中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 93-103.DOI: 10.13304/j.nykjdb.2024.0010

• 智慧农业 农机装备 • 上一篇    下一篇

基于无人机高光谱和集成学习的春小麦叶绿素含量反演

呼斯乐(), 包玉龙(), 图布新巴雅尔null, 陶际峰, 郭恩亮   

  1. 内蒙古师范大学地理科学学院,内蒙古自治区蒙古高原地理研究重点实验室,呼和浩特 010022
  • 收稿日期:2024-01-05 接受日期:2024-03-18 出版日期:2025-06-15 发布日期:2025-06-23
  • 通讯作者: 包玉龙
  • 作者简介:呼斯乐 E-mail:20214019048@mails.imnu.edu.cn
  • 基金资助:
    国家自然科学基金地区项目(42261019);内蒙古自治区哲学社会科学规划项目(2022NDA225);内蒙古自治区自然科学基金面上项目(2021MS04016);内蒙古自治区重点研发与成果转化计划项目(2022YFSH0070);内蒙古师范大学研究生科研创新基金资助项目(CXJJS22131)

Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning

Sile HU(), Yulong BAO(), Tubuxinbayaer, Jifeng TAO, Enliang GUO   

  1. Key Laboratory of Geographic Research on the Mongolian Plateau in Inner Mongolia Awtonomous Region,College of Geographical Science,Inner Mongolia Normal University,Hohhot 010022,China
  • Received:2024-01-05 Accepted:2024-03-18 Online:2025-06-15 Published:2025-06-23
  • Contact: Yulong BAO

摘要:

叶绿素含量是监测作物长势的关键指标,快速、有效、准确的估算对作物健康评估具有重要意义。通过采集3个生长期的无人机高光谱影像,结合地面叶绿素实测数据,选用多种机器学习和集成学习模型,反演春小麦叶绿素含量,并对比不同模型的反演精度。结果表明,春小麦不同生长期冠层反射率基本一致,但在770~900 nm 波长范围内显示出明显的光谱反射率强度差异。16种光谱指数均与叶绿素含量呈显著相关,其中优化植被指数1、植物生化指数和归一化差异红边指数在整个生长周期内均与叶绿素含量保持高相关性。Stacking和Voting集成学习模型的预测精度高于基础模型,其中Voting集成学习模型表现更突出,测试集中3个生长期的决定系数(R2)分别为0.78、0.77和0.73,均方根误差(root mean square error,RMSE)分别为8.70、11.36和16.17;与随机森林、支持向量机、K_近邻和岭回归相比,其R2平均分别提高约0.17、0.14和0.22,RMSE平均降低4.64、2.54和6.51,显示出良好的预测能力。研究结果可为精准农业和作物健康监测提供新的视角和方法。

关键词: 无人机, 高光谱遥感, 春小麦, 叶绿素含量, 集成学习

Abstract:

Chlorophyll content is a key indicator for monitoring crop growth, and its rapid, effective and accurate estimation is crucial for assessing crop health. By collecting unmanned aerial vehicle (UAV) hyperspectral images from 3 growth stages and combining them with ground-measured chlorophyll data, various machine learning and ensemble learning models were employed to estimate the chlorophyll content in spring wheat,and the estimation accuracy of different models were compared. The results showed that the canopy reflectance of spring wheat was generally consistent across different growth stages, but significant differences in spectral reflectance intensity were observed in the 770~900 nm wavelength range. 16 spectral indices all showed significant correlations with chlorophyll content, among which optimized vegetation index 1, plant biochemical index and normalized difference red edge index maintained high correlation throughout the entire growth cycle. The prediction accuracy of the Stacking and Voting ensemble learning models was higher than the basic models, with the Voting ensemble model performing particularly well. In the test set, determination coefficient (R2)values of 3 growth stages were 0.78, 0.77 and 0.73, and root mean square error (RMSE) values were 8.70, 11.36 and 16.17, respectively. Compared with random forest, support vector regression, K_nearest neighbor and ridge regression models, the R2 of the Voting model was on average 0.17, 0.14 and 0.22 higher, and the RMSE was 4.64, 2.54 and 6.51 lower, indicating its superior predictive ability. Above results provided new perspectives and methods for precision agriculture and crop health monitoring.

Key words: unmanned aerial vehicle(UAV), hyperspectral remotesensing, spring wheat, chlorophyll content, ensemble learning

中图分类号: