质OM/(g·kg-1) | 30.50±2.10 b | 36.70±3.50 ab | 39.60±2.80 a | 41.80±5.50 a | 42.70±5.90 a |
速效磷AP/(mg·kg-1) | 13.70±0.50 b | 13.30±0.60 b | 12.60±0.30 b | 24.20±1.40 a | 14.00±1.20 b |
速效钾AK/(mg·kg-1) | 187.00±12 b | 164.00±14.00 b | 177.00±14.00 b | 177.00±10.00 b | 240.00±8.00 a |
全氮TN/(g·kg-1) | 1.35±0.07 c | 1.52±0.17 bc | 1.62±0.24 ab | 1.77±0.03 ab | 1.81±0.08 a |
全磷TP/(g·kg-1) | 0.60±0.07 d | 0.73±0.03 bc | 0.67±0.07 cd | 0.88±0.03 a | 0.80±0.04 ab |
全钾TK/(g·kg-1) | 26.00±0.80 a | 25.00±1.00 a | 24.00±1.10 a | 21.40±1.20 b | 19.80±2.20 b |
硝态氮 | 2.45±0.18 c | 2.29±0.32 c | 3.88±0.05 b | 3.91±0.30 b | 4.32±0.13 a |
氨态氮 | 19.48±5.38 c | 59.92±1.23 a | 37.97±2.05 b | 25.48±5.80 c | 22.96±5.38 c |
表1 不同病情等级根腐病油茶土壤理化性质
Table 1 Physical and chemical properties of C. oleifera soil with root rot at different disease levels
指标 Index | 病情等级 Disease level | ||||
---|---|---|---|---|---|
0 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | |
pH | 4.50±0.30 b | 4.60±0.10 b | 4.50±0.12 b | 4.90±0.06 a | 4.90±0.03 a |
有机质OM/(g·kg-1) | 30.50±2.10 b | 36.70±3.50 ab | 39.60±2.80 a | 41.80±5.50 a | 42.70±5.90 a |
速效磷AP/(mg·kg-1) | 13.70±0.50 b | 13.30±0.60 b | 12.60±0.30 b | 24.20±1.40 a | 14.00±1.20 b |
速效钾AK/(mg·kg-1) | 187.00±12 b | 164.00±14.00 b | 177.00±14.00 b | 177.00±10.00 b | 240.00±8.00 a |
全氮TN/(g·kg-1) | 1.35±0.07 c | 1.52±0.17 bc | 1.62±0.24 ab | 1.77±0.03 ab | 1.81±0.08 a |
全磷TP/(g·kg-1) | 0.60±0.07 d | 0.73±0.03 bc | 0.67±0.07 cd | 0.88±0.03 a | 0.80±0.04 ab |
全钾TK/(g·kg-1) | 26.00±0.80 a | 25.00±1.00 a | 24.00±1.10 a | 21.40±1.20 b | 19.80±2.20 b |
硝态氮 | 2.45±0.18 c | 2.29±0.32 c | 3.88±0.05 b | 3.91±0.30 b | 4.32±0.13 a |
氨态氮 | 19.48±5.38 c | 59.92±1.23 a | 37.97±2.05 b | 25.48±5.80 c | 22.96±5.38 c |
取样部位 Sampling location | 样品名称 Sample name | Ace指数 Ace index | Chao1指数 Chao1 index | Simpson指数 Simpson index | Shannon指数 Shannon index |
---|---|---|---|---|---|
油茶根系 C.oleifera root | HS0 | 742.11 | 614.60 | 0.09 | 3.07 |
DS1 | 655.40 | 678.14 | 0.40 | 2.10 | |
DS2 | 801.64 | 790.30 | 0.14 | 2.85 | |
DS3 | 897.48 | 752.73 | 0.10 | 2.90 | |
DS4 | 829.22 | 723.70 | 0.15 | 2.66 | |
油茶根际土壤 C. oleifera inter-rhizosphere soil | HR0 | 844.51 | 871.34 | 0.02 | 4.84 |
DR1 | 904.10 | 907.25 | 0.03 | 4.45 | |
DR2 | 882.18 | 884.18 | 0.04 | 4.29 | |
DR3 | 976.36 | 972.81 | 0.05 | 4.12 | |
DR4 | 943.66 | 946.70 | 0.05 | 4.06 |
表2 油茶根系及根际土壤中真菌α多样性指数
Table 2 Alpha diversity index of fungi in the root system and inter-rhizosphere soil of C. oleifera
取样部位 Sampling location | 样品名称 Sample name | Ace指数 Ace index | Chao1指数 Chao1 index | Simpson指数 Simpson index | Shannon指数 Shannon index |
---|---|---|---|---|---|
油茶根系 C.oleifera root | HS0 | 742.11 | 614.60 | 0.09 | 3.07 |
DS1 | 655.40 | 678.14 | 0.40 | 2.10 | |
DS2 | 801.64 | 790.30 | 0.14 | 2.85 | |
DS3 | 897.48 | 752.73 | 0.10 | 2.90 | |
DS4 | 829.22 | 723.70 | 0.15 | 2.66 | |
油茶根际土壤 C. oleifera inter-rhizosphere soil | HR0 | 844.51 | 871.34 | 0.02 | 4.84 |
DR1 | 904.10 | 907.25 | 0.03 | 4.45 | |
DR2 | 882.18 | 884.18 | 0.04 | 4.29 | |
DR3 | 976.36 | 972.81 | 0.05 | 4.12 | |
DR4 | 943.66 | 946.70 | 0.05 | 4.06 |
图1 油茶根系及根际土壤真菌OTU分布韦恩图A:油茶根系; B:油茶根际土壤
Fig. 1 Venn diagram of OTU distribution of C. oleifera root and inter-rhizosphere soil fungiA: C. oleifera root; B: C. oleifera inter-rhizosphere soil
图2 油茶根系及根际土壤真菌门的相对丰度A:油茶根系; B:油茶根际土壤
Fig. 2 Relative abundance of fungal phyla of C. oleifera roots and inter-rhizosphere soilA: C. oleifera root; B: C. oleifera inter-rhizosphere soil
图3 油茶根系及根际土壤真菌属的相对丰度A:油茶根系; B:油茶根际土壤
Fig. 3 Relative abundance of fungal genera of C. oleifera roots and inter-rhizosphere soilA: C. oleifera root; B: C. oleifera inter-rhizosphere soil
图4 不同病害等级下油茶根系及根际土壤真菌在属水平上的PCoA分析和聚类树
Fig. 4 PCoA analysis and tree of C. oleifera root systems and inter-root soil fungi at the genus level under different disease classes
图5 油茶根际土壤真菌群落组成(属水平)和环境因子的冗余分析
Fig. 5 Redundancy analysis of fungal community composition (genus level) and environmental factors in inter-rhizosphere soil of C. oleifera
图6 油茶根际土壤真菌群落组成(属水平)和理化参数的Spearman相关性分析注:*和**分别表示在P<0.05和P<0.01水平相关显著。
Fig. 6 Spearman correlation analysis of fungal community composition (genus level) and physicochemical parameters of inter-rhizosphere soil of C. oleiferaNote: * and ** indicate significant correlations at P<0.05 and P<0.01 levels,respectively.
图7 油茶根系及根际土壤真菌功能预测A:根系不同营养型相对丰度;B:根际土壤不同营养型相对丰度;C:根系共位群相对丰度bar图;D:根际土壤共位群相对丰度bar图
Fig. 7 Predicted of fungal function analysis of C. oleifera root system and inter-root soilA: Relative abundance of different trophic types in fibrons root; B: Relative abundance of different trophic types in rhizosphere soil; C: Relative abundance of co-located groups bar graph in fibrons root; D: Relative abundance of co-located groups bar graph in rhizosphere soil
1 | 陈永忠,邓绍宏,陈隆升,等.油茶产业发展新论[J].南京林业大学学报(自然科学版),2020,44(1):1-10. |
CHEN Y Z, DENG S H, CHEN L S, et al.. A new view on the development of oil tea Camellia industry [J]. J. Nanjing For. Univ. (Nat. Sci.),2020,44(1):1-10. | |
2 | 中华人民共和国国家统计局.中国统计年鉴2019[M].北京:中国统计出版社,2019:1-1017. |
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2019 [M]. Beijing:China Statistics Press,2019:1-1017. | |
3 | 栾淑丽,任红艳,施润和,等.中国油茶种植适宜性评价及产能提升建议[J].中国农业资源与区划,2021,42(10):39-47. |
LUAN S L, REN H Y, SHI R H, et al.. Evaluation on the suitabilily of Camellia oleifera planting and suggestions for productivity im provement in China [J]. Chin. J. Agric. Res. Reg. Plan., 2021,42(10):39-47. | |
4 | 范筱元,杜娟,周晓亮,等.中国油茶生产区比较优势分析与影响因素研究[J].中国油脂,2023,48(12):9-19, 39. |
FAN X Y, DU J, ZHOU X L, et al..Comparative advantage analysis and influencing factors of Camellia oleifera production areas in China [J]. China Oils Fats, 2023,48(12):9-19, 39. | |
5 | 沙月霞.嗜碱假单胞菌Ej2浸种对盐胁迫下水稻根系内生菌群落结构的影响[J].微生物学报,2022,62(5):1919-1935. |
SHA Y X. Effects of soaking seeds with Pseudomonas alcaliphila Ej2 on endophytic community of rice roots under salt stress [J]. Acta Microbiol. Sin., 2022,62(5):1919-1935. | |
6 | ACOSTA-MARTINEZ V, BUROW G, ZOBECK T M, et al.. Soil microbial communities and function in alternative systems to continuous cotton [J]. Soil Sci. Soc. Am. J., 2010,74(4):1181-1192. |
7 | 郭璞,邢鹏杰,宋佳,等.蒙古栎根系与根区土壤真菌群落组成及与环境因子的关系[J].菌物研究,2022,20(3):173-182. |
GUO P, XING P J, SONG J, et al.. Fungal community in roots and the root zone of Quercus mongolica and the correlations with the environmental factors [J]. J. Fungal Res., 2022,20(3):173-182. | |
8 | POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function [J]. New Phytol., 2018, 220(4):1059-1075. |
9 | 方中达.植病研究方法[M]. 北京:中国农业出版社,1988: 8-10. |
10 | 崔明秦,张东华,闫晓慧,等.油茶炭疽菌侵染对油茶叶片内生细菌群落结构的影响[J].中国生物防治学报,2022,38(4):911-919. |
CUI M Q, ZHANG D H, YAN X H, et al.. Effects of Colletotrichum sp. infection on encdophytic bacterial community in leaves of Camellia oleifera [J]. Chin. J. Biol. Control, 2022,38(4):911-919. | |
11 | 杨娅琳,吴峰婧琳,陈健鑫,等.油茶根腐病与丛枝菌根真菌群落的相关性分析[J].西南农业学报,2023,36(11):2426-2436. |
YANG Y L, WU F J L, CHEN J X, et al..Correlation between root rot of Camellia oleifera and arbuscular mycorrhizal fungi [J]. Southwest China J. Agric. Sci., 2023,36(11):2426-2436. | |
12 | 张健,徐明,陈进,等.黔中不同地区马尾松林土壤真菌群落分布特征[J].东北林业大学学报,2022,50(10):84-89. |
ZHANG J, XU M, CHEN J, et al.. Distribution characteristics of soil fungal community in Pinus massoniana forest among different areas in the central Guizhou [J]. J. Northeast For. Univ., 2022,50(10):84-89. | |
13 | YAO F, YANG S, WANG Z R, et al..Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient [J/OL]. Front. Microbiol.,2017,8: 2071 [2022-10-18]. . |
14 | 戴瑞卿,赖宝春,曾天宝,等.健康与患根腐病草莓根际、非根际与根内真菌群落多样性研究[J].现代农业科技,2021(24):29-33, 39. |
DAI R Q, LAI B C, ZENG T B, et al.. Fungal community diversity in rhizosphere, non-rhizosphere and root tissue of healthy and root rot strawberry [J]. Mod. Agric. Sci. Technol., 2021(24):29-33, 39. | |
15 | 李婷婷,邓旭辉,李若尘,等.番茄青枯病发生对土壤真菌群落多样性的影响[J].生物技术通报,2022,38(10):195-203. |
LI T T, DENG X H, LI R C, et al.. Effects of Ralstonia solanacearum infection on soil fungal community diversity [J].Biotechnol. Bull., 2022,38(10):195-203. | |
16 | 向立刚,郭华,周浩,等.健康与感染青枯病烟株根际土壤与茎秆真菌群落结构与多样性[J].植物保护,2020,46(1):189-196, 228. |
XIANG L G, GUO H, ZHOU H, et al.. Fungal community structure and diversity of the rhizosphere soil and stems of healthy and diseased tobacco plants infected with bacterial wilt [J]. Plant Prot.,2020,46(1):189-196, 228. | |
17 | 罗鑫,吴跃开,张念念,等.油茶根际土壤真菌群落组成及多样性分析[J].中国农业科技导报,2023,25(2):199-210. |
LUO X, WU Y K, ZHANG N N, et al.. Composition and diversity of fungal community in rhizosphere soil of Camellia oleifera [J]. J. Agric. Sci. Technol., 2023,25(2):199-210. | |
18 | 邓娇娇, 周永斌, 殷有, 等. 辽东山区两种针叶人工林土壤真菌群落结构特征[J]. 北京林业大学学报, 2019, 41(9): 130-138. |
DENG J J, ZHOU Y B, YIN Y, et al.. Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning province, northeastern China [J]. J. Beijing For. Univ., 2019, 41(9): 130-138. | |
19 | MIGUEL R M, JOSE G M V, MEIKE P. Diversity of fungi in soils with different degrees of degradation in Germany and Panama [J]. Mycobiology, 2020, 48(1):20-28. |
20 | NADIMI M, BEAUDET D, FORGET L, et al.. GroupⅠintron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales [J]. Mol. Biol. Evol.,2012,29:2199-2210. |
21 | 宁琪,陈林,李芳,等.被孢霉对土壤养分有效性和秸秆降解的影响[J].土壤学报,2022,59(1):206-217. |
NING Q, CHEN L, LI F, et al.. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol. Sin., 2022,59(1):206-217. | |
22 | 林善海,黄思良,岑贞陆,等.香蕉真菌性叶斑病病原种群结构季节性变化研究[J].南方农业学报,2011,42(10):1212-1216. |
LIN S H, HUANG S L, CEN Z L, et al.. Seasonal variation in population structure of banana mycotic leaf spot pathogen [J]. J. Southern Agric., 2011,42(10):1212-1216. | |
23 | KEHR R D. Pezicula canker of Quercus rubra L. caused by Pezicula cinnamomea (DC.) Sacc. I. symptoms and pathogenesis [J]. Eur. J. For. Path.,1991,21(4),218-233. |
24 | 杜卓. 中国广义黑盘孢属的分类和系统学研究[D].北京:北京林业大学,2018. |
DU Z. Phylogeny and taxonomy of Melanconium sensu lato in China [D]. Beijing: Beijing Forestry University, 2018. | |
25 | 乔沙沙,周永娜,柴宝峰,等.关帝山森林土壤真菌群落结构与遗传多样性特征[J].环境科学,2017,38(6):2502-2512. |
QIAO S S, ZHOU Y N, CHAI B F, et al.. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains [J]. Environ. Sci., 2017,38(6):2502-2512. | |
26 | 乔策策. 木霉生物有机肥提升作物产量的微生物生态学机理研究[D].南京: 南京农业大学, 2019. |
QIAO C C. Microbial ecological mechanism of bio-organic fertilizer of Mycobacterium xylinum to enhance crop yield [D].Nanjing: Nanjing Agricultural University,2019. | |
27 | BAI B, LIU W D, QIU X Y, et al..The root microbiome:community assembly and its contributions to plant fitness [J]. J. Integr. Plant Biol., 2022,64(2):230-243. |
28 | 孙战,王圣洁,杨锦昌,等.木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析[J].生态环境学报,2022,31(1):70-78. |
SUN Z, WANG S J, YANG J C, et al..Correlation analysis of the occurrence of bacterial wilt and physicochemical properties and enzyme activity of root-zone soil of Casuarina spp. [J]. Ecol. Environ., 2022,31(1): 70-78. | |
29 | 陈海念. 植烟土壤土传病害区土壤微生物生态特征变化及其影响因素分析[D]. 贵阳:贵州大学,2020. |
CHEN H N.The changes of micro bial community in tobacco soil infected with soil-borne disease and its influenecing factors [D]. Guiyang: Guizhou University,2020. | |
30 | 段旺军,杨铁钊,戴亚,等.植物氮素营养与病害发生关系研究进展[J].西北植物学报,2011,31(10):2139-2146. |
DUAN W J, YANG T Z, DAI Y, et al.. Advances in the relationships between nitrogen nutrition and disease development in plant species [J]. Acta Bot. Bor-Occid. Sin.,2011,31(10):2139-2146. | |
31 | 方宇,白涛,刘冬梅,等.烟草黑胫病植株根际土壤真菌群落多样性及结构分析[J].西南农业学报,2022,35(4):822-830. |
FANG Y, BAI T, LIU D M, et al.. Diversity and structure of the fungal community in rhizosphere soil of tobacco plants with black shank disease [J]. Southwest China J. Agric. Sci., 2022,35(4): 822-830. | |
32 | FREW A, POWELL J R, GLAUSER G, et al.. Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations [J]. Soil Biol. Biochem., 2018, 126: 123-132 |
33 | 黄咏明,蒋迎春,王志静,等.丛枝菌根真菌对植物根腐病的抑制效应及其机制[J].应用生态学报,2021,32(5):1890-1902. |
HUANG Y M, JIANG Y C, WANG Z J, et al.. The suppression effect and mechanism of arbuscular mycorrhizal fungi against plant root rot [J]. J. Appl. Ecol.,2021,32(5):1890-1902. |
[1] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[2] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[3] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[4] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[5] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[6] | 郭靖捷, 任晓萌, 蒙仲举, 王涛, 祁帅, 宋佳佳, 宝孟克那顺, 韩胜利. 半干旱风沙草原区盐湖植物防护体系土壤理化性状特征[J]. 中国农业科技导报, 2024, 26(1): 182-192. |
[7] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[8] | 李慧君, 张伟健, 吴伟健, 李高洋, 陈艺杰, 黄枫城, 黄永相, 蔺中, 甄珍. 种植海水稻对滨海盐土化学性质和微生物群落影响[J]. 中国农业科技导报, 2023, 25(9): 147-156. |
[9] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[10] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[11] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[12] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
[13] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
[14] | 李峰, 殷丛培, 殷冉, 王凡, 韩永亮, 杨志敏, 刘建成. 燕麦根际土壤细菌多样性对盐胁迫的响应[J]. 中国农业科技导报, 2023, 25(1): 153-165. |
[15] | 夏秀波, 李涛, 曹守军, 姚建刚, 王虹云, 张丽莉. 液态有机肥部分替代化肥对设施番茄根区细菌群落的影响[J]. 中国农业科技导报, 2022, 24(7): 187-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||