中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (4): 206-214.DOI: 10.13304/j.nykjdb.2022.0848
• 生物制造 资源生态 • 上一篇
赵娅红1,2(), 胡骞予1, 夏融1, 王志江3, 谢永辉3, 叶贤文3, 余磊1, 齐颖1, 羊绍武1, 薛至勤1, 吴治兴1, 黄飞燕1(
), 韩天华4(
)
收稿日期:
2022-10-10
接受日期:
2022-12-26
出版日期:
2024-04-15
发布日期:
2024-04-23
通讯作者:
黄飞燕,韩天华
作者简介:
赵娅红 E-mail:190550225@qq.com
基金资助:
Yahong ZHAO1,2(), Qianyu HU1, Rong XIA1, Zhijiang WANG3, Yonghui XIE3, Xianwen YE3, Lei YU1, Ying QI1, Shaowu YANG1, Zhiqin XUE1, Zhixing WU1, Feiyan HUANG1(
), Tianhua HAN4(
)
Received:
2022-10-10
Accepted:
2022-12-26
Online:
2024-04-15
Published:
2024-04-23
Contact:
Feiyan HUANG,Tianhua HAN
摘要:
为明确生物炭肥对烟草根结线虫病及根际土壤的影响,通过田间试验研究拌塘施用不同量生物炭肥对烟草根结线虫病株根际土壤的影响。结果表明,常规施肥减量10%拌塘施用酵素生物炭肥能够显著降低烟草根结线虫病的病情指数,其中酵素生物炭肥施用量为350 g·株-1时,根结线虫病防治效果较好,防治效果达23.98%,且烟株农艺性状表现较好;根际土壤中过氧化氢酶、脲酶和磷酸酶活性较高,酚酸物质含量降低,化感自毒作用减弱。各处理土壤真菌数量均随生育期的推进呈先增高后降低趋势,其中酵素生物炭肥施用量为350 g·株-1时,根际土壤中的细菌量随生育期推进逐步降低。各生育期土壤中均表现为真菌数量较高,细菌数量较低,真菌/细菌值较高,说明在烟草种植中,减量施肥10%同时拌塘施用酵素生物炭肥350 g·株-1能提高土壤中真菌数量,降低土壤中细菌数量,显著提高土壤肥力及土壤酶活性,为生物炭肥对易感根结线虫病根际微生态调控提供了科学依据。
中图分类号:
赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214.
Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214.
处理Treatment | 发病率 Incidence rate/% | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|---|
T250 | 100 | 83.65±0.88 a | 4.08±0.70 b |
T300 | 100 | 69.43±1.81 b | 20.31±2.28 a |
T350 | 100 | 66.23±1.21 c | 23.98±2.60 a |
CK | 100 | 87.12±0.58 a | — |
表1 不同处理对烟株根结线虫病的防治效果
Table 1 Control effect of different treatments on tobacco root knot nematode
处理Treatment | 发病率 Incidence rate/% | 病情指数 Disease index | 防治效果 Control efficiency/% |
---|---|---|---|
T250 | 100 | 83.65±0.88 a | 4.08±0.70 b |
T300 | 100 | 69.43±1.81 b | 20.31±2.28 a |
T350 | 100 | 66.23±1.21 c | 23.98±2.60 a |
CK | 100 | 87.12±0.58 a | — |
移栽后时间 Time after transplanting/d | 处理 Treatment | 株高 Plant height/cm | 有效叶片数 Number of effective blades | 节距 Pitch/cm | 茎围 Stem circumference/cm | 最大叶长 Maximum leaf length/cm | 最大叶宽 Maximum leaf width/cm |
---|---|---|---|---|---|---|---|
30 | T250 | 32.67±1.02 a | 8.67±0.71 a | 5.83 0.10 ab | 2.33±0.22 ab | 45.33±0.20 a | 19.00±0.11 b |
T300 | 33.67±0.50 a | 8.33±1.13 a | 6.50±0.56 a | 3.00±0.58 a | 46.83±0.19 a | 24.17±0.46 a | |
T350 | 38.83±0.20 a | 8.67±0.80 a | 6.53±0.26 a | 2.97±0.57 a | 47.17±0.08 a | 24.50±0.23 a | |
CK | 22.67±1.03 c | 7.00±0.20 b | 4.00±1.12 b | 1.83±0.15 b | 34.50±0.89 b | 16.67±0.31 c | |
60 | T250 | 91.67±0.19 b | 16.00±0.47 a | 10.00±2.01 ab | 4.33±0.14 a | 70.67±2.05 a | 30.00±0.04 a |
T300 | 88.67±1.33 b | 16.67±1.25 a | 11.00±0.87 a | 3.78±0.32 b | 65.33±1.18 ab | 30.00±1.04 a | |
T350 | 123.33±1.66 a | 17.33±1.19 a | 12.00±0.11 a | 4.78±0.39 a | 71.67±1.49 a | 31.00±1.77 a | |
CK | 56.67±1.01 c | 12.67±0.95 b | 9.50±0.94 b | 4.22±0.07 a | 61.00±2.11 b | 28.67±0.75 b | |
90 | T250 | 133.67±3.78 a | 19.33±0.47 a | 12.83±1.40 a | 4.00±0.54 a | 72.33±1.92 a | 36.00±1.79 a |
T300 | 128.00±2.13 a | 19.33±1.25 a | 12.50±1.75 a | 3.78±1.22 a | 68.33±0.88 a | 34.00±2.07 a | |
T350 | 134.67±2.08 a | 19.00±1.19 a | 12.90±0.20 a | 4.30±0.81 a | 66.33±0.11 ab | 36.33±0.42 a | |
CK | 105.67±3.72 b | 17.67±0.95 a | 9.83±0.02 b | 3.44±0.07 b | 64.33±2.14 b | 31.67±1.40 b |
表2 不同处理下烟株的农艺性状
Table 2 Agronomic characters of tobacco plants under different treatments
移栽后时间 Time after transplanting/d | 处理 Treatment | 株高 Plant height/cm | 有效叶片数 Number of effective blades | 节距 Pitch/cm | 茎围 Stem circumference/cm | 最大叶长 Maximum leaf length/cm | 最大叶宽 Maximum leaf width/cm |
---|---|---|---|---|---|---|---|
30 | T250 | 32.67±1.02 a | 8.67±0.71 a | 5.83 0.10 ab | 2.33±0.22 ab | 45.33±0.20 a | 19.00±0.11 b |
T300 | 33.67±0.50 a | 8.33±1.13 a | 6.50±0.56 a | 3.00±0.58 a | 46.83±0.19 a | 24.17±0.46 a | |
T350 | 38.83±0.20 a | 8.67±0.80 a | 6.53±0.26 a | 2.97±0.57 a | 47.17±0.08 a | 24.50±0.23 a | |
CK | 22.67±1.03 c | 7.00±0.20 b | 4.00±1.12 b | 1.83±0.15 b | 34.50±0.89 b | 16.67±0.31 c | |
60 | T250 | 91.67±0.19 b | 16.00±0.47 a | 10.00±2.01 ab | 4.33±0.14 a | 70.67±2.05 a | 30.00±0.04 a |
T300 | 88.67±1.33 b | 16.67±1.25 a | 11.00±0.87 a | 3.78±0.32 b | 65.33±1.18 ab | 30.00±1.04 a | |
T350 | 123.33±1.66 a | 17.33±1.19 a | 12.00±0.11 a | 4.78±0.39 a | 71.67±1.49 a | 31.00±1.77 a | |
CK | 56.67±1.01 c | 12.67±0.95 b | 9.50±0.94 b | 4.22±0.07 a | 61.00±2.11 b | 28.67±0.75 b | |
90 | T250 | 133.67±3.78 a | 19.33±0.47 a | 12.83±1.40 a | 4.00±0.54 a | 72.33±1.92 a | 36.00±1.79 a |
T300 | 128.00±2.13 a | 19.33±1.25 a | 12.50±1.75 a | 3.78±1.22 a | 68.33±0.88 a | 34.00±2.07 a | |
T350 | 134.67±2.08 a | 19.00±1.19 a | 12.90±0.20 a | 4.30±0.81 a | 66.33±0.11 ab | 36.33±0.42 a | |
CK | 105.67±3.72 b | 17.67±0.95 a | 9.83±0.02 b | 3.44±0.07 b | 64.33±2.14 b | 31.67±1.40 b |
图1 不同处理根际土壤养分含量注: 不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 1 Nutrient contents of rhizosphere soil under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图2 不同处理根际土壤酶活性注: 不同小写字母表示同一处理时间不同处理间在P<0.05水平差异显著。
Fig. 2 Enzyme activity of rhizosphere soil under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at same time at P<0.05 level.
移栽后时间 Time after transplanting/d | 处理 Treatment | 对羟基苯甲酸 4-hydroxybenzoic acid | 香草酸 Vanillic acid | 丁香酸 Syringic acid | 4-香豆酸 p-coumaric acid | 阿魏酸 Ferulic acid | 肉桂酸 Cinnamic acid |
---|---|---|---|---|---|---|---|
30 | T250 | — | 2.17±0.50 b | 2.87±0.27 c | 4.79±0.09 b | 1.66±0.19 e | 1.16±0.03 e |
T300 | 0.50±0.01 d | 0.31±0.16 de | 0.20±0.01 e | 0.50±0.22 f | 0.05±0.01 f | 2.38±0.24 d | |
T350 | — | — | 0.14±0.02 e | 0.57±0.06 f | — | 0.59±0.02 f | |
CK | 0.22±0.11 e | — | 1.42±0.09 d | 1.37±0.10 de | 2.85±0.18 cd | 11.31±0.06 c | |
60 | T250 | 0.53±0.01 d | 3.24±0.45 a | 3.78±0.03 b | 5.68±0.01 a | 2.35±0.11 d | 2.56±0.23 cd |
T300 | 0.58±0.08 cd | 0.45±0.24 d | 1.43±0.16 d | 1.27±0.26 e | 1.56±0.17 e | 3.12±0.01 bc | |
T350 | 0.54±0.07 d | 0.12±0.03 e | 1.23±0.08 d | 1.56±0.23 d | 1.53±0.25 e | 2.98±0.25 c | |
CK | 0.53±0.05 d | 1.23±0.20 c | 2.89±0.27 c | 2.49±0.12 c | 3.96±0.01 b | 15.46±0.18 b | |
90 | T250 | 0.78±0.09 b | 3.89±0.43 a | 4.23±0.22 ab | 5.96±0.11 a | 3.33±0.08 bc | 3.78±0.08 b |
T300 | 0.60±0.01 c | 0.52±0.11 d | 1.56±0.03 d | 1.89±0.21 d | 2.01±0.04 de | 3.42±0.22 b | |
T350 | 0.61±0.11 c | 0.48±0.11 d | 2.68±0.11 c | 2.13±0.09 cd | 2.35±0.04 d | 3.41±0.20 b | |
CK | 0.95±0.07 a | 3.56±0.29 a | 4.98±0.16 a | 5.43±0.15 a | 5.48±0.09 a | 19.20±0.05 a |
表3 不同处理根际土壤酚酸类物质含量 (μg·g-1)
Table 3 Content of phenolic acids in rhizosphere soil under different treatments
移栽后时间 Time after transplanting/d | 处理 Treatment | 对羟基苯甲酸 4-hydroxybenzoic acid | 香草酸 Vanillic acid | 丁香酸 Syringic acid | 4-香豆酸 p-coumaric acid | 阿魏酸 Ferulic acid | 肉桂酸 Cinnamic acid |
---|---|---|---|---|---|---|---|
30 | T250 | — | 2.17±0.50 b | 2.87±0.27 c | 4.79±0.09 b | 1.66±0.19 e | 1.16±0.03 e |
T300 | 0.50±0.01 d | 0.31±0.16 de | 0.20±0.01 e | 0.50±0.22 f | 0.05±0.01 f | 2.38±0.24 d | |
T350 | — | — | 0.14±0.02 e | 0.57±0.06 f | — | 0.59±0.02 f | |
CK | 0.22±0.11 e | — | 1.42±0.09 d | 1.37±0.10 de | 2.85±0.18 cd | 11.31±0.06 c | |
60 | T250 | 0.53±0.01 d | 3.24±0.45 a | 3.78±0.03 b | 5.68±0.01 a | 2.35±0.11 d | 2.56±0.23 cd |
T300 | 0.58±0.08 cd | 0.45±0.24 d | 1.43±0.16 d | 1.27±0.26 e | 1.56±0.17 e | 3.12±0.01 bc | |
T350 | 0.54±0.07 d | 0.12±0.03 e | 1.23±0.08 d | 1.56±0.23 d | 1.53±0.25 e | 2.98±0.25 c | |
CK | 0.53±0.05 d | 1.23±0.20 c | 2.89±0.27 c | 2.49±0.12 c | 3.96±0.01 b | 15.46±0.18 b | |
90 | T250 | 0.78±0.09 b | 3.89±0.43 a | 4.23±0.22 ab | 5.96±0.11 a | 3.33±0.08 bc | 3.78±0.08 b |
T300 | 0.60±0.01 c | 0.52±0.11 d | 1.56±0.03 d | 1.89±0.21 d | 2.01±0.04 de | 3.42±0.22 b | |
T350 | 0.61±0.11 c | 0.48±0.11 d | 2.68±0.11 c | 2.13±0.09 cd | 2.35±0.04 d | 3.41±0.20 b | |
CK | 0.95±0.07 a | 3.56±0.29 a | 4.98±0.16 a | 5.43±0.15 a | 5.48±0.09 a | 19.20±0.05 a |
移栽后时间 Time after transplanting/d | 处理 Treatment | 真菌Fungi (×107 copies·g-1) | 细菌Bacteria (×109 copies·g-1) | 真菌/细菌 Fungi/bacteria |
---|---|---|---|---|
30 | T250 | 1.37±0.02 e | 0.75±0.04 e | 0.018 3 |
T300 | 2.15±0.04 c | 2.23±0.35 a | 0.009 6 | |
T350 | 2.08±0.03 c | 1.60±0.23 c | 0.013 0 | |
CK | 1.44±0.05 e | 1.60±0.01 c | 0.009 0 | |
60 | T250 | 8.89±0.46 b | 1.86±0.25 b | 0.047 8 |
T300 | 12.84±0.89 a | 2.53±0.43 a | 0.050 8 | |
T350 | 13.80±0.21 a | 1.10±0.41 d | 0.125 4 | |
CK | 7.09±0.04 b | 0.76±0.05 e | 0.093 2 | |
90 | T250 | 1.49±0.02 e | 0.26±0.02 f | 0.057 3 |
T300 | 1.33±0.06 e | 0.19±0.07 g | 0.070 0 | |
T350 | 1.71±0.05 d | 0.24±0.05 f | 0.071 3 | |
CK | 1.25±0.03 f | 0.22±0.02 fg | 0.056 8 |
表4 不同处理根际土壤微生物数量
Table 4 Microbes in rhizosphere soil of different treatments
移栽后时间 Time after transplanting/d | 处理 Treatment | 真菌Fungi (×107 copies·g-1) | 细菌Bacteria (×109 copies·g-1) | 真菌/细菌 Fungi/bacteria |
---|---|---|---|---|
30 | T250 | 1.37±0.02 e | 0.75±0.04 e | 0.018 3 |
T300 | 2.15±0.04 c | 2.23±0.35 a | 0.009 6 | |
T350 | 2.08±0.03 c | 1.60±0.23 c | 0.013 0 | |
CK | 1.44±0.05 e | 1.60±0.01 c | 0.009 0 | |
60 | T250 | 8.89±0.46 b | 1.86±0.25 b | 0.047 8 |
T300 | 12.84±0.89 a | 2.53±0.43 a | 0.050 8 | |
T350 | 13.80±0.21 a | 1.10±0.41 d | 0.125 4 | |
CK | 7.09±0.04 b | 0.76±0.05 e | 0.093 2 | |
90 | T250 | 1.49±0.02 e | 0.26±0.02 f | 0.057 3 |
T300 | 1.33±0.06 e | 0.19±0.07 g | 0.070 0 | |
T350 | 1.71±0.05 d | 0.24±0.05 f | 0.071 3 | |
CK | 1.25±0.03 f | 0.22±0.02 fg | 0.056 8 |
1 | STANTON J M, O'BRIEN P C, SCHIPKE L G, et al.. Species of root-knot nematodes (Meloidogyne spp.) affecting obacco in north Queensland, including two new host races of M. arenaria [J]. Aus. Plant Pathol., 1992, 21(4):150-157. |
2 | HUANG K, JIANG Q P, LIU L H, et al.. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes [J/OL]. AMB Express, 2020, 10(1):72 [2022-09-05]. . |
3 | 张涵, 焦永吉, 赵世民, 等. 利用生态炭肥修复土壤防治烟草根结线虫病与黑胫病[J]. 烟草科技, 2016, 49(6): 30-35. |
ZHANG H, JIAO Y J, ZHAO S M, et al.. Effects of eco-biochar fertilizer on soil renovating and control of tobacco root-knot nematode and black shank [J]. Tob. Sci. Technol., 2016, 49(6):30-35. | |
4 | 朱贤朝, 王彦亭, 王智发. 中国烟草病害[M]. 北京: 中国农业出版社, 2002: 1-350. |
5 | 邱雪柏. 烟草根结线虫生物防治研究进展[J]. 贵州农业科学, 2010, 38(7): 121-124. |
QIU X B. Research progress on biological control of tobacco root-knot nematode [J]. Guizhou Agric. Sci., 2010, 38(7):121-124. | |
6 | 陈泽斌, 夏振远, 徐胜光, 等. 烟草抗根结线虫内生细菌的筛选及防效研究[J], 中国烟草学报, 2015, 21(6): 71-75. |
CHEN Z B, XIA Z Y, XU S G, et al.. Gscreening of tobacco endophytic bacteria resistant to Meloidogyne spp. and itscontrol effect [J]. Acta Tab. Sin., 2015, 21(6): 71-75. | |
7 | 孙曙华, 周黎, 夏振远, 等. 微生物制剂灭线宁防治烟草根结线虫病的研究与应用[J]. 中国烟草学报, 2002, 8(1): 30-33. |
SUN S H, ZHOU L, XIA Z Y, et al.. Study of microorganic nematicide to control tobacco root-knot nematodes [J]. Acta Tab. Sin., 2002, 8(1): 30-33. | |
8 | 杨树军, 雷丽萍, 祝明亮, 等. 烟草根结线虫生物防治方法应用研究[J]. 西南农业学报, 2004, 17(): 151-154. |
YANG S J, LEI L P, ZHU M L, et al.. Screening of the parasitical fungi of root knot nematode in tobacco [J]. Southwest China J. Agric. Sci., 2004, 17(S1): 151-154. | |
9 | 杨友才, 黄晓辉, 龚理, 等. 烟草内生菌对烟草根结线虫病的防治效果[J]. 生态学杂志, 2009, 28(11): 2269-2272. |
YANG Y C, HUANG X H, GONG L, et al.. Controlling effect of tobacco endophyte against tobacco root-knot nematode disease [J]. Chin. J. Ecol., 2009, 28(11): 2269-2272. | |
10 | 郝丽霞, 程智慧, 孟焕文, 等. 设施番茄套作大蒜的生物和生态效应[J]. 生态学报, 2010, 30(19): 5316-5326. |
HAO L X, CHENG Z H, MENG H W, et al.. Biological and ecological effect of interplanting tomato [J]. Acta Ecol. Sin., 2010, 30(19): 5316-5326. | |
11 | 陈敏, 杜相革. 生物炭对土壤特性及烟草产量和品质的影响[J]. 中国土壤与肥料, 2015(1): 80-83. |
CHEN M, DU X G. Effect of biochar on soil properties and yield and quality of tobacco [J]. Soil Fert. Sci. China, 2015(1): 80-83. | |
12 | 万惠霞, 冯小虎, 张文梅, 等. 生态炭肥防治烟草青枯病及其土壤微生态学机理分析[J]. 江西农业学报, 2015, 27(6): 92-97. |
WAN H X, FENG X H, ZHANG W M, et al.. Control effect of eco-biochar on tobacco bacterial wilt and its soi microecological mechanism [J]. Acta Agric. Jiangxi, 2015, 27(6): 92-97. | |
13 | 刘欢欢, 董宁禹, 柴升, 等. 生态炭肥防控小麦根腐病效果及对土壤健康修复机理分析[J]. 植物保护学报, 2015, 42(4): 504-509. |
LIU H H, DONG N Y, CHAI S, et al.. Effects of eco-char on controlling wheat root-rot and the mechanism of renovating soil health [J]. J. Plant Prot., 2015, 42(4): 504-509. | |
14 | ZWIETEN L V, KIMBER S, MORRIS S, et al.. Efects of bio-char from slow pyrolysis of papermill waste on agronomic per-form ance and soil fertility [J]. Plant Soil, 2010, 327: 235-246. |
15 | KIMETU J M, LEHMANN J. Stability and stabilisation of biochar and green manure in soil with diferent organic carbon contents [J]. Aus. J. Soil Res., 2010, 48(7): 577-585. |
16 | LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-a review [J]. Mitig. Adap. Strateg. Global Change, 2006, 11: 403-427. |
17 | STEINER C, GLASER B, TEIXEIRA W G, et al.. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferrasol amended with compost and charcoal [J]. J. Plant Nutr. Soil Sci., 2008, 171(6): 893-899. |
18 | CHAN K Y, VAN Z L, MESZAROS I, et al.. Agronomic values of green waste biochar as a soil amendment [J]. Aus. J. Soil Res., 2007, 45(8): 629-634. |
19 | 邓万刚, 吴鹏豹, 赵庆辉, 等. 低量生物质炭对2种热带牧草产量和品质的影响研究初报[J]. 草地学报, 2010, 18(6): 844-853. |
DENG W G, WU P B, ZHAO Q H, et al.. The effect of biochar on grass yield and quality [J]. Acta Agrestia Sin., 2010, 18 (6): 844-853. | |
20 | 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293. |
QU J J, ZHENG J W, ZHENG J F, et al.. Effects of wheat-straw-based biochar on yield of rice and nitrogen use efficiency of late rice [J]. J. Ecol. Rural Environ., 2012, 28(3): 288-293. | |
21 | 孙大荃, 孟军, 张伟明, 等. 生物炭对棕壤大豆根际微生物的影响[J]. 沈阳农业大学学报, 2011, 42(5): 521-526. |
SUN D Q, MENG J, ZHANG W M, et al.. Effect of biochar on soybean rhizosphere microbes from brown earth soil [J]. J. Shenyang Agric. Univ., 2011, 42(5): 521-526. | |
22 | 黄超, 刘丽君, 章明奎. 生物质炭对红壤性质和黑麦草生长的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 439-445. |
HUANG C, LIU L J, ZHANG M K. Effects of biochar on properties of red soil and ryegrass growth [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2011, 37(4): 439-445. | |
23 | 万杰, 李志芳, 张庆忠, 等. 生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J]. 农业环境科学学报, 2011, 30(10): 1946-1952. |
WANG J, LI Z F, ZHANG Q Z, et al.. Impacts of biochar and nitrogen fertilizer on spinach yield and tissue nitrate content from a pot experiment [J]. J. Agro-Environ. Sci., 2011, 30(10): 1946-1952. | |
24 | 张晗芝, 黄云, 刘钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010, 19(11): 2713-2717. |
ZHANG H Z, HUANG Y, LIU G, et al.. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage [J]. Ecol. Environ. Sci., 2010, 19(11): 2713-2717. | |
25 | HUANG W, JI H, GHEYSEN G, et al.. Biochar-amended pottingmedium reduces the susceptibility of rice to root-knot nematode infections [J]. BMC Plant Biol., 2015, 15(1): 1-15. |
26 | 陈威, 胡学玉, 张阳阳, 等. 番茄根区土壤线虫群落变化对生物炭输入的响应[J]. 生态环境学报, 2015, 24(6): 998-1003. |
CHEN W, HU X Y, ZHANG Y Y, et al.. Rsponse of nematode community in tomato rhizosphere soil to biochar input [J]. Ecol. Environ. Sci., 2015, 24(6): 998-1003. | |
27 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 烟草病虫害分级及调查方法:GB∕T 23222—2008 [S]. 北京: 中国标准出版社, 2008. |
28 | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 1-495. |
29 | 关松荫.土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 1-512. |
30 | 荣思川, 师尚礼, 孙灿灿. 苜蓿植株及根际土壤中主要酚酸和香豆素物质含量测定[J]. 土壤, 2016, 48(5): 931-938. |
RONG S C, SHI S L, SUN C C. Determination of coumarins and major phenolic acids in plant and rhizosphere soil of alfalfa (Medicago sativa L.) [J]. Soils, 2016, 48(5): 931-938. | |
31 | 路怡青, 朱安宁, 张佳宝, 等. 免耕和秸秆还田对潮土酶活性及微生物量碳氮的影响[J]. 土壤, 2013, 45(5): 894-898. |
LU Y Q, ZHU A N, ZHANG J B, et al.. Effects of no-tillage and straw-return on soil enzyme activities and microbial biomass [J]. Soils, 2013, 45(5):894-898. | |
32 | 李锐, 刘瑜, 褚贵新. 不同种植方式对绿洲农田土壤酶活性与微生物多样性的影响[J]. 应用生态学报, 2015, 26(2): 490-496. |
LI R, LIU Y, CHU G X. Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland [J]. Chin. J. Appl. Ecol., 2015, 26(2): 490-496. | |
33 | 李贺勤, 刘奇志, 张林林, 等. 草莓连作土壤酚酸类物质积累对土壤线虫的影响[J]. 生态学杂志, 2014, 33(1): 169-175. |
LI H Q, LIU Q Z, ZHANG L L, et al.. Accumulation of phenolic acids in the monocultured strawberry soils and their effect on soil nematodes [J]. Chin. J. Ecol., 2014, 33(1): 169-175. |
[1] | 王潇然, 李笑语, 孙慧, 于海东, 石永春. 硼胁迫下烟草叶片转录组分析[J]. 中国农业科技导报, 2023, 25(8): 53-64. |
[2] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[3] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[4] | 赵曾强, 张国丽, 马盼盼, 李有忠, 王志军, 谢宗铭, 孙国清. 海岛棉类受体胞质激酶基因GbRLCK10在抗病中的作用[J]. 中国农业科技导报, 2023, 25(3): 57-65. |
[5] | 罗鑫, 吴跃开, 张念念, 许杰, 杨再华. 油茶根际土壤真菌群落组成及多样性分析[J]. 中国农业科技导报, 2023, 25(2): 199-210. |
[6] | 杨学瑾, 周媛媛, 彭欣怡, 刘建凤, 张爱民, 井爱芹, 赵钢勇, 曹丹丹. 根结线虫危害与健康黄瓜根际土壤微生物群落结构差异分析[J]. 中国农业科技导报, 2023, 25(1): 109-118. |
[7] | 张豫丹, 王卫民, 倪博, 马晓寒, 李俊领, 许自成, 贾玮, 史久长. 烟草秸秆绿原酸提取工艺优化及其抑菌效果研究[J]. 中国农业科技导报, 2023, 25(1): 119-127. |
[8] | 李洁, 林莹, 徐美玉, 王飞, 徐凌川. 泰山白首乌根际土壤真菌多样性分析[J]. 中国农业科技导报, 2022, 24(6): 70-81. |
[9] | 肖雨沁, 雷晓, 张明金, 张远盖, 唐珊, 姬鸿飞, 王川, 马翠玲, 景延秋. 三种芽孢杆菌菌剂对烤烟育苗效果的影响[J]. 中国农业科技导报, 2022, 24(5): 85-92. |
[10] | 刘利佳, 徐志强, 何佳, 丁永乐, 孙聚涛. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91-105. |
[11] | 张璐翔1,陈思蒙1,郑聪2,金伊楠1,韩艺3,许自成1,黄五星1,邵惠芳1*. 脱驯化时长对烟草幼苗抗旱性的影响[J]. 中国农业科技导报, 2021, 23(2): 57-64. |
[12] | 罗勇1,焦桂珍1,刘胜波2*,魏跃伟1,邵惠芳1,贾宏昉1*. 不同浓度镉对烟草幼苗生长发育及生长素相关基因表达的影响[J]. 中国农业科技导报, 2021, 23(1): 58-65. |
[13] | 张嘉雯,卢绍浩,赵喆,赵铭钦*. 外源褪黑素对低温胁迫下烟草幼苗生理指标的影响[J]. 中国农业科技导报, 2020, 22(9): 78-86. |
[14] | 赵虎1,2,王海斌2,3*,陈晓婷2,3,王裕华2,张华彬2,丁力2,孔祥海2,师桂英1*. 茶树根际土壤氮素组成及其吸收利用效率分析[J]. 中国农业科技导报, 2020, 22(7): 148-153. |
[15] | 赵兴丽1,陶刚2,3*,娄璇4,顾金刚5*. 钩状木霉在辣椒根际定殖动态及其对辣椒疫病的生物防治[J]. 中国农业科技导报, 2020, 22(5): 106-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||