中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (4): 157-168.DOI: 10.13304/j.nykjdb.2023.0881
• 食品质量 加工储运 • 上一篇
收稿日期:
2023-12-02
接受日期:
2024-05-21
出版日期:
2025-04-15
发布日期:
2025-04-15
作者简介:
翁霞E-mail:441853895@qq.com
基金资助:
Received:
2023-12-02
Accepted:
2024-05-21
Online:
2025-04-15
Published:
2025-04-15
摘要:
以冷冻蓝莓为原料,对超声波辅助热水浸提所得蓝莓多糖水提物进行脱蛋白工艺研究。以多糖保留率、蛋白脱除率以及数据加权平均法构成的综合评分为评价指标,对比吸附法、吸附-盐析法、吸附-木瓜蛋白酶-盐析法、吸附-三氯乙酸-盐析法4种脱蛋白方法对蓝莓多糖水提物脱蛋白的影响;同时在单因素试验的基础上,通过正交试验优化吸附法对蓝莓多糖水提物的脱蛋白工艺条件。结果表明,吸附法脱蛋白效果最佳,最佳工艺条件为脱蛋白温度50 ℃、样液pH 3.0、脱蛋白时间40 min、活性炭用量1.5%,此时蓝莓多糖保留率、蛋白脱除率、综合评分分别为70.22%、87.88%、94.79分。优选的吸附法具有实际可操作性,可有效脱除蓝莓多糖水提物中的蛋白质。研究结果为进一步研究蓝莓多糖的分离纯化、色谱分析、结构鉴定、构效关系和生物活性研发提供数据支持。
中图分类号:
翁霞. 蓝莓多糖水提物脱蛋白工艺研究[J]. 中国农业科技导报, 2025, 27(4): 157-168.
Xia WENG. Study on Deproteinization Process of Blueberry Polysaccharides Water Extract[J]. Journal of Agricultural Science and Technology, 2025, 27(4): 157-168.
水平 Level | 因素Factor | |||
---|---|---|---|---|
A: 样液pH Sample pH | B:脱蛋白温度 Deproteinization temperature/℃ | C:活性炭用量 Activated carbon dosage/% | D:脱蛋白时间 Deproteinization time/min | |
1 | 2.0 | 40 | 1.0 | 30 |
2 | 3.0 | 50 | 1.5 | 40 |
3 | 4.0 | 60 | 2.0 | 50 |
表1 正交试验因素水平
Table 1 Orthogonal experimental factor level
水平 Level | 因素Factor | |||
---|---|---|---|---|
A: 样液pH Sample pH | B:脱蛋白温度 Deproteinization temperature/℃ | C:活性炭用量 Activated carbon dosage/% | D:脱蛋白时间 Deproteinization time/min | |
1 | 2.0 | 40 | 1.0 | 30 |
2 | 3.0 | 50 | 1.5 | 40 |
3 | 4.0 | 60 | 2.0 | 50 |
硫酸铵饱和度 Ammonium sulfate saturation/% | X:多糖保留率 Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分 Comprehensive score |
---|---|---|---|
10 | 78.39±0.09 b | 91.59±0.20 a | 99.85±0.01 a |
20 | 96.75±0.59 a | 80.32±1.04 b | 99.36±0.01 a |
30 | 75.28±0.10 b | 72.60±0.23 c | 99.77±0.01 a |
40 | 92.23±0.23 a | 44.06±0.04 d | 99.88±0.01 a |
50 | 72.28±0.03 b | 40.25±0.04 e | 99.92±0.01 a |
60 | 77.04±0.06 b | 17.10±0.04 f | 99.85±0.01 a |
70 | 79.99±0.09 b | 11.49±0.08 h | 99.57±0.01 a |
80 | 79.17±0.08 b | 6.15±0.06 i | 99.38±0.01 a |
90 | 82.11±0.07 b | 2.19±0.04 j | 99.14±0.01 a |
100 | 71.84±0.13 b | 14.58±0.04 g | 99.84±0.01 a |
表2 不同硫酸铵饱和度下的多糖保留率和蛋白脱除率
Table 2 Polysaccharide retention and protein removal rates at different ammonium sulfate saturations
硫酸铵饱和度 Ammonium sulfate saturation/% | X:多糖保留率 Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分 Comprehensive score |
---|---|---|---|
10 | 78.39±0.09 b | 91.59±0.20 a | 99.85±0.01 a |
20 | 96.75±0.59 a | 80.32±1.04 b | 99.36±0.01 a |
30 | 75.28±0.10 b | 72.60±0.23 c | 99.77±0.01 a |
40 | 92.23±0.23 a | 44.06±0.04 d | 99.88±0.01 a |
50 | 72.28±0.03 b | 40.25±0.04 e | 99.92±0.01 a |
60 | 77.04±0.06 b | 17.10±0.04 f | 99.85±0.01 a |
70 | 79.99±0.09 b | 11.49±0.08 h | 99.57±0.01 a |
80 | 79.17±0.08 b | 6.15±0.06 i | 99.38±0.01 a |
90 | 82.11±0.07 b | 2.19±0.04 j | 99.14±0.01 a |
100 | 71.84±0.13 b | 14.58±0.04 g | 99.84±0.01 a |
脱蛋白方法 Deproteinization method | X:多糖保留率 Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分 Comprehensive score |
---|---|---|---|
吸附法 Adsorption method | 77.59±1.71 b | 88.75±0.19 a | 98.74±0.97 a |
吸附-盐析法 Adsorption-salting out method | 96.51±0.81 a | 11.14±0.16 c | 80.30±0.26 b |
吸附-木瓜蛋白酶-盐析法 Adsorption-papain-salting out method | 72.72±0.79 c | 49.16±0.70 b | 82.07±0.28 b |
吸附-三氯乙酸-盐析法 Adsorption-trichloroacetic acid-salting out method | 18.85±0.14 d | 49.73±0.38 b | 82.65±0.28 b |
表3 不同脱蛋白方法的多糖保留率和蛋白脱除率
Table 3 Polysaccharide retention and protein removal rates for different deproteinization methods
脱蛋白方法 Deproteinization method | X:多糖保留率 Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分 Comprehensive score |
---|---|---|---|
吸附法 Adsorption method | 77.59±1.71 b | 88.75±0.19 a | 98.74±0.97 a |
吸附-盐析法 Adsorption-salting out method | 96.51±0.81 a | 11.14±0.16 c | 80.30±0.26 b |
吸附-木瓜蛋白酶-盐析法 Adsorption-papain-salting out method | 72.72±0.79 c | 49.16±0.70 b | 82.07±0.28 b |
吸附-三氯乙酸-盐析法 Adsorption-trichloroacetic acid-salting out method | 18.85±0.14 d | 49.73±0.38 b | 82.65±0.28 b |
试验号 Experiment number | A:样液pH Sample pH | B:脱蛋白温度Deproteinization temperature/℃ | C:活性炭用量Activated carbon dosage/% | D:脱蛋白时间Deproteinization time/min | X:多糖保留率Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分Comprehensive score |
---|---|---|---|---|---|---|---|
1 | 2.0 | 40 | 1.0 | 30 | 52.00 | 75.77 | 75.13 |
2 | 2.0 | 50 | 1.5 | 40 | 71.97 | 77.99 | 88.48 |
3 | 2.0 | 60 | 2.0 | 50 | 49.49 | 79.13 | 75.51 |
4 | 3.0 | 40 | 1.5 | 50 | 60.57 | 88.83 | 89.25 |
5 | 3.0 | 50 | 2.0 | 30 | 74.11 | 81.55 | 93.11 |
6 | 3.0 | 60 | 1.0 | 40 | 60.06 | 82.53 | 84.66 |
7 | 4.0 | 40 | 2.0 | 40 | 56.29 | 85.46 | 84.34 |
8 | 4.0 | 50 | 1.0 | 50 | 77.16 | 74.45 | 90.55 |
9 | 4.0 | 60 | 1.5 | 30 | 61.17 | 73.58 | 78.38 |
表4 正交试验设计及结果
Table 4 Orthogonal experimental design and results
试验号 Experiment number | A:样液pH Sample pH | B:脱蛋白温度Deproteinization temperature/℃ | C:活性炭用量Activated carbon dosage/% | D:脱蛋白时间Deproteinization time/min | X:多糖保留率Polysaccharide retention rate/% | Y:蛋白脱除率 Protein removal rate/% | W:综合评分Comprehensive score |
---|---|---|---|---|---|---|---|
1 | 2.0 | 40 | 1.0 | 30 | 52.00 | 75.77 | 75.13 |
2 | 2.0 | 50 | 1.5 | 40 | 71.97 | 77.99 | 88.48 |
3 | 2.0 | 60 | 2.0 | 50 | 49.49 | 79.13 | 75.51 |
4 | 3.0 | 40 | 1.5 | 50 | 60.57 | 88.83 | 89.25 |
5 | 3.0 | 50 | 2.0 | 30 | 74.11 | 81.55 | 93.11 |
6 | 3.0 | 60 | 1.0 | 40 | 60.06 | 82.53 | 84.66 |
7 | 4.0 | 40 | 2.0 | 40 | 56.29 | 85.46 | 84.34 |
8 | 4.0 | 50 | 1.0 | 50 | 77.16 | 74.45 | 90.55 |
9 | 4.0 | 60 | 1.5 | 30 | 61.17 | 73.58 | 78.38 |
计算项目 Calculation item | 因素Factor | 因素主次顺序 Order of influence | 优组合 Optimal combination | ||||
---|---|---|---|---|---|---|---|
A:样液pH Sample pH | B:脱蛋白温度Deproteinization temperature | C:活性炭用量 Activated carbon dosage | D:脱蛋白时间Deproteinization time | ||||
多糖保留率 Polysaccharide retention rate | K1 | 173.46 | 168.86 | 189.22 | 187.28 | B>A>C>D | A2B2C2D2 |
K2 | 194.74 | 223.24 | 193.71 | 188.32 | |||
K3 | 194.62 | 170.72 | 179.89 | 187.22 | |||
k1 | 57.82 | 56.29 | 63.07 | 62.43 | |||
k2 | 64.91 | 74.41 | 64.57 | 62.77 | |||
k3 | 64.87 | 56.91 | 59.96 | 62.41 | |||
R | 7.09 | 18.12 | 4.61 | 0.36 | |||
蛋白脱除率 Protein removal rate | K1 | 232.89 | 250.06 | 232.75 | 230.90 | A>B>D>C | A2B1C3D2 |
K2 | 252.91 | 233.99 | 240.40 | 245.98 | |||
K3 | 233.49 | 235.24 | 246.14 | 242.41 | |||
k1 | 77.63 | 83.35 | 77.58 | 76.97 | |||
k2 | 84.30 | 78.00 | 80.13 | 81.99 | |||
k3 | 77.83 | 78.41 | 82.05 | 80.80 | |||
R | 6.67 | 5.35 | 4.47 | 5.02 | |||
综合评分 Comprehensive score | K1 | 239.12 | 248.72 | 250.34 | 246.62 | B>A>D>C | A2B2C2D2 |
K2 | 267.02 | 272.14 | 256.11 | 257.48 | |||
K3 | 253.27 | 238.55 | 252.96 | 255.31 | |||
k1 | 79.71 | 82.91 | 83.45 | 82.21 | |||
k2 | 89.01 | 90.71 | 85.37 | 85.83 | |||
k3 | 84.42 | 79.52 | 84.32 | 85.10 | |||
R | 9.30 | 11.19 | 1.92 | 3.62 |
表5 各因素极差分析汇总
Table 5 Summary of range analysis for various factors
计算项目 Calculation item | 因素Factor | 因素主次顺序 Order of influence | 优组合 Optimal combination | ||||
---|---|---|---|---|---|---|---|
A:样液pH Sample pH | B:脱蛋白温度Deproteinization temperature | C:活性炭用量 Activated carbon dosage | D:脱蛋白时间Deproteinization time | ||||
多糖保留率 Polysaccharide retention rate | K1 | 173.46 | 168.86 | 189.22 | 187.28 | B>A>C>D | A2B2C2D2 |
K2 | 194.74 | 223.24 | 193.71 | 188.32 | |||
K3 | 194.62 | 170.72 | 179.89 | 187.22 | |||
k1 | 57.82 | 56.29 | 63.07 | 62.43 | |||
k2 | 64.91 | 74.41 | 64.57 | 62.77 | |||
k3 | 64.87 | 56.91 | 59.96 | 62.41 | |||
R | 7.09 | 18.12 | 4.61 | 0.36 | |||
蛋白脱除率 Protein removal rate | K1 | 232.89 | 250.06 | 232.75 | 230.90 | A>B>D>C | A2B1C3D2 |
K2 | 252.91 | 233.99 | 240.40 | 245.98 | |||
K3 | 233.49 | 235.24 | 246.14 | 242.41 | |||
k1 | 77.63 | 83.35 | 77.58 | 76.97 | |||
k2 | 84.30 | 78.00 | 80.13 | 81.99 | |||
k3 | 77.83 | 78.41 | 82.05 | 80.80 | |||
R | 6.67 | 5.35 | 4.47 | 5.02 | |||
综合评分 Comprehensive score | K1 | 239.12 | 248.72 | 250.34 | 246.62 | B>A>D>C | A2B2C2D2 |
K2 | 267.02 | 272.14 | 256.11 | 257.48 | |||
K3 | 253.27 | 238.55 | 252.96 | 255.31 | |||
k1 | 79.71 | 82.91 | 83.45 | 82.21 | |||
k2 | 89.01 | 90.71 | 85.37 | 85.83 | |||
k3 | 84.42 | 79.52 | 84.32 | 85.10 | |||
R | 9.30 | 11.19 | 1.92 | 3.62 |
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 100.066 | 2 | 50.033 | 390.883 | P<0.01 |
B:脱蛋白温度 Deproteinization temperature | 635.443 | 2 | 317.722 | 2482.203 | P<0.01 |
C:活性炭用量 Activated carbon dosage | 33.133 | 2 | 16.567 | 129.430 | P<0.01 |
D:脱蛋白时间(误差) Deproteinization time(error) | 0.255 | 2 | 0.128 |
表6 多糖保留率方差分析
Table 6 Variance analysis on polysaccharide retention rate
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 100.066 | 2 | 50.033 | 390.883 | P<0.01 |
B:脱蛋白温度 Deproteinization temperature | 635.443 | 2 | 317.722 | 2482.203 | P<0.01 |
C:活性炭用量 Activated carbon dosage | 33.133 | 2 | 16.567 | 129.430 | P<0.01 |
D:脱蛋白时间(误差) Deproteinization time(error) | 0.255 | 2 | 0.128 |
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 86.477 | 2 | 43.239 | 2.874 | P>0.05 |
B:脱蛋白温度 Deproteinization temperature | 53.271 | 2 | 26.636 | 1.771 | P>0.05 |
D:脱蛋白时间 Deproteinization time | 41.403 | 2 | 20.702 | 1.376 | P>0.05 |
C:活性炭用量(误差) Activated carbon dosage(error) | 30.085 | 2 | 15.043 |
表7 蛋白脱除率方差分析
Table 7 Variance analysis on protein removal rate
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 86.477 | 2 | 43.239 | 2.874 | P>0.05 |
B:脱蛋白温度 Deproteinization temperature | 53.271 | 2 | 26.636 | 1.771 | P>0.05 |
D:脱蛋白时间 Deproteinization time | 41.403 | 2 | 20.702 | 1.376 | P>0.05 |
C:活性炭用量(误差) Activated carbon dosage(error) | 30.085 | 2 | 15.043 |
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 129.734 | 2 | 64.867 | 23.317 | P<0.05 |
B:脱蛋白温度 Deproteinization temperature | 197.801 | 2 | 98.901 | 35.550 | P<0.05 |
D:脱蛋白时间 Deproteinization time | 22.018 | 2 | 11.009 | 3.957 | P>0.05 |
C:活性炭用量(误差) Activated carbon dosage(error) | 5.564 | 2 | 2.782 |
表8 综合评分方差分析
Table 8 Variance analysis on comprehensive score
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean squares | F值 F value | P值 P value |
---|---|---|---|---|---|
A:样液pH Sample pH | 129.734 | 2 | 64.867 | 23.317 | P<0.05 |
B:脱蛋白温度 Deproteinization temperature | 197.801 | 2 | 98.901 | 35.550 | P<0.05 |
D:脱蛋白时间 Deproteinization time | 22.018 | 2 | 11.009 | 3.957 | P>0.05 |
C:活性炭用量(误差) Activated carbon dosage(error) | 5.564 | 2 | 2.782 |
1 | XU Q, ZHOU Y J, WU Y X, et al.. Enzyme-assisted solvent extraction for extraction of blueberry anthocyanins and separation using resin adsorption combined with extraction technologies [J]. Int. J. Food Sci. Technol., 2016, 51(12): 2567-2573. |
2 | 徐青, 李冰晶, 罗丽平, 等. 蓝莓多糖的提取分离及生物活性研究进展[J]. 现代化工, 2019, 39(5): 38-41. |
XU Q, LI B J, LUO L P, et al.. Purification of blueberry polysaccharides and study on their biological activity [J]. Mod. Chem. Ind., 2019, 39 (5): 38-41. | |
3 | 金永学,冯建国,郑淘,等.蓝莓的功能成分、保健作用及其开发利用[J].食品与机械,2020,36(5):231-236. |
JIN Y X, FENG J G, ZHENG T, et al.. Functional components, health function and utilization of blueberry [J]. Food Mach., 2020,36(5):231-236. | |
4 | 周继芬,兰武,王军,等.蓝莓营养及独特保健功能研究[J].北方园艺,2020(21):138-145. |
ZHOU J F, LAN W, WANG J, et al.. Nutritional ingredients of blueberry and research on its unique health-care function [J]. Northern Hortic., 2020(21):138-145. | |
5 | SUN X, LIU N, WU Z,et al..Anti-tumor activity of a polysaccharide from blueberry [J]. Molecules, 2015,20(3):3841-3853. |
6 | 孟宪军,刘晓晶,孙希云,等.蓝莓多糖的抗氧化性与抑菌作用[J].食品科学,2010,31(17):110-114. |
MENG X J, LIU X J, SUN X Y,et al..Antioxidant and antimicrobial activities of blueberry polysaccharides [J]. Food Sci., 2010,31(17):110-114. | |
7 | 李颖畅,王亚丽,齐凤元,等.响应面法优化蓝莓叶多糖提取工艺[J].食品工业科技,2015,36(3):227-231. |
LI Y C, WANG Y L, QI F Y, et al.. Optimization of extraction process of polysaccharides from blueberry leaves by response surface methodology [J]. Sci. Technol. Food Ind., 2015,36(3):227-231. | |
8 | DENG J, SHI Z J, LI X Z, et al.. Soluble polysaccharides isolation and characterization from rabbiteye blueberry (Vaccinium ashei) fruits [J]. Bioresources, 2013, 8(1) : 405-419. |
9 | 孔璐,刘晓颖,王鹏,等.果胶酶辅助提取蓝莓多糖的工艺优化及其抗氧化活性研究[J].保鲜与加工,2017,17(6):61-65. |
KONG L, LIU X Y, WANG P, et al.. Optimization of pectinase assisted extraction of blueberry polysaccharides and its antioxidant activities [J]. Storage Process., 2017,17(6):61-65. | |
10 | 孙丽娜,范英兵,胡冬慧,等.响应面优化纤维素酶提取蓝莓多糖工艺研究[J].食品研究与开发,2017,38(23):57-60. |
SUN L N, FAN Y B, HU D H, et al.. Optimization of cellulose extraction of blueberry polysaccharide by response surface methodology [J]. Food Res. Dev., 2017,38(23):57-60. | |
11 | 李敬,赵庆生,周伟杰,等.超声强化法提取蓝莓多糖的工艺研究[J].热带作物学报,2015,36(8):1491-1497. |
LI J, ZHAO Q S, ZHOU W J, et al.. Optimization of ultrasonic-assisted extraction of polysaccharides from blueberries by response surface analysis [J]. Chin. J. Trop. Crops, 2015,36(8):1491-1497. | |
12 | 郭丽,王鹏,周凤超,等.超声波隔氧提取蓝莓花青素和多糖的协同抗氧化研究[J].粮食与油脂,2018,31(3):88-92. |
GUO L, WANG P, ZHOU F C, et al.. Synergistic antioxidation of blueberry anthocyanins and polysaccharides extracted by ultrasonic-assisted and airtight oxygen-resistant method [J]. Cereals Oils, 2018,31(3):88-92. | |
13 | 唐甜甜,吴迪,魏晴,等.红禾麻多糖除蛋白除色素方法研究[J].广州化工,2020,48(7):86-88, 131. |
TANG T T, WU D, WEI Q, et al.. Methods of decolorization and deproteinization of Laportea bulbifera Weddell. polysaccharides [J]. Guangzhou Chem. Ind., 2020,48(7):86-88, 131. | |
14 | XIONG Q P, LI X, ZHOU R Z, et al.. Extraction,characterization and antioxidant activities of polysaccharides from E.corneum gigeriae galli [J]. Carbohydr. Polym., 2014,108:247-256. |
15 | 何美佳,刘晓,唐翠翠,等.多糖脱蛋白方法的研究进展[J].中国海洋药物,2019,38(3):82-86. |
HE M J, LIU X, TANG C C, et al..Research progress on the methods for deproteinization of polysaccharide [J]. Chin. J. Mar. Drugs, 2019,38(3):82-86. | |
16 | 刘小攀,田启建,田春莲.黄精多糖酶法脱蛋白的工艺研究[J].西北林学院学报,2016,31(1):238-242. |
LIU X P, TIAN Q J, TIAN C L. Deproteinization of Polygonatum polysaccharide [J]. J. Northwest For. Univ., 2016,31(1):238-242. | |
17 | 李翠丽,王炜,张英,等.中药多糖提取、分离纯化方法的研究进展[J].中国药房,2016,27(19):2700-2702, 2703. |
18 | 王金玺.平菇多糖分离纯化、结构表征与修饰及抗氧化性的研究[D].扬州:扬州大学,2013. |
WANG J X. Separation, purification, structural characterization, modification, and antioxidant properties of polysaccharides from Pleurotus ostreatus [D]. Yangzhou: Yangzhou University, 2013. | |
19 | 张帆.苦杏仁蛋白提取及其对人结肠腺癌细胞生长影响[D].北京:北京林业大学,2011. |
ZHANG F. Extraction of effect on human colon adenocarcinoma cell growth of apricot kernel protein [D]. Beijing: Beijing Forestry University, 2011. | |
20 | CHEN C, YOU L J, ABBASI A M,et al.. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro [J]. Carbohydr. Polym., 2015,130:122-132. |
21 | 郭慧静,张伟达,陈国刚.蒲公英多糖脱色脱蛋白方法及其降血糖活性研究[J].食品研究与开发,2020,41(3):24-28. |
GUO H J, ZHANG W D, CHEN G G.Decoloration and deproteinization of polysaccharides from dandelion and its hypoglycemic activity [J]. Food Res. Dev., 2020,41(3):24-28. | |
22 | 黄婉玉,曹炜,李菁,等.考马斯亮蓝法测定果汁中蛋白质的含量[J].食品与发酵工业,2009,35(5):160-162. |
HUANG W Y, CAO W, LI J,et al..Determination of protein content in juice by coomassie brilliant blue [J]. Food Ferment. Ind., 2009,35(5):160-162. | |
23 | 宁奇,孙培冬,曹光群,等.山药粘液质多糖的酶法脱蛋白工艺及其性能研究[J].食品与生物技术学报,2019,38(9):118-124. |
NING Q, SUN P D, CAO G Q, et al.. Deproteinization technology by enzymic method of polysaccharide from yam mucilage and its performance study [J]. J. Food Sci. Biotechnol., 2019,38(9):118-124. | |
24 | 于淼,谢春阳,姚成龙,等.黑果腺肋花楸果粗多糖提取及脱色工艺[J].粮食与油脂,2020,33(10):113-116. |
YU M, XIE C Y, YAO C L, et al.. Extraction and decolorization process of polysaccharide from black chokeberry [J]. Cereals Oils, 2020,33(10):113-116. | |
25 | 胡会刚,赵巧丽,庞振才.菠萝皮渣多糖脱蛋白脱色方法研究及其抗氧化活性[J].食品研究与开发,2018,39(24):12-20. |
HU H G, ZHAO Q L, PANG Z C. Study on deproteinization and decoloration of polysaccharides from pineapple pomace and its antioxidant activity [J]. Food Res. Dev., 2018,39(24):12-20. | |
26 | 初雅洁.辣木多糖除蛋白的工艺技术[J].现代食品,2020,10(19):86-89. |
CHU Y J.Process of removing protein from spicewood polysaccharide [J]. Mod. Food, 2020,10(19):86-89. | |
27 | 徐韧博, 邹攀, 杨鑫, 等. 红松松塔多糖三氯乙酸法脱蛋白工艺研究[J]. 中国甜菜糖业, 2013 (1): 5-8. |
XU R B, ZOU P, YANG X,et al.. Deproteinization technology of polysaccharids from Pinus koraiensis with trichloroacetic acid method [J]. China Beet Sugar, 2013(1): 5-8. | |
28 | 龙婷婷, 夏莉莎, 方月月, 等. 百尾参多糖脱色脱蛋白工艺及其免疫活性研究[J]. 生物资源, 2019, 41(5): 458-465. |
LONG T T, XIA L S, FANG Y Y, et al.. Decolorization, deproteinization of Disporum cantoniense (Lour.) Merr. polysaccharide (DCP) and its protective effect against cyclophosphamide-induceed immunosuppression in mice [J]. Biotic Resour., 2019, 41 (5): 458-465. | |
29 | 孙希云,刘宁,孟宪军,等.蓝莓多糖BBP3-1的分离及结构分析[J].天然产物研究与开发,2011,23(6):1080-1084. |
SUN X Y, LIU N, MENG X J, et al.. Separation and structural analysis of polysaccharides BBP3-1 from blueberry [J]. Nat.Prod. Res. Dev., 2011,23(6):1080-1084. | |
30 | 吴春,孙宁,刘宁,等.响应面优化盐析法姬松茸多糖脱蛋白研究[J].食品工业科技,2017,38(13):191-196, 201. |
WU C, SUN N, LIU N, et al.. Optimization of deproteinization process from Agaricus blazei murill polysaccharides by salting-out method [J]. Sci. Technol. Food Ind., 2017,38(13):191-196, 201. | |
31 | 杨立军,罗伟,崔晨旭,等.响应面优化铁线蕨多糖脱蛋白工艺及生物活性研究[J].北方园艺,2023(20):77-85. |
YANG L J, LUO W, CUI C X, et al.. Optimization of deproteinization process and biological activity of Adiantum capillus-veneris polysaccharide by response surface methodology [J]. Northern Hortic., 2023(20):77-85. | |
32 | 夏谍,李铭,丁俞珍,等.不同脱色方法对三七多糖物理性质及体外抗氧化活性的影响[J].化学研究与应用,2024, 36(3):509-521. |
XIA D, LI M, DING Y Z, et al.. Effects of different decolorization methods on physical characterization and antioxidant activity of Panax notoginseng polysaccharide in vitro [J]. Chem. Res. Appl., 2024, 36(3):509-521. | |
33 | 李倩倩,陈贵元.刺梨果多糖提取过程中脱蛋白和脱色方法研究[J].安徽农业科学,2022,50(11):162-166, 183. |
LI Q Q, CHEN G Y. Study on the method of deproteinization and decolorization in the process of extracting polysaccharides from Rosa roxburghii fruit [J]. J. Anhui Agric. Sci., 2022,50(11):162-166, 183. | |
34 | 李元元,李鑫,廉宜君,等.沙枣多糖脱色材料及脱色条件的优选[J].食品科技,2012,37(3):210-213. |
LI Y Y, LI X, LIAN Y J, et al.. Optimization for conditions on elaeagnus polysaccharides decoloring material [J]. Food Sci. Technol., 2012,37(3):210-213. | |
35 | 孙希云. 蓝莓多糖的分离纯化,结构鉴定及免疫活性研究[D]. 沈阳: 沈阳农业大学, 2011. |
SUN X Y. Study on isolation and purification, structure identification and immunity activity of the polysaccharides from blueberry [D]. Shenyang: Shenyang Agricultural University, 2011. | |
36 | 孙丽娜,范英兵,胡冬慧,等. 大孔吸附树脂对蓝莓多糖的脱色研究[J]. 黑龙江大学工程学报,2016, 7(1): 29-34. |
SUN L N, FAN Y B, HU D H, et al.. Macroporous adsorption resin used for studying the decolorization of blueberry polysaccharide [J]. J. Eng. Heilongjiang Univ., 2016, 7(1): 29-34. | |
37 | 陈艳君,程君悦,朱利未,等.不同方法黄精多糖脱蛋白工艺及其抗氧化性研究[J].广东化工,2023,50(23):9-11. |
CHEN Y J, CHENG J Y, ZHU L W, et al.. Study on different methods of deproteinization of Polygonatum sibiricum polysaccharide and its antioxidant activity [J]. Guangdong Chem. Ind., 2023,50(23):9-11. | |
38 | 范馨予. 准噶尔山楂多糖的提取分离、结构表征及生物活性研究[D]. 伊宁: 伊犁师范大学, 2023. |
FAN X Y. Study on the extraction, isolation,structure characterization and biological activity of polysaccharides from Crataegus songarica [D]. Yining: Yili Normal University, 2023. | |
39 | 穆娜,李凤伟,柳晓晨,等.苜蓿多糖脱蛋白工艺及其对鼠李糖乳杆菌增殖作用研究[J].中国食品添加剂,2022,33(3):99-105. |
MU N, LI F W, LIU X C, et al.. Alfalfa polysaccharides deproteinization and its effect on the proliferation of Lactobacillus rhamnosus [J]. China Food Addit., 2022,33(3):99-105. | |
40 | 李洁,陈琳,刘海棠,等.银条菜粗多糖脱蛋白的方法研究[J].天津科技大学学报,2022,37(1):18-22, 27. |
LI J, CHEN L, LIU H T, et al.. Study of deproteinization method of crude polysaccharides from Stachys floridana schuttl. ex Benth [J]. J. Tianjin Univ. Sci. Technol., 2022,37(1):18-22, 27. | |
41 | 陈盈盈,李杰,宋建忠,等.刺糖多糖脱色脱蛋白工艺及抗氧化活性研究[J].化学试剂,2023,45(1):46-53. |
CHEN Y Y, LI J, SONG J Z, et al.. Study on decolorization and deproteinization process and antioxidant activity of Alhagi-honey polysaccharide [J]. Chem. Reagt., 2023,45(1):46-53. |
[1] | 陈国顺, 田斌, 高燕程, 李延翠, 田文锦, 杨文静, 吴万成, 黄立军. 黄芪多糖对舍饲滩羊生产性能、胴体性能及肉品质的影响[J]. 中国农业科技导报, 2025, 27(2): 150-157. |
[2] | 赫淑华, 侯智霞, 王亚晶, 秦偲, 江颖, 张晓涵, 李洋. 秋季剪梢对温室蓝莓芽分化及内源激素的影响[J]. 中国农业科技导报, 2024, 26(6): 55-62. |
[3] | 石玉涛, 谢惠珍, 郑淑琳, 羽观华, 王飞权, 李力, 张渤, 李远华, 罗盛财. 武夷山地方茶树种质生化特性和茶多糖清除超氧阴离子自由基活性分析[J]. 中国农业科技导报, 2024, 26(5): 65-76. |
[4] | 冀薇, 樊莹, 黄家兴, 杨慧鹏, 徐进, 李小英, 郭岳琴, 吴跃国, 李继莲, 姚军. 不同授粉强度对蓝莓柱头响应机制的转录组分析[J]. 中国农业科技导报, 2024, 26(10): 71-82. |
[5] | 杨圣艳, 曹漫, 郭宝石, 杨超, 侯智霞. 不同铁环境对蓝莓生长及叶片叶绿素荧光特性的影响[J]. 中国农业科技导报, 2024, 26(1): 52-62. |
[6] | 史瑞武, 张素芳, 牛丽娜, 苏田, 赵晓茜, 那冬晨, 陈伟. 忍冬叶多糖提取工艺优化及抗菌活性分析[J]. 中国农业科技导报, 2023, 25(11): 218-226. |
[7] | 时菲菲, 曹金花, 于生兰, 杨海峰. W/O/W型党参多糖纳米乳免疫增强剂制备及性质研究[J]. 中国农业科技导报, 2021, 23(8): 106-113. |
[8] | 马淏,张开,金鑫*,姬江涛,朱旭. 基于高光谱成像技术的蓝莓果实成熟度识别研究(英文)[J]. 中国农业科技导报, 2020, 22(2): 80-90. |
[9] | 梁兆超,郭显炜,宋艳娟,马填富,汪锋,王丽艳,荆瑞勇*. 响应面法优化双孢蘑菇多糖提取工艺及其体外抗氧化活性研究[J]. 中国农业科技导报, 2019, 21(8): 161-168. |
[10] | 陈金娥,刘慧,赵志刚,张海容*. 响应面法优化超声波提取三七根多糖工艺研究[J]. 中国农业科技导报, 2018, 20(4): 138-146. |
[11] | 李彬彬,侯智霞*,杨俊枫,陈露,万如萌. ‘北陆’蓝莓叶片变色过程中类黄酮和糖的变化特性[J]. 中国农业科技导报, 2018, 20(3): 20-29. |
[12] | 王立强,田燚*,张宇鹏,马增艳,庚宸帆,常亚青. 刺参不同组织中MnSOD基因在脂多糖刺激下的定量表达分析[J]. 中国农业科技导报, 2017, 19(3): 123-130. |
[13] | 陈新瑶,董星,陈景杰,秦韬,李健*,黄一帆*. 响应曲面法优化猴头菇粗多糖的提取工艺[J]. 中国农业科技导报, 2017, 19(3): 131-136. |
[14] | 李志敏§,潘兴亮§,杨雅麟*,刘智,徐俐,何夙旭,周志刚*. 溶解性多糖单加氧酶CBP21的高效分泌表达及与几丁质酶的协同作用研究[J]. 中国农业科技导报, 2017, 19(1): 58-65. |
[15] | 段丽丽,句荣辉,王辉,刘超,罗红霞*,赵新宇. 响应面法优化超临界提取茯苓多糖工艺研究[J]. 中国农业科技导报, 2016, 18(5): 193-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||