中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (1): 61-71.DOI: 10.13304/j.nykjdb.2023.0185
段松江1(), 胡浩然1, 张承洁1, 孙伟1, 吴一帆1, 郭仁松2, 张巨松1(
)
收稿日期:
2023-03-13
接受日期:
2023-05-29
出版日期:
2025-01-15
发布日期:
2025-01-21
通讯作者:
张巨松
作者简介:
段松江 E-mail:1578442341@qq.com;
基金资助:
Songjiang DUAN1(), Haoran HU1, Chengjie ZHANG1, Wei SUN1, Yifan WU1, Rensong GUO2, Jusong ZHANG1(
)
Received:
2023-03-13
Accepted:
2023-05-29
Online:
2025-01-15
Published:
2025-01-21
Contact:
Jusong ZHANG
摘要:
为研究和不同氮效率海岛棉品种在不同氮肥水平下叶面积及光合荧光特性的差异,以氮高效品种棉城10号(MC10)和氮低效品种新海14号(XH14)为供试材料,分别设置0(N0)、320(N1)、480 kg·hm-2(N2)3个施氮处理,研究不同氮效率海岛棉品种的单株叶面积、光合荧光特性、产量构成及其对氮肥的响应特性。结果表明,施氮能显著提高海岛棉单株叶面积、净光合速率(net photosynthetic rate,Pn)、气孔导度(stomatal conductance,Gs),品种间表现为MC10大于XH14,在不同施氮量下分别提高7.5%~22.4%、14.5%~38.0%、32.4%~111.1%。2个品种的相对可变荧光曲线(ΔVt)在K点出现较大波动,表现为N2、N0处理显著高于N1处理;品种间表现为N0处理下XH14低于MC10,N1与N2处理下XH14高于MC10。2个品种可变荧光FK占FJ-FO振幅的比例(Wk)、在J时的相对可变荧光强度(VJ)与OJIP荧光诱导曲线初始斜率(Mo)均表现为N2>N0>N1,N0、N2处理相较于N1处理降幅表现为MC10>XH14,而光系统Ⅱ(PSⅡ)中最大光化学效率(φPo)、向下游电子传递链传递电子的能力(ψo)和用于电子传递的量子产额(φEo)则表现出相反的规律。最大光合量子效率(Fv/Fm)、潜在光化学活性(Fv/Fo)、以吸收光能为基础的性能指数(PIABS)和从PSⅡ吸收的光子到PSⅠ末端受体减少的能量守恒潜在的性能指数(PItotal)均表现为随施氮量的增加先升后降,且MC10均大于XH14。2个品种均在N2条件下Fv/Fm、Fv/Fo、PIABS、PItotal最低,其中XH14降幅较大。施氮可以显著提高海岛棉单株结铃数、单铃重与产量,MC10的单株结铃数、单铃重、籽棉产量较XH14分别增加16.9%~33.8%、3.3%~7.7%、19.4%~41.7%。综上所述,不施氮或高氮处理均会在不同程度上造成海岛棉叶片PSⅡ损伤,降低其光合性能,并表现出较强的品种间差异。以上结果可为氮高效品种筛选与培育提供理论依据。
中图分类号:
段松江, 胡浩然, 张承洁, 孙伟, 吴一帆, 郭仁松, 张巨松. 不同基因型海岛棉的氮效率差异及其对光合特性和产量的影响[J]. 中国农业科技导报, 2025, 27(1): 61-71.
Songjiang DUAN, Haoran HU, Chengjie ZHANG, Wei SUN, Yifan WU, Rensong GUO, Jusong ZHANG. Differences in Nitrogen Efficiency of Different Genotypes of Island Cotton and Their Effects on Photosynthetic Characteristics and Yield[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 61-71.
土层 Soil layer/cm | 全氮 Total nitrogen/ (g·kg-1) | 有机质 Organic matter/ (g·kg-1) | 碱解氮 Alkaline hydrolyzable nitrogen/(mg·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
0—10 | 0.3 | 4.6 | 13.8 | 9.1 | 53.9 | 8.6 |
10—20 | 0.6 | 9.8 | 25.3 | 25.4 | 97.7 | 8.8 |
20—30 | 0.7 | 11.2 | 47.6 | 40.2 | 130.8 | 8.4 |
30—40 | 0.5 | 8.3 | 30.2 | 13.1 | 91.9 | 8.5 |
40—50 | 0.4 | 8.6 | 23.7 | 10.2 | 106.1 | 8.6 |
50—60 | 0.7 | 9.5 | 35.7 | 30.2 | 116.7 | 8.7 |
60—70 | 0.7 | 8.9 | 26.8 | 17.0 | 110.6 | 8.9 |
70—80 | 0.3 | 6.3 | 10.9 | 13.0 | 101.5 | 8.5 |
表1 土壤基础肥力
Table 1 Soil base fertility
土层 Soil layer/cm | 全氮 Total nitrogen/ (g·kg-1) | 有机质 Organic matter/ (g·kg-1) | 碱解氮 Alkaline hydrolyzable nitrogen/(mg·kg-1) | 速效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) | pH |
---|---|---|---|---|---|---|
0—10 | 0.3 | 4.6 | 13.8 | 9.1 | 53.9 | 8.6 |
10—20 | 0.6 | 9.8 | 25.3 | 25.4 | 97.7 | 8.8 |
20—30 | 0.7 | 11.2 | 47.6 | 40.2 | 130.8 | 8.4 |
30—40 | 0.5 | 8.3 | 30.2 | 13.1 | 91.9 | 8.5 |
40—50 | 0.4 | 8.6 | 23.7 | 10.2 | 106.1 | 8.6 |
50—60 | 0.7 | 9.5 | 35.7 | 30.2 | 116.7 | 8.7 |
60—70 | 0.7 | 8.9 | 26.8 | 17.0 | 110.6 | 8.9 |
70—80 | 0.3 | 6.3 | 10.9 | 13.0 | 101.5 | 8.5 |
图2 不同基因型海岛棉的单株叶面积注:不同小写字母表示在P<0.05水平差异显著。
Fig. 2 Leaf area per plant of island cottons with different genotypesNote:Different lowercase letters indicate significant differences at P<0.05 level.
图4 不同基因型海岛棉花铃期叶片的OJIP荧光瞬态变化与供体侧变化
Fig. 4 OJIP fluorescence transient changes and donor side changes of leaves of island cottons with different genotypes at boll stage
图5 不同基因型海岛棉Wk值的基因型差异注:*和**表示在P<0.05和P<0.01水平差异显著;ns表示不显著。
Fig. 5 Genotypic differences in Wk values of island cottons with different genotypesNote: * and ** indicate significant differences at the P<0.05 and P<0.01 levels, respectively; ns indicates no significant.
品种Variety | 处理Treatment | VJ | Mo | φPo | ψo | φEo |
---|---|---|---|---|---|---|
XH14 | N0 | 0.50±0.04 bc | 0.76±0.1 ab | 0.75±0.01 abc | 0.50±0.04 ab | 0.38±0.04 abc |
N1 | 0.38±0.03 c | 0.54±0.07 b | 0.79±0.04 ab | 0.62±0.03 a | 0.49±0.04 ab | |
N2 | 0.65±0.11 a | 1.04±0.32 a | 0.68±0.08 c | 0.35±0.11 c | 0.24±0.11 c | |
MC10 | N0 | 0.53±0.06 ab | 0.79±0.11 ab | 0.75±0.03 abc | 0.47±0.06 bc | 0.35±0.06 bc |
N1 | 0.37±0.05 c | 0.52±0.05 b | 0.80±0.01 a | 0.63±0.05 a | 0.51±0.04 a | |
N2 | 0.66±0.09 a | 1.05±0.17 a | 0.71±0.03 bc | 0.34±0.09 c | 0.24±0.08 c | |
品种Variety | ns | ns | ns | ns | ns | |
氮肥Nitrogen fertilizer | ** | ** | ** | ** | ** | |
品种×氮肥Variety×nitrogen fertilizer | ns | ns | ns | ns | ns |
表2 不同基因型海岛棉花铃期叶片光合系统受体侧变化
Table 2 Receptor-side changes in photosynthetic system of leaves of island cottons with different genotypes at the cotton boll period
品种Variety | 处理Treatment | VJ | Mo | φPo | ψo | φEo |
---|---|---|---|---|---|---|
XH14 | N0 | 0.50±0.04 bc | 0.76±0.1 ab | 0.75±0.01 abc | 0.50±0.04 ab | 0.38±0.04 abc |
N1 | 0.38±0.03 c | 0.54±0.07 b | 0.79±0.04 ab | 0.62±0.03 a | 0.49±0.04 ab | |
N2 | 0.65±0.11 a | 1.04±0.32 a | 0.68±0.08 c | 0.35±0.11 c | 0.24±0.11 c | |
MC10 | N0 | 0.53±0.06 ab | 0.79±0.11 ab | 0.75±0.03 abc | 0.47±0.06 bc | 0.35±0.06 bc |
N1 | 0.37±0.05 c | 0.52±0.05 b | 0.80±0.01 a | 0.63±0.05 a | 0.51±0.04 a | |
N2 | 0.66±0.09 a | 1.05±0.17 a | 0.71±0.03 bc | 0.34±0.09 c | 0.24±0.08 c | |
品种Variety | ns | ns | ns | ns | ns | |
氮肥Nitrogen fertilizer | ** | ** | ** | ** | ** | |
品种×氮肥Variety×nitrogen fertilizer | ns | ns | ns | ns | ns |
图6 不同基因型海岛棉花铃期叶片荧光参数与光化学性能指标注:不同小写字母表示同一品种不同处理间在P<0.05水平差异显著。
Fig. 6 Leaf fluorescence parameters and photochemical performance indexes of island cottons with different genotypes at boll stageNote: Different lowercase letters indicate significant differences between different treatments of same variety at P<0.05 level.
品种 Variety | 处理 Treatment | 株数/(×104 株·hm-2) Number of plants (×104 plant·hm-2) | 单株结铃数Boll number per plant | 单铃重 Boll weight/g | 衣分 Lint percentage/% | 籽棉产量 Seed cotton yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
XH14 | N0 | 21.3±1.0 a | 7.1±0.04 bc | 2.6±0.15 c | 33.7±0.005 a | 3 983.4±95.2 d |
N1 | 21.3±0.8 a | 7.4±0.24 c | 3.0±0.14 ab | 31.7±0.003 a | 4 896.9±141.4 c | |
N2 | 21.0±0.5 a | 9.0±1.16 ab | 3.1±0.05 ab | 32.7±0.010 a | 4 735.4±783.7 c | |
MC10 | N0 | 21.2±0.5 a | 7.7 ±0.77 bc | 3.0±0.22 ab | 32.0±0.001 a | 4 883.2±74.7 c |
N1 | 21.0±0.8 a | 8.4±0.25 bc | 2.8±0.08 bc | 33.3±0.031 a | 5 847.7±345.3 b | |
N2 | 21.1±0.4 a | 9.9±0.25 a | 3.2±0.07 a | 31.7±0.005 a | 6 711.9±183.2 a | |
品种Variety | ns | ** | * | ns | ** | |
氮肥Nitrogen fertilizer | ns | ns | ** | ns | ** | |
品种×氮肥Variety×nitrogen fertilizer | ns | ns | ns | ns | ** |
表3 不同基因型海岛棉产量及产量构成
Table 3 Yield and yield components of island cottons with different genotypes
品种 Variety | 处理 Treatment | 株数/(×104 株·hm-2) Number of plants (×104 plant·hm-2) | 单株结铃数Boll number per plant | 单铃重 Boll weight/g | 衣分 Lint percentage/% | 籽棉产量 Seed cotton yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
XH14 | N0 | 21.3±1.0 a | 7.1±0.04 bc | 2.6±0.15 c | 33.7±0.005 a | 3 983.4±95.2 d |
N1 | 21.3±0.8 a | 7.4±0.24 c | 3.0±0.14 ab | 31.7±0.003 a | 4 896.9±141.4 c | |
N2 | 21.0±0.5 a | 9.0±1.16 ab | 3.1±0.05 ab | 32.7±0.010 a | 4 735.4±783.7 c | |
MC10 | N0 | 21.2±0.5 a | 7.7 ±0.77 bc | 3.0±0.22 ab | 32.0±0.001 a | 4 883.2±74.7 c |
N1 | 21.0±0.8 a | 8.4±0.25 bc | 2.8±0.08 bc | 33.3±0.031 a | 5 847.7±345.3 b | |
N2 | 21.1±0.4 a | 9.9±0.25 a | 3.2±0.07 a | 31.7±0.005 a | 6 711.9±183.2 a | |
品种Variety | ns | ** | * | ns | ** | |
氮肥Nitrogen fertilizer | ns | ns | ** | ns | ** | |
品种×氮肥Variety×nitrogen fertilizer | ns | ns | ns | ns | ** |
1 | 郑子漂,徐海江,林涛,等.新疆长绒棉育成品种演变趋势及综合评价[J].中国农业大学学报,2022,27(6):55-70. |
ZHENG Z P, XU H J, LIN T, et al.. Evolution trend and comprehensive evaluation of Xinjiang long-staple cotton cultivars [J]. J. China Agric. Univ., 2022, 27(6):55-70. | |
2 | 李晨阳,孔祥强,董合忠.植物吸收转运硝态氮及其信号调控研究进展[J].核农学报,2020,34(5):982-993. |
LI C Y, KONG X Q, DONG H Z, et al.. Nitrate uptake, transport and signaling regulation pathways [J]. J. Nucl. Agric. Sci., 2020, 34(5):982-993. | |
3 | 吕钊彦.不同行管比滴灌模式对新疆春小麦产量及品质行间差异形成的影响及其生理机理[D].南京:南京农业大学,2017. |
LYU Z Y. Effects of different row-tube drip irrigation patterns on yield and quality differences in spring wheat in Xinjiang and their physiological mechanisms [D]. Nanjing: Nanjing Agricultural University, 2017. | |
4 | SHAH A N, YANG G, TANVEER M, et al.. Leaf gas exchange, source-sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density [J/OL]. Acta Physiologiae Plantarum, 2017, 39(5):119 [2023-02-20]. . |
5 | 刘瑞显,王友华,陈兵林,等.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报,2008,34(4): 675-683. |
LIU R X, WANG Y H, CHEN B L, et al.. Effects of nitrogen levels on photosynthesis and chlorophyll fluores-cence characteristics under drought stress in cotton flowering and boll-forming stage [J]. Acta Agron. Sin., 2008,34(4):675-683. | |
6 | PENG J, FENG Y, WANG X, et al.. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations [J]. Sci. Rep., 2021, 11(1):1-10. |
7 | 娄善伟,张巨松,罗新宁,等.施氮水平对棉花农艺性状、倒四叶光合特性及产量的影响[J].新疆农业大学学报,2009,32(1):39-42. |
LOU S W, ZHANG J S, LUO X N, et al.. Influence of nitrogenous fertilizer level on agronomic characters, fourth leaf from top photosynthetic characteristics and yield of cotton [J]. J. Xinjiang Agric. Univ., 2009, 32(1):39-42. | |
8 | 李强,罗延宏,余东海,等.低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响[J].植物营养与肥料学报,2015,21(5):1132-1141. |
LI Q, LUO Y H, YU D H, et al.. Effects of low nitrogen stress on photosynthetic characteristics and chlorophyll fluorescence parameters of maize cultivars tolerant to low nitrogen stress at the seedling stage [J]. Plant Nutr. Fert. Sci., 2015, 21(5):1132-1141. | |
9 | 石洪亮,严青青,张巨松,等.氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J].作物学报,2018,44(8):1196-1204. |
SHI H L, YAN Q Q, ZHANG J S, et al.. Compensation effect of nitrogen fertilizer on photosynthetic characteristics and yield during cotton flowering boll-setting stage under non-sufficient drip irrigation [J]. Acta Agron. Sin., 2018, 44(8):1196-1204. | |
10 | LONG J R, WAN Y Z, SONG C F, et al.. Effects of nitrogen fertilizer level on chlorophyll fluorescence characteristics in flag leaf of super hybrid rice at late growth stage [J]. Rice Sci., 2013, 20(3):220-228. |
11 | 牛静.棉花氮高效利用的生理机制及施肥效应[D].武汉:华中农业大学,2021. |
NIU J. Physiological mechanisms of nitrogen efficient utilization of cotton (G . hirsutum L.) and fertilization effects [D]. Wuhan: Huazhong Agricultural University, 2021. | |
12 | 丁永刚,汤小庆,梁鹏,等.减氮对不同氮效率小麦品种花后光合物质生产力和产量的影响[J].麦类作物学报,2021,41(4):490-498. |
DING Y G, TANG X Q, LIANG P, et al.. Effect of reduced nitrogen application on post-anthesis photosynthetic production and grain yield of wheat cultivars with various nitrogen use efficiency [J]. J. Triticeae Crops., 2021, 41(4):490-498. | |
13 | 尹晓明,李辰.不同氮效率水稻品种叶片光合作用及氮利用特征的差异分析[J].作物杂志,2019(1):90-96. |
YIN X M, LI C. Differences in leaf photosynthesis and assimilation of nitrogen between two rice cultivars differing in nitrogen use efficiency [J]. Crops, 2019(1):90-96. | |
14 | 张盼盼,张桂堂,黄璐,等.氮肥减施下不同基因型玉米氮效率差异及生理特性研究[J].河南农业科学,2021,50(5):13-23. |
ZHANG P P, ZHANG G T, HUANG L, et al.. Nitrogen efficiency and physiological characters of different maize genotypes under nitrogen fertilization reduction [J]. J. Henan Agric. Sci., 2021, 50(5):13-23. | |
15 | 夏小云.不同氮效率小麦品种光合及氮代谢差异[D].南京:南京农业大学,2019. |
XIA X Y. Differences in photosynthesis and nitrogen metabolism of wheat varieties with different nitrogen efficiency [D]. Nanjing: Nanjing Agricultural University, 2019. | |
16 | IQBAL A, JING N, QIANG D, et al.. Genotypic variation in carbon and nitrogen metabolism in the cotton subtending leaves and seed cotton yield under various nitrogen levels [J]. J. Sci. Food Agric., 2022, 103(5):2602-2617. |
17 | 王芳,李春梅,马云珍,等.连续定位不同施氮水平对棉花光合特性及产量的影响[J].南京农业大学学报,2022,45(1):18-26. |
WANG F, LI C M, MA Y Z, et al.. Effect of continuous positioning of different nitrogen application levels on photosynthetic characteristics and yield of cotton [J]. J. Nanjing Agric. Univ., 2022, 45(1):18-26. | |
18 | 李鹏民,高辉远, STRASSER J R.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005,31(6):559-566. |
LI P M, GAO H Y, STRASSER J R. Application of rapid chlorophyll fluorescence induced kinetic analysis in photosynthesis research [J]. J. Plant Physiol. Mol. Biol., 2005,31(6): 559-566. | |
19 | STRASSER R, SRIVASTAVA A, TSIMILLI-MICHAEl M. The fluorescence transient as a tool to characterize and screen photosynthetic samples [J]. Probing Photosynthesis, 2000, 25(2):445-483. |
20 | 窦巧巧,张巨松,何庆雨,等.花铃期减量滴灌对北疆棉花光合特性及产量的影响[J].干旱地区农业研究,2021,39(3):51-58. |
DOU Q Q, ZHANG J S, HE Q Y, et al.. Effect of reduced drip irrigation on photosynthetic characteristics and yield of cotton during flowering and bollstagein in Northern Xinjiang [J]. Agric. Res. Arid Areas, 2021, 39(3):51-58. | |
21 | 张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898. |
ZHANG W F, GOU L, WANG Z L, et al.. Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding cotton in Xinjiang [J]. Sci. Agric. Sin., 2003,36(8):893-898. | |
22 | STIRBET A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem Ⅱ: basics and applications of the OJIP fluorescence transient [J]. J. Photochem. Photobiol., 2011, 104(1-2):236-257. |
23 | FURBANK R T, SHARWOOD R, ESTAVILLO G M, et al.. Photons to food: genetic improvement of cereal crop photosynthesis [J]. J. Exp. Bot., 2020, 71(7):2226-2238. |
24 | 王燕,王树林,韩硕,等.机采棉模式下氮肥用量对棉花株型结构塑造和产量的影响[J].新疆农业科学,2021,58(9):1642-1647. |
WANG Y, WANG S L, HAN S,et al.. Effect of nitrogen application rates on plant architecture and yield of cotton production with machine picking in Hebei [J]. Xinjiang Agric. Sci., 2021, 58(9):1642-1647. | |
25 | IQBAL A, DONG Q, WANG X, et al.. Variations in nitrogen metabolism are closely linked with nitrogen uptake and utilization efficiency in cotton genotypes under various nitrogen supplies [J/OL]. Plants, 2020, 9(2):250 [2023-02-20]. . |
26 | DAI J L, LI W J, TANG W, et al.. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management [J]. Field Crops Res., 2015, 180(8):207-215. |
27 | 孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响[J].河北农业大学学报,2005,28(6):9-14. |
SUN H C, LI C D, ZHOU Y Z. Effects of different levels of nitrogen on physiological characteristics of function leaf and plant traits and yield components of cotton [J]. J. Hebei Agric.Univ., 2005,28(6):9-14. | |
28 | 娄善伟,阿斯卡尔·卡地尔,李杰,等.不同氮效棉花品种植株农艺性状、氮素积累及光合特性差异[J].新疆农业科学,2019,56(12):2219-2227. |
LOU S W, Kadier Asikaer, LI J, et al.. The differences in plant agronomic traits, nitrogen accumulation and photosynthetic characteristics of cotton varieties with different nitrogen efficiency [J]. Xinjiang Agric. Sci., 2019, 56(12):2219-2227. | |
29 | TAYLARAN R D, ADACH S, OOKAWA T, et al.. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan [J]. J. Exp. Bot., 2011, 62(11):4067-4077. |
30 | 张旭.小麦氮素高效利用的基因型差异及形态生理特性[D].南京:南京农业大学,2016. |
ZHANG X. Differences in the basis type and morphological characteristics of the high efficiency of wheat nitrogen [D]. Nanjing: Nanjing Agricultural University, 2016. | |
31 | CHEN Y, XIAO C, WU D, et al.. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency [J]. Eur. J. Agron., 2015, 62:79-89. |
32 | 孙山,王少敏,王家喜,等.黑暗中脱水对‘金太阳’杏离体叶片PSⅠ和PSⅡ功能的影响[J].园艺学报,2008,35(1):1-6. |
SUN S, WANG S M, WANG J X, et al.. Effects of dehydration in the dark on functions of PSⅠ and PSⅡ in apricot (Prunus armeniaca L. ‘Jin Taiyang’) leaves [J]. Acta Hortic. Sin., 2008,35(1):1-6. | |
33 | CUN Z, ZHANG J Y, WU H M, et al.. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng [J]. Photosynth. Res., 2021, 147:283-300. |
34 | STRASSER B J. Measuring fast fluorescence transients to address environmental questions: the JIP test [J/OL]. Photosynthesis, 1995, 1:1142 [2023-02-20]. . |
35 | 王准,张恒恒,董强,等.棉花耐低氮和氮敏感种质筛选及验证[J].棉花学报,2020,32(6):538-551. |
WANG Z, ZHANG H H, DONG Q, et al.. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm [J]. Cott. Sci., 2020, 32(6):538-551. |
[1] | 许祎珂, 李爽, 刘长乐, 寇佩雯, 孙晓春, 黄文静. 不同产地半夏农艺性状及光合生理特性研究[J]. 中国农业科技导报, 2024, 26(5): 77-89. |
[2] | 李忠义, 唐红琴, 董文斌, 韦彩会, 何铁光. 稻秸-紫云英联合还田对水稻光合特性及产量品质的影响[J]. 中国农业科技导报, 2024, 26(2): 171-180. |
[3] | 杨圣艳, 曹漫, 郭宝石, 杨超, 侯智霞. 不同铁环境对蓝莓生长及叶片叶绿素荧光特性的影响[J]. 中国农业科技导报, 2024, 26(1): 52-62. |
[4] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
[5] | 卢倩倩, 阿布都外力·阿不力米提, 侯毅兴, 李志慧, 王爽, 周龙. 复合盐碱胁迫下7个鲜食葡萄品种光合特性研究[J]. 中国农业科技导报, 2023, 25(7): 63-76. |
[6] | 麻仲花, 陈娟, 吴娜, 满本菊, 王晓港, 者永清, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期光合特性与总生物量的影响[J]. 中国农业科技导报, 2023, 25(6): 190-200. |
[7] | 陈琛, 石柯, 朱长伟, 姜桂英, 罗澜, 孟威威, 刘芳, 申凤敏, 刘世亮. 种植密度和施氮量对豫北潮土区小麦光合特性和产量及土壤氮素的影响[J]. 中国农业科技导报, 2023, 25(5): 24-33. |
[8] | 白道宽, 郭宝健, 洪益, 张萌娜, 朱娟, 吕超, 王菲菲, 许如根. 一个大麦黄化突变体的突变机理及其遗传机制研究[J]. 中国农业科技导报, 2023, 25(5): 34-45. |
[9] | 梁培鑫, 唐榕, 刘建国. 混合盐碱胁迫对油莎豆光合生理及产量的影响[J]. 中国农业科技导报, 2023, 25(12): 195-204. |
[10] | 高桐梅, 李丰, 苏小雨, 王东勇, 田媛, 张鹏钰, 李同科, 杨自豪, 卫双玲. 减施氮肥对芝麻农艺性状、光合特性及产量的影响[J]. 中国农业科技导报, 2022, 24(6): 176-188. |
[11] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[12] | 王方玲, 张明月, 周亚茹, 管庆林, 李欣燕, 钟秋, 赵铭钦. 干旱胁迫下TS-PAA保水剂对雪茄烟生长发育和光合特性的影响[J]. 中国农业科技导报, 2022, 24(4): 162-172. |
[13] | 钟鹏, 苗丽丽, 刘杰, 王建丽, 陆海燕, 于洪久, 张楠. 种植密度和方式对油莎豆群体结构和产量的影响[J]. 中国农业科技导报, 2022, 24(3): 186-196. |
[14] | 王志丹, 刘吉利, 吴娜. 粉垄耕作对甜高粱光合生理特性及产量的影响[J]. 中国农业科技导报, 2022, 24(1): 148-156. |
[15] | 苏煜, 黄劭理. 增施生物有机肥对烤烟光合特性及根际土壤微生物的影响[J]. 中国农业科技导报, 2022, 24(1): 164-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||