1 |
宋中山, 刘越, 郑禄,等.基于改进YOLOv3的自然环境下绿色柑橘的识别算法[J].中国农机化学报,2021,42(11):159-165.
|
|
SONG Z S, LIU Y, ZHENG L, et al.. Identification of green citrus based on improved YOLOV3 in natural environment [J]. J. Chin. Agric. Mechan., 2021, 42(11):159-165.
|
2 |
LOEY M, MANOGARAN G, TAHA M H N,et al.. Fighting against COVID-19: a novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection [J/OL].Sustain. Cities Soc.,2021,65:102600 [2024-05-18]. .
|
3 |
王春梅,刘欢.YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法[J].计算机科学与探索,2024,18(1):151-160.
|
|
WANG C M, LIU H.YOLOv8-VSC:lightweight algorithm for strip surface defect detection [J]. J. Front. Comput. Sci. Technol., 2024, 18(1):151-160.
|
4 |
伊建峰,黎思成,吕珊,等.基于频域数据增强及YOLOv7的动火作业检测模型[J].计算机应用,2023,43():285-290.
|
|
YI J F, LI S C, LYU S, et al.. Hot work detection model based on frequency domain data enhancement and YOLOv7 [J]. J. Comp. Appl., 2023, 43(S2):285-290.
|
5 |
LIU W, ANGUELOV D, ERHAN D, et al.. Ssd: single shot multibox detector [C]// Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands. Springer International Publishing, 2016: 21-37.
|
6 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 1440-1448.
|
7 |
REN S, HE K, GIRSHICK R, et al.. Faster R-CNN: towards real-time object detection with region proposal networks [J].IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(6): 1137-1149.
|
8 |
ZHENG C, ZHU X M, YANG X F, et al.. Automatic recognition of lactating sow postures from depth images by deep learning detector [J]. Comput. Electron. Agric., 2018, 147:51-63.
|
9 |
AHN H, SON S, KIM H, et al.. EnsemblePigDet: ensemble deep learning for accurate pig detection [J/OL]. Appl. Sci., 2021, 11(12): 5577 [2024-05-18]. .
|
10 |
HUANG L, XU L, WANG Y, et al.. Efficient detection method of pig-posture behavior based on multiple attention mechanism [J/OL].Comput. Intell. Neurosci., 2022, 2022: 1759542 [2024-05-18]..
|
11 |
LEINGARTNER M, MAURER J, FERREIN A, et al.. Evaluation of sensors and mapping approaches for disasters in tunnels [J]. J. Field. Robot., 2016, 33(8): 1037-1057.
|
12 |
XIAO Y, JIANG A, YE J, et al.. Making of night vision: object detection under low-illumination [J]. IEEE Access, 2020, 8: 123075-123086.
|
13 |
XU X, WANG S, WANG Z, et al.. Exploring image enhancement for salient object detection in low light images [J]. ACM Trans. Multimedia Comput. Commun. Appl., 2021, 17(1s): 1-19.
|
14 |
ZHANG S, TUO H, HU J, et al.. Domain adaptive yolo for one-stage cross-domain detection [C]// Proceedings of Asian Conference on Machine Learning. PMLR, 2021: 785-797.
|
15 |
WANG J, YANG P, LIU Y, et al.. Research on improved yolov5 for low-light environment object detection [J/OL]. Electronics, 2023, 12(14): 3089 [2024-05-18]. .
|
16 |
QIU Y, LU Y, WANG Y, et al.. IDOD-YOLOV7:image-dehazing YOLOV7 for object detection in low-light foggy traffic environments [J/OL].Sensors (Basel Switz.),2023,23(3):1347[2024-05-18]. .
|
17 |
WANG C Y, LIAO H Y M, WU Y H, et al.. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2020: 390-391.
|
18 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 13713-13722.
|
19 |
GUO C, LI C, GUO J, et al.. Zero-reference deep curve estimation for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vvision and Pattern Recognition. IEEE, 2020: 1780-1789.
|
20 |
LI C, GUO C, LOY C C.Learning to enhance low-light image via zero-reference deep curve estimation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44(8):4225-4238.
|
21 |
CUI Z, LI K, GU L, et al.. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction [J/OL]. 2022, 5: 14871 [2024-05-18]. .
|
22 |
LIU R S, MA L, ZHANG J A,et al..Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 10561-10570.
|
23 |
WU W, WENG J, ZHANG P, et al.. Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 5901-5910.
|
24 |
WOO S, PARK J, LEE J Y,et al.. CBAM:convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19.
|
25 |
LI X, WANG W, HU X, et al.. Selective kernel networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 510-519.
|
26 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 7132-7141.
|
27 |
HAYOU S, DOUCETt A, ROUSSEAU J. On the impact of the activation function on deep neural networks training [C]// International Conference on Machine Learning. PMLR, 2019: 2672-2680.
|
28 |
JIANG P, ERGU D, LIU F, et al.. A review of Yolo algorithm developments. [J]. Proc. Comput. Sci., 2022, 199: 1066-1073.
|