中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (1): 52-62.DOI: 10.13304/j.nykjdb.2022.0490
收稿日期:
2022-06-09
接受日期:
2022-06-23
出版日期:
2024-01-15
发布日期:
2024-01-08
通讯作者:
侯智霞
作者简介:
杨圣艳 E-mail:1610704627@qq.com;
基金资助:
Shengyan YANG(), Man CAO, Baoshi GUO, Chao YANG, Zhixia HOU(
)
Received:
2022-06-09
Accepted:
2022-06-23
Online:
2024-01-15
Published:
2024-01-08
Contact:
Zhixia HOU
摘要:
铁(Fe)是植物必需的微量元素,参与光合作用。为探究Fe对蓝莓(Vaccinium spp.)重要生命活动的影响,以蓝莓‘莱克西’为试验材料,设置正常铁(Na-Fe-EDTA)、只有难溶铁(Fe2O3)及缺铁(不外加任何铁元素)共3种铁环境,分析其苗木生长发育及其叶片相对叶绿素含量(SPAD值)、叶绿素含量、叶绿素荧光参数等的差异。结果表明,在难溶铁和缺铁2种胁迫环境下,蓝莓各生长指标、光合色素含量及SPAD值均显著低于正常铁环境(P<0.05),而难溶铁环境下蓝莓苗木的基生枝数量和生长量、地径、叶面积及叶片光合色素含量显著低于缺铁环境(P<0.05);正常铁环境中叶片PSⅡ实际光合效率高于难溶铁和缺铁环境,而光抑制程度显著低于这2种铁胁迫环境;难溶铁、缺铁环境中的蓝莓苗木叶片受损、叶片的光合能力减弱,其中难溶铁环境与缺铁环境相比,光系统中心转换效率更不稳定,叶片受光抑制程度最高;叶面积、单株生物量、基生枝生长量与各叶绿素荧光参数间具有显著相关性(P<0.01),且叶片光合色素含量与SPAD值间呈显著正相关(P<0.01),但各光合色素和SPAD值与各荧光参数间相关性不显著。综上所述,难溶铁环境、缺铁环境使蓝莓苗木生长发育受抑制与该环境下造成叶片叶绿素含量降低有关,胁迫环境下叶片PSⅡ反应中心光能的吸收和转换减弱,电子传递受阻,光合效率降低,为蓝莓铁素营养合理利用方式的深入挖掘提供参考依据。
中图分类号:
杨圣艳, 曹漫, 郭宝石, 杨超, 侯智霞. 不同铁环境对蓝莓生长及叶片叶绿素荧光特性的影响[J]. 中国农业科技导报, 2024, 26(1): 52-62.
Shengyan YANG, Man CAO, Baoshi GUO, Chao YANG, Zhixia HOU. Effects of Different Iron Environments on the Growth and Leaf Chlorophyll Fluorescence Characteristics of Blueberry[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 52-62.
大量元素 | 微量元素 | 浓度 | 用量 | ||
---|---|---|---|---|---|
K2SO4 | 0.5 | 6.0 | MnSO4·H2O | 0.25 | 60.0 |
MgSO4·7H2O | 1.0 | 1.5 | ZnSO4·7H2O | 0.25 | 7.2 |
NH4H2PO4 | 1.0 | 2.0 | CuSO4·5H2O | 0.50 | 3.0 |
Ca(NO3)2·4H2O | 3.0 | 3.0 | H3BO3 | 0.50 | 64.0 |
Na2MoO4 | 1.00 | 0.2 |
表1 Hogland营养液配方
Table 1 Hogland nutrient solution formula
大量元素 | 微量元素 | 浓度 | 用量 | ||
---|---|---|---|---|---|
K2SO4 | 0.5 | 6.0 | MnSO4·H2O | 0.25 | 60.0 |
MgSO4·7H2O | 1.0 | 1.5 | ZnSO4·7H2O | 0.25 | 7.2 |
NH4H2PO4 | 1.0 | 2.0 | CuSO4·5H2O | 0.50 | 3.0 |
Ca(NO3)2·4H2O | 3.0 | 3.0 | H3BO3 | 0.50 | 64.0 |
Na2MoO4 | 1.00 | 0.2 |
图1 不同铁环境下蓝莓的基生枝数量、基生枝生长量和地径注:不同小写字母表示同一培育时间下不同铁处理之间差异在P<0.05水平显著。
Fig. 1 Basal branch number,basal branch growth and ground diameter of blueberry under different iron environmentsNote: Different lowercase letters indicate significant differences between different iron treatments at the same incubation time at P<0.05 level.
图2 不同铁环境下蓝莓的单株生物量和叶面积注:不同小写字母表示同一培育时间下不同铁处理之间差异在P<0.05水平显著。
Fig. 2 Average weight per plant and mean leaf area of blueberry under different iron environmentsNote: Different lowercase letters indicate significant differences between different iron treatments at the same incubation time at P<0.05 level.
指标 Index | 处理 Treatment | 时间 Time/d | ||
---|---|---|---|---|
120 | 150 | 180 | ||
叶绿素相对含量(SPAD值) Chlorophyll relative content(SPAD value) | B2 | 34.436±1.03 aα | 31.971±0.99 aα | 33.057±1.28 1aα |
B1 | 8.543±0.76 cβ | 13.214±0.89 bα | 9.929±1.03 bβ | |
B3 | 15.107±0.62 bα | 12.586±1.06 bα | 9.286±0.95 bβ | |
叶绿素 a Chlorophyll a/(mg·g-1) | B2 | 8.164±0.14 aβ | 5.858±0.03 aγ | 11.367±0.28 aα |
B1 | 2.220±0.03 cβ | 3.278±0.08 cα | 3.163±0.08 bα | |
B3 | 7.048±0.12 bα | 4.620±0.04 bβ | 2.322±0.06 cγ | |
叶绿素 b Chlorophyll b/(mg·g-1) | B2 | 3.866±0.09 aα | 2.525±0.03 aβ | 2.354±0.06 aβ |
B1 | 0.960±0.03 cβ | 1.365±0.04 cα | 0.653±0.04 bγ | |
B3 | 3.316±0.07 bα | 1.884±0.04 bβ | 0.474±0.02 cγ | |
总叶绿素 Total chlorophyll/(mg·g-1) | B2 | 12.030±0.22 aβ | 8.383±0.06 aγ | 13.722±0.33 aα |
B1 | 3.180±0.06 cγ | 4.643±0.12 cα | 3.816±0.05 bβ | |
B3 | 10.364±0.19 bα | 6.504±0.08 bβ | 2.795±0.08 cγ |
表2 不同铁环境下蓝莓叶绿素含量和SPAD值
Table 2 Chlorophyll content and SPAD of blueberry under different iron envirments
指标 Index | 处理 Treatment | 时间 Time/d | ||
---|---|---|---|---|
120 | 150 | 180 | ||
叶绿素相对含量(SPAD值) Chlorophyll relative content(SPAD value) | B2 | 34.436±1.03 aα | 31.971±0.99 aα | 33.057±1.28 1aα |
B1 | 8.543±0.76 cβ | 13.214±0.89 bα | 9.929±1.03 bβ | |
B3 | 15.107±0.62 bα | 12.586±1.06 bα | 9.286±0.95 bβ | |
叶绿素 a Chlorophyll a/(mg·g-1) | B2 | 8.164±0.14 aβ | 5.858±0.03 aγ | 11.367±0.28 aα |
B1 | 2.220±0.03 cβ | 3.278±0.08 cα | 3.163±0.08 bα | |
B3 | 7.048±0.12 bα | 4.620±0.04 bβ | 2.322±0.06 cγ | |
叶绿素 b Chlorophyll b/(mg·g-1) | B2 | 3.866±0.09 aα | 2.525±0.03 aβ | 2.354±0.06 aβ |
B1 | 0.960±0.03 cβ | 1.365±0.04 cα | 0.653±0.04 bγ | |
B3 | 3.316±0.07 bα | 1.884±0.04 bβ | 0.474±0.02 cγ | |
总叶绿素 Total chlorophyll/(mg·g-1) | B2 | 12.030±0.22 aβ | 8.383±0.06 aγ | 13.722±0.33 aα |
B1 | 3.180±0.06 cγ | 4.643±0.12 cα | 3.816±0.05 bβ | |
B3 | 10.364±0.19 bα | 6.504±0.08 bβ | 2.795±0.08 cγ |
指标 Index | 叶面积 Leaf area | 单株生物量 Biomass per plant | 基生枝数量 Number of basal shoots | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll | SPAD | Y(Ⅱ) | ETR | Y(NO) | 1-qP |
---|---|---|---|---|---|---|---|---|---|---|---|
单株生物量 Biomass per plant | 0.994** | ||||||||||
基生枝数量 Number of basal shoots | 0.990** | 1.000** | |||||||||
叶绿素a Chlorophyll a | 0.457 | 0.356 | 0.327 | ||||||||
叶绿素b Chlorophyll b | 0.162 | 0.053 | 0.023 | 0.951** | |||||||
总叶绿素 Total chlorophyll | 0.415 | 0.312 | 0.283 | 0.999** | 0.964** | ||||||
SPAD | 0.611 | 0.518 | 0.490 | 0.968** | 0.859** | 0.958** | |||||
Y(Ⅱ) | 0.903** | 0.946** | 0.956** | 0.039 | -0.265 | -0.007 | 0.212 | ||||
ETR | 0.904** | 0.947** | 0.956** | 0.041 | -0.263 | -0.005 | 0.214 | 1.000** | |||
Y(NO) | -0.994** | -1.000** | -0.999** | -0.360 | -0.057 | -0.316 | -0.521 | -0.944** | -0.945** | ||
1-qP | -0.989** | -0.999** | -1.000** | -0.325 | -0.021 | -0.281 | -0.489 | -0.956** | -0.957** | 0.999** | |
Fv/Fm | 0.994** | 0.975** | 0.967** | 0.551 | 0.269 | 0.512 | 0.695 | 0.850** | 0.851** | -0.976** | -0.967** |
表3 不同生长发育指标和各叶片光合能力参数间的相关性
Table 3 Correlation between different growth and development indexes and photosynthetic capacity parameters of leaves
指标 Index | 叶面积 Leaf area | 单株生物量 Biomass per plant | 基生枝数量 Number of basal shoots | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll | SPAD | Y(Ⅱ) | ETR | Y(NO) | 1-qP |
---|---|---|---|---|---|---|---|---|---|---|---|
单株生物量 Biomass per plant | 0.994** | ||||||||||
基生枝数量 Number of basal shoots | 0.990** | 1.000** | |||||||||
叶绿素a Chlorophyll a | 0.457 | 0.356 | 0.327 | ||||||||
叶绿素b Chlorophyll b | 0.162 | 0.053 | 0.023 | 0.951** | |||||||
总叶绿素 Total chlorophyll | 0.415 | 0.312 | 0.283 | 0.999** | 0.964** | ||||||
SPAD | 0.611 | 0.518 | 0.490 | 0.968** | 0.859** | 0.958** | |||||
Y(Ⅱ) | 0.903** | 0.946** | 0.956** | 0.039 | -0.265 | -0.007 | 0.212 | ||||
ETR | 0.904** | 0.947** | 0.956** | 0.041 | -0.263 | -0.005 | 0.214 | 1.000** | |||
Y(NO) | -0.994** | -1.000** | -0.999** | -0.360 | -0.057 | -0.316 | -0.521 | -0.944** | -0.945** | ||
1-qP | -0.989** | -0.999** | -1.000** | -0.325 | -0.021 | -0.281 | -0.489 | -0.956** | -0.957** | 0.999** | |
Fv/Fm | 0.994** | 0.975** | 0.967** | 0.551 | 0.269 | 0.512 | 0.695 | 0.850** | 0.851** | -0.976** | -0.967** |
1 | 李亚东,盖禹含,王芳,等. 2021年全球蓝莓产业数据报告 [J/OL].吉林农业大学学报,2022,44(1):1-12. |
LI Y D, GAI Y H, WANG F, et al..Global blueberry industry data report 2021 [J/OL]. J. Jilin Agric. Univ., 2022,44(1):1-12. | |
2 | 尤式备,徐佳慧,郭怡文,等.蓝莓根毛缺失的机制及内生菌根真菌的促生作用[J].浙江大学学报(农业与生命科学版),2020,46(4):417-427. |
YOU S B, XU J H, GUO Y W, et al..Mechanism of root hair loss in blueberry and growth promoting effect of endophytic mycorrhizal fungi [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2020,46(4):417-427. | |
3 | 孙贵宝.浅谈欧美及日本等国蓝莓栽培的立地条件[J].北方园艺,2006(4):103-105. |
SUN G B.Study on the site conditions of blueberry cultivation in Europe, America and Japan [J].Northern Hortic., 2006(4):103-105. | |
4 | 李亚东,陈伟,张志东,等.土壤pH值对越桔幼苗生长及元素吸收的影响[J].吉林农业大学学报,1994,16(3):51-54. |
LI Y D, CHEN W, ZHANG Z D, et al..Effects of soil pH on growth and elemental absorption of bilberry seedlings [J].J. Jilin Agric. Univ., 1994,16(3):51-54. | |
5 | 曹增强,徐莹莹,张宁,等.不同pH对蓝莓组培苗生长和元素吸收的影响[J].中国农业大学学报,2016,21(2):50-57. |
CAO Z Q, XU Y Y, ZHANG N, et al..Effects of different pH values on the growth and element absorption of blueberry tissue culture seedlings [J].J. Chin. Agric. Univ., 2016,21(2):50-57. | |
6 | COVILLE F V.Experiments in Blueberry Culture [M].Whitefish: Kessinger Publishing, 1911:1-138. |
7 | 陈雅彬,李永强,孙琳,等.非酸性根际土壤对蓝莓铁元素吸收及其代谢相关基因表达的影响[J].园艺学报,2015,42(2):233-242. |
CHEN Y B, LI Y Q, SUN L, et al..Effects of non-acidic rhizosphere soil on iron uptake and metabolization-related gene expression in blueberry [J].Acta Hortic. Sin., 2015,42(2):233-242. | |
8 | 叶美娟.蓝莓缺铁响应机制研究[D].金华:浙江师范大学,2017. |
YE M J.Research on the mechanism of iron deficiency in blueberry [D]. Jinhua: Zhejiang Normal University, 2017. | |
9 | 孙攀,杨静慧,冀馨宁,等.不同铁肥对蓝莓黄化叶片光合特性的影响[J].天津农林科技,2019(2):16-18. |
SUN P, YANG J H, JI X N, et al..Effects of different Iron fertilizer on photosynthetic characteristics of chlorinated blueberry leaves [J]. Sci. Technol. Tianjin Agric. For., 2019(2):16-18. | |
10 | 陈娜.铁、钾营养对越橘苗生长和生理特性的影响[D].大连:大连理工大学,2010. |
CHEN N.Effects of iron and potassium on growth and physiological characteristics of Huckleberry seedlings [D].Dalian: Dalian University of Technology, 2010. | |
11 | EIDE D, BRODERIUS M, FETT J, et al..A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proc. Natl. Acad Sci. USA,1996,93(11):5624-5628. |
12 | GUERINOT M L, YI Y.Iron: nutritious, noxious, and not readily available [J]. Plant Phys., 1994,104(3):815-820. |
13 | TERRY N, ABADÍA J.Function of iron in chloroplasts [J]. J. Plant Nutr., 1986,9(3-7):609-646. |
14 | ZHOU H J, KORCAK R F, WERGIN W P, et al..Cellular ultrastructure and net photosynthesis of appleseed lings,under iron stree [J]. J. Plant Nutr., 1984,7(6):911-928. |
15 | 伍丽华,代林利,胡永颜,等.供铁水平对杉木幼苗叶片叶绿素荧光参数和抗氧化酶活性的影响[J].江西农业大学学报,2021,43(5):1087-1097. |
WU L H, DAI L L, HU Y Y, et al..Effects of iron supply on chlorophyll fluorescence parameters and antioxidant enzyme activity of Cunninghamia lanceolata seedlings [J].Acta Agric. Univ. Jiangxiensis, 2021,43(5):1087-1097. | |
16 | BERTAMINI M, MUTHUCHELIAN K, NEDUNCHEZHIAN N. Iron deficiency induced changes on the donor side of PSⅡ in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves [J].Plant Sci., 2002,162(4):599-605. |
17 | 邱强,饶德民,赵婧,等.不同铁效率大豆品种叶片和根系超微结构的比较研究[J].大豆科学,2017,36(6):927-931. |
QIU Q, RAO D M, ZHAO J, et al.. Comparison of leaf and root ultrastructure of soybean varieties with different iron efficiency [J].Soybean Sci., 2017,36(6):927-931. | |
18 | 郭燕萍,顾家家,陈冰聪,等.蓝莓铁代谢调控机制初探[J].浙江师范大学学报(自然科学版),2021,44(3):311-318. |
GUO Y P, GU J J, CHEN B C, et al..Research on the regulation mechanism of iron metabolism in blueberry [J].J. Zhejiang Norm. Univ. (Nat. Sci.), 2021,44(3):311-318. | |
19 | 黄宗安,徐坚,史建磊, 等.缺铁胁迫对温州盘菜幼苗叶片光合特性和抗氧化酶活性的影响[J].浙江农业学报,2014,26(6):1495-1500. |
HUANG Z A, XU J, SHI J L, et al.. Effects of iron deficiency stress on photosynthetic characteristics and antioxidant enzyme activities of cabbage seedlings [J].Acta Agric. Zhejiangensis, 2014,26(6):1495-1500. | |
20 | 姜闯道,高辉远,邹琦.缺铁使大豆叶片激发能的耗散增加[J].植物生理与分子生物学学报,2002(2):127-132. |
JIANG C D, GAO H Y, ZOU Q.Effect of iron deficiency on excitation energy dissipation in soybean leaves [J].Physiol. Mol. Biol. Plants, 2002(2):127-132. | |
21 | 杨颖丽,司廉邦,李嘉敏,等.铁胁迫对小麦幼苗叶绿素荧光与光合特性的影响[J].兰州大学学报(自然科学版),2019,55(6):814-820. |
YANG Y L, SI L B, LI J M, et al..Effects of iron stress on chlorophyll fluorescence and photosynthetic characteristics of wheat seedlings [J].J. Lanzhou Univ.(Nat. Sci.), 2019,55(6):814-820. | |
22 | ADAMSKI J M, PETERS J A, DANIELOSKI R, et al.. Excess iron-induced changes in the photosynthetic characteristics of sweet potato [J]. J. Plant Physiol., 2011,168(17):2056-2062. |
23 | 陈薇.温室、大棚、露地三种栽培模式下越橘光合特性研究[D].长春:吉林农业大学,2006. |
CHEN W. Photosynthetic characteristics of huckleberry under greenhouse, greenhouse and open field cultivation [D].Changchun: Jilin Agricultural University, 2006. | |
24 | LICHTENTHALER H.Chlorophylls and carotenoids: pig-ments of photosynthetic biomembranes [J].Meth. Enzymol., 1987,148C:350-382. |
25 | LARBI A, MORALES F, LÓPEZ-MILLÁN A F, et al..Technical advance: reduction of Fe(Ⅲ)-chelates by mesophyll leaf diska of sugar beet.multi-component origin and effects Fe deficiency [J]. Plant cell Physiol., 2001, 42 (1):94-105. |
26 | 黄小辉,吴焦焦,王玉书,等.不同供氮水平核桃的生长及叶绿素荧光特性[J/OL].南京林业大学学报(自然科学版), 2022 [2022-05-12].. |
HUANG X H, WU J J, WANG Y S, et al..Growth and chlorophyll fluorescence characteristics of walnut with different nitrogen supply levels [J/OL].J. Nanjing For. Univ.(Nat. Sci.), 2022 [2022-05-12]. . | |
27 | 龙文靖,万年鑫,辜涛,等.玉米苗期耐低铁能力的综合评价及其预测[J].植物遗传资源学报,2015,16(4):734-742. |
LONG W J, WAN N X, GU T, et al.. Comprehensive evaluation and prediction of low iron tolerance of maize seedling [J]. J. Plant Genet. Resour., 2015,16(4):734-742. | |
28 | 游丹丹,张子威,王贞红.西藏墨脱县4个茶树良种叶片表型及光合特性分析[J/OL].分子植物育种,2023,21(17):5794-5801. |
YOU D D, ZHANG Z W, WANG Z H.Analysis of leaf phenotype and photosynthetic characteristics of four tea cultivars in Motuo county, Xizang province [J/OL]. Mol. Plant Breeding,2023,21(17):5794-5801.. | |
29 | 厉广辉,张昆,刘风珍,等.不同抗旱性花生品种的叶片形态及生理特性[J].中国农业科学,2014,47(4):644-654. |
LI G H, ZHANG K, LIU F Z, et al..Leaf morphology and physiological characteristics of peanut cultivars with different drought resistance [J]. Sci. Agric. Sin., 2014,47(4):644-654. | |
30 | TAGLIAVINI M, SCUDELLARI D, MARANGONI B, et al..Acid-spray regreening of kiwifruit leaves affected by lime induced Fe chlorosis [J]. Iron Nutr. Soils Plants,1995:191-195. |
31 | 牛永昆,李军乔,曲俊儒,等.铁胁迫对蕨麻叶绿素荧光及生理特性的影响[J].天津农业科学,2022,28(2):1-6. |
NIU Y K, LI J Q, QU J R, et al..Effects of iron stress on chlorophyll fluorescence and physiological characteristics of potentilla anserine [J]. Tianjin Agric. Sci., 2022,28(2):1-6. | |
32 | 姚宇洁,姜存仓.缺铁胁迫柑橘砧木幼苗的光合特性和叶绿体超微结构 [J].植物营养与肥料学报,2017,23(5):1345-1351. |
YAO Y J, JIANG C C.Photosynthetic characteristics and chloroplast ultrastructure of citrus rootstock seedlings under iron deficiency stress [J]. J. Plant Nutr. Fert., 2017,23(5):1345-1351. | |
33 | 王凯,吴祥云,段海侠,等.辽西北主要绿化树种叶绿素含量分异特征及与SPAD值关系[J].植物研究,2014,34(5):634-641. |
WANG K, WU X Y, DUAN H X, et al..Characteristics of chlorophyll content and its relationship with SPAD value of main tree species in Northwest Liaoning province [J]. Bull. Bot. Res., 2014,34(5):634-641. | |
34 | MOLASSIOTIS A, TANOU G, DIAMANTIDIS G, et al.. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance [J]. J. Plant Physiol., 2006, 163(2):176-185. |
35 | 李佳佳,于旭东,蔡泽坪,等.高等植物叶绿素生物合成研究进展[J].分子植物育种,2019,17(18):6013-6019. |
LI J J, YU X D, CAI Z P, et al..Research progress of chlorophyll biosynthesis in higher plants [J]. Mol. Plant Breed., 2019,17(18):6013-6019. | |
36 | SUN X L, XU Y, ZHANG Q Q, et al.. Combined effect of water inundation and heavy metals on the photosynthesis and physiology of Spartina alterniflora [J]. Ecotox. Environ. Safe., 2018,153(5):248-258. |
37 | MORANT-MANCEAU A, PRADIER E, TREMBLIN G.Osmotic adjustment,gas exchanges and chlorophy Ⅱ fluorescence of a hexaploid triticale and its parental species under salt stress [J]. J. Plant Physiol., 2004,161(1):25-33. |
38 | 闫超.不同蓝莓品种光合特性初步研究[D].哈尔滨:东北农业大学,2016. |
YAN C.Preliminary study on photosynthetic characteristics of different blueberry cultivars [D]. Harbin: Northeast Agricultural University, 2016. | |
39 | DEMMIG-ADAMS B, ADAMS W W, HEBER U, et al..Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach and chloroplast [J]. Plant Physiol., 1990,92(2):293-301. |
40 | 彭海欢,翁晓燕,徐红霞,等.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625. |
PENG H H, WENG X Y, XU H X, et al.. Effects of potassium deficiency stress on photosynthetic characteristics and photosynthetic defense mechanism of rice [J]. Chin. J. Rice Sci., 2006,20(6):621-625. | |
41 | 肖家欣, 齐笑笑, 张绍铃. 铁胁迫对三种柑橘砧木的生长、生理特性及铁分布的影响[J]. 广西植物, 2011, 31(1): 97-101. |
XIAO J X, QI X X, ZHANG S L.Effects of Iron stress on growth, physiological characteristics and iron distribution of three citrus rootstocks [J]. J. Guihaia, 2011, 31(1): 97-101. |
[1] | 杜彩艳, 鲁海燕, 熊艳竹, 孙曦, 孙秀梅, 普继雄, 张乃明. 连续两年沼液与化肥配施对桃生长及土壤理化性质的影响[J]. 中国农业科技导报, 2023, 25(8): 165-175. |
[2] | 田露, 郭晓霞, 苏文斌, 黄春燕, 李智, 张鹏, 菅彩媛, 刘佳, 孔德娟, 韩康. 微生物肥料对连作甜菜生长发育及产质量的影响[J]. 中国农业科技导报, 2023, 25(5): 192-203. |
[3] | 金鑫, 张璐, 吴鹏, 李萍, 谭伟, 桂明英. 遮光处理对盆景灵芝生长发育和酶活性的影响[J]. 中国农业科技导报, 2023, 25(4): 147-156. |
[4] | 李玉静, 冯雨晴, 赵园园, 史宏志. 不同形态氮素吸收利用及其对植物生理代谢影响的综述[J]. 中国农业科技导报, 2023, 25(2): 128-139. |
[5] | 梁培鑫, 唐榕, 刘建国. 混合盐碱胁迫对油莎豆光合生理及产量的影响[J]. 中国农业科技导报, 2023, 25(12): 195-204. |
[6] | 吴萍, 王晓宇, 郭俊霞, 张松林, 李青苗, 方清茂. 早期抽薹对白芷生长发育和品质的影响[J]. 中国农业科技导报, 2023, 25(12): 58-66. |
[7] | 齐淑新, 温晓蕾, 吉庭锋, 司增志, 赵春明, 乔亚科, 王艳敏, 蔡爱军, 张海华, 吉志新. 狐貉粪对黑水虻生长发育的影响[J]. 中国农业科技导报, 2022, 24(8): 201-206. |
[8] | 党翼, 张建军, 赵刚, 樊廷录, 王磊, 李尚中, 周刚. 控释尿素和普通尿素配施对旱地玉米产量和水氮利用效率的影响[J]. 中国农业科技导报, 2022, 24(6): 156-165. |
[9] | 王方玲, 张明月, 周亚茹, 管庆林, 李欣燕, 钟秋, 赵铭钦. 干旱胁迫下TS-PAA保水剂对雪茄烟生长发育和光合特性的影响[J]. 中国农业科技导报, 2022, 24(4): 162-172. |
[10] | 韩素菊, 梅闯. 铁皮石斛原球茎富硒悬浮培养条件优化[J]. 中国农业科技导报, 2022, 24(4): 210-217. |
[11] | 董玉昕, 郑植, 王文康, 王志恒, 陈晓峰. 纳米银和纳米氧化铁对甜瓜白粉病防治研究[J]. 中国农业科技导报, 2022, 24(11): 137-147. |
[12] | 万雨, 杨海明, 韩厚明, 张航, 杨雨, 梁静茹, 王志跃, . 江南白鹅消化器官的早期生长发育特点及其相关性研究[J]. 中国农业科技导报, 2021, 23(9): 69-77. |
[13] | 孙艳, 蒲文宣, 吴长征, 黄平俊, 孙铭雪, 宋德安, 刘来华. 植物响应亚适低温的生长发育及分子机制研究进展[J]. 中国农业科技导报, 2021, 23(5): 18-26. |
[14] | 薛琪琪1§,门丽娜1§,张倩1,祁靖宇1,柳春雨1,冯丹丹1,张宇宏2*,张志伟1,3*. 饲养密度对大蜡螟实验种群生命表参数的影响[J]. 中国农业科技导报, 2020, 22(7): 69-78. |
[15] | 杨锁宁1,2,张黎1*,刘春2*,袁素霞2,张军云3,张盖天2. 温度和土壤酸度对八仙花‘Bailmer’生长发育的影响[J]. 中国农业科技导报, 2020, 22(5): 24-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||