中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 35-43.DOI: 10.13304/j.nykjdb.2022.0198
郭瑞锋1(), 任月梅1(
), 杨忠1, 刘贵山2, 任广兵1, 张绶1, 朱文娟1
收稿日期:
2022-03-15
接受日期:
2022-05-28
出版日期:
2022-10-15
发布日期:
2022-10-25
通讯作者:
任月梅
作者简介:
郭瑞锋 E-mail:guoruifeng229@126.com;
基金资助:
Ruifeng GUO1(), Yuemei REN1(
), Zhong YANG1, Guishan LIU2, Guangbing REN1, Shou ZHANG1, Wenjuan ZHU1
Received:
2022-03-15
Accepted:
2022-05-28
Online:
2022-10-15
Published:
2022-10-25
Contact:
Yuemei REN
摘要:
为促进谷子杂种优势的利用,提高杂交育种效率,采用 Illumina HiSeq 高通量测序技术对草甘膦铵盐处理后的谷穗进行转录组测序,分析筛选响应草甘膦铵盐的差异表达基因,同时测定谷穗抗性淀粉、可溶性糖等生理指标。结果表明,草甘膦铵盐处理后产生的雄性不育谷穗与未处理谷穗相比,共检测到797个差异表达基因,其中645个差异表达基因获得GO功能分类,主要集中在糖代谢与生物合成、激素代谢和生物合成以及细胞壁等方面,反映了谷穗对草甘膦铵盐处理响应基因的生物学功能。通过KEGG富集分析,共建立了138条通路,发现差异表达基因中涉及植物激素信号转导途径的最多,为19个;其次是淀粉和蔗糖代谢途径,为16个。经诱导产生雄性不育的谷穗样品中抗性淀粉、可溶性糖和赤霉素含量降低,生长素含量增加,与GO和KEGG富集分析得到的差异表达基因的表达模式相吻合。以上结果为筛选适宜的化学杀雄试剂提供了理论依据。
中图分类号:
郭瑞锋, 任月梅, 杨忠, 刘贵山, 任广兵, 张绶, 朱文娟. 草甘膦铵盐诱导谷子雄性不育的转录组分析[J]. 中国农业科技导报, 2022, 24(10): 35-43.
Ruifeng GUO, Yuemei REN, Zhong YANG, Guishan LIU, Guangbing REN, Shou ZHANG, Wenjuan ZHU. Transcriptomic Analysis of Mechanism of Foxtail Millet Male Infertility Induced by Glyphosate Ammonium Salt[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 35-43.
样品编号 Sample code | 高质量序列 Clean read | 高质量序列碱基数 Base number of clean read | Q20/% | Q30/% | 比对序列 Total mapped read | |||
---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Percentage/% | 数量 Number | 占比 Percentage/% | |||||
数量 Number | 占比 Percentage/% | |||||||
S1 | 42 672 248 | 98.99 | 6 424 467 638 | 98.69 | 96.12 | 90.79 | 36 768 433 | 86.16 |
S2 | 41 691 824 | 98.98 | 6 276 055 582 | 98.67 | 96.07 | 90.71 | 34 558 553 | 82.89 |
P1 | 44 638 924 | 99.18 | 6 719 144 472 | 98.87 | 96.36 | 91.24 | 35 018 847 | 78.45 |
P2 | 44 681 598 | 98.87 | 6 729 889 484 | 98.62 | 95.96 | 90.52 | 37 171 009 | 83.19 |
CK1 | 45 815 562 | 98.94 | 6 896 999 720 | 98.63 | 95.96 | 90.48 | 33 550 009 | 73.23 |
CK2 | 45 088 252 | 99.07 | 6 786 443 052 | 98.75 | 96.02 | 90.66 | 35 095 278 | 77.84 |
表1 原始数据统计
Table 1 Raw data statistics
样品编号 Sample code | 高质量序列 Clean read | 高质量序列碱基数 Base number of clean read | Q20/% | Q30/% | 比对序列 Total mapped read | |||
---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Percentage/% | 数量 Number | 占比 Percentage/% | |||||
数量 Number | 占比 Percentage/% | |||||||
S1 | 42 672 248 | 98.99 | 6 424 467 638 | 98.69 | 96.12 | 90.79 | 36 768 433 | 86.16 |
S2 | 41 691 824 | 98.98 | 6 276 055 582 | 98.67 | 96.07 | 90.71 | 34 558 553 | 82.89 |
P1 | 44 638 924 | 99.18 | 6 719 144 472 | 98.87 | 96.36 | 91.24 | 35 018 847 | 78.45 |
P2 | 44 681 598 | 98.87 | 6 729 889 484 | 98.62 | 95.96 | 90.52 | 37 171 009 | 83.19 |
CK1 | 45 815 562 | 98.94 | 6 896 999 720 | 98.63 | 95.96 | 90.48 | 33 550 009 | 73.23 |
CK2 | 45 088 252 | 99.07 | 6 786 443 052 | 98.75 | 96.02 | 90.66 | 35 095 278 | 77.84 |
样本对 Paired samples | 差异表达基因数量 Number of differentially expressed genes | ||
---|---|---|---|
上调Up | 下调Down | 总计Total | |
S1/CK1 | 296 | 501 | 797 |
S1/P1 | 56 | 113 | 169 |
P1/CK1 | 1 513 | 1 559 | 3 072 |
表2 差异表达基因数量
Table 2 Number of differentially expressed genes
样本对 Paired samples | 差异表达基因数量 Number of differentially expressed genes | ||
---|---|---|---|
上调Up | 下调Down | 总计Total | |
S1/CK1 | 296 | 501 | 797 |
S1/P1 | 56 | 113 | 169 |
P1/CK1 | 1 513 | 1 559 | 3 072 |
图1 差异表达基因GO富集分析注:*代表在P<0.05水平显著富集。
Fig. 1 Go enriched analysis of differentially expressed geneNote: * represents significant enrichment at P<0.05 level.
类别 Catergory | GO条目 GO term | 代谢节点编号 Metabolic node number | 差异表达基因数量 Number of DEGs | P值(校正后) P-value (corrected) | ||
---|---|---|---|---|---|---|
上调 Up-regulated | 下调 Down-regulated | 总计 Total | ||||
分子功能 Molecular function | 水解酶活性,作用于糖基键 Hydrolase activity, acting on glycosyl bonds | GO∶0016798 | 6 | 31 | 37 | 0.000 25 |
水解酶活性,水解O糖基化合物 Hydrolase activity, hydrolyzing O-glycosyl compounds | GO∶0004553 | 5 | 29 | 34 | 0.000 37 | |
氧化还原酶活性 Oxidoreductase activity | GO∶0016705 | 11 | 18 | 29 | 0.025 41 | |
铁离子结合 Iron ion binding | GO∶0005506 | 11 | 19 | 30 | 0.033 03 | |
糖跨膜转运蛋白活性 Sugar transmembrane transporter activity | GO∶0051119 | 6 | 4 | 10 | 0.036 38 | |
双加氧酶活性 Dioxygenase activity | GO∶0051213 | 6 | 9 | 15 | 0.044 21 | |
半乳糖苷酶活性Galactosidase activity | GO∶0015925 | 1 | 5 | 6 | 0.044 90 | |
生物过程 Biological process | 二糖生物合成过程 Disaccharide biosynthetic process | GO∶0046351 | 0 | 8 | 8 | 0.000 99 |
海藻糖生物合成过程 Trehalose biosynthetic process | GO∶0005992 | 0 | 7 | 7 | 0.002 67 | |
海藻糖代谢Trehalose metabolic process | GO∶0005991 | 0 | 7 | 7 | 0.003 73 | |
低聚糖生物合成过程 Oligosaccharide biosynthetic process | GO∶0009312 | 0 | 8 | 8 | 0.006 66 | |
激素代谢过程 Hormone metabolic process | GO∶0042445 | 2 | 11 | 13 | 0.011 38 | |
激素生物合成过程 Hormone biosynthetic process | GO∶0042446 | 2 | 2 | 4 | 0.032 92 | |
细胞组分 Cellular component | 细胞壁Cell wall | GO∶0005618 | 6 | 20 | 26 | 0.008 61 |
外部封装结构 External encapsulating structure | GO∶0030312 | 6 | 20 | 26 | 0.011 89 | |
植物型细胞壁Plant-type cell wall | GO∶0009505 | 2 | 9 | 11 | 0.358 56 |
表3 差异表达基因显著富集的GO分类
Table 3 GO classification for the significant enrichment of differentially expressed genes
类别 Catergory | GO条目 GO term | 代谢节点编号 Metabolic node number | 差异表达基因数量 Number of DEGs | P值(校正后) P-value (corrected) | ||
---|---|---|---|---|---|---|
上调 Up-regulated | 下调 Down-regulated | 总计 Total | ||||
分子功能 Molecular function | 水解酶活性,作用于糖基键 Hydrolase activity, acting on glycosyl bonds | GO∶0016798 | 6 | 31 | 37 | 0.000 25 |
水解酶活性,水解O糖基化合物 Hydrolase activity, hydrolyzing O-glycosyl compounds | GO∶0004553 | 5 | 29 | 34 | 0.000 37 | |
氧化还原酶活性 Oxidoreductase activity | GO∶0016705 | 11 | 18 | 29 | 0.025 41 | |
铁离子结合 Iron ion binding | GO∶0005506 | 11 | 19 | 30 | 0.033 03 | |
糖跨膜转运蛋白活性 Sugar transmembrane transporter activity | GO∶0051119 | 6 | 4 | 10 | 0.036 38 | |
双加氧酶活性 Dioxygenase activity | GO∶0051213 | 6 | 9 | 15 | 0.044 21 | |
半乳糖苷酶活性Galactosidase activity | GO∶0015925 | 1 | 5 | 6 | 0.044 90 | |
生物过程 Biological process | 二糖生物合成过程 Disaccharide biosynthetic process | GO∶0046351 | 0 | 8 | 8 | 0.000 99 |
海藻糖生物合成过程 Trehalose biosynthetic process | GO∶0005992 | 0 | 7 | 7 | 0.002 67 | |
海藻糖代谢Trehalose metabolic process | GO∶0005991 | 0 | 7 | 7 | 0.003 73 | |
低聚糖生物合成过程 Oligosaccharide biosynthetic process | GO∶0009312 | 0 | 8 | 8 | 0.006 66 | |
激素代谢过程 Hormone metabolic process | GO∶0042445 | 2 | 11 | 13 | 0.011 38 | |
激素生物合成过程 Hormone biosynthetic process | GO∶0042446 | 2 | 2 | 4 | 0.032 92 | |
细胞组分 Cellular component | 细胞壁Cell wall | GO∶0005618 | 6 | 20 | 26 | 0.008 61 |
外部封装结构 External encapsulating structure | GO∶0030312 | 6 | 20 | 26 | 0.011 89 | |
植物型细胞壁Plant-type cell wall | GO∶0009505 | 2 | 9 | 11 | 0.358 56 |
图3 草甘膦铵盐处理后谷穗的淀粉和可溶性糖含量注:不同小写字母表示同一品种不同群体间在P<0.05水平差异显著。
Fig. 3 Contents of spike starch and soluble sugar after glyphosate ammonium treatmentNote: Different lowercase letters indicate significant differences between different groups of same variety at P<0.05 level.
图4 草甘膦铵盐处理后谷穗的GA和IAA含量注:不同小写字母表示同一品种不同群体间在P<0.05水平差异显著。
Fig. 4 Contents of GA and IAA in grain ears after glyphosate ammonium salt treatmentNote: Different lowercase letters indicate significant differences between different groups of same variety at P<0.05 level.
1 | 赵治海,崔文生.谷子光(温)敏不育系821选育及其不育性与光、温关系的研究[J].中国农业科学,1996,29(5):23-31. |
ZHAO Z H, CUI W S. The selection of millet photo (thermo) sensitive sterile line 821 and a study on the relation of sterility to illumination and temperature [J]. Sci. Agric. Sin., 1996, 29(5):23-31. | |
2 | 李志华,景小兰,穆婷婷.谷子雄性不育性利用及存在问题[J].中国种业,2016(6):11-13. |
3 | 辛淑芳.谷子杂交技术——温汤去雄接触授粉法[J].内蒙古农业科技,1973(6):13-16. |
XIN S F. Foxtail millet hybrid technique-emasculation pollination with warm water [J]. Inner Mongolia Agric. Sci. Technol., 1973(6):13-16. | |
4 | 史宏,陈瑛,史关燕,等.谷子太阳能杀雄技术的研究[J].杂粮作物,2008,28(6):360-362. |
SHI H, CHEN Y, SHI G Y, et al.. Study of millet hybrid technique with the solar energy [J]. Rain Fed. Crops, 2008, 28(6):360-362. | |
5 | 黄雪清,高东迎,杨安南,等.化学杀雄剂Ⅲ号诱导水稻雄性不育过程中幼穗、颖花、花药中核酸和蛋白质代谢研究[J].作物学报,2001,27(6):827-831. |
HUANG X Q, GAO D Y, YANG A N, et al.. Metabolism of nucleic acid and protein in the anther, spikelet and young panicle of rice (Oryza sativa) after treatment with chemical hybridizing agent Ⅲ [J]. Acta Agron. Sin., 2001, 27(6):827-831. | |
6 | 刘宏伟,张改生,王军卫,等.化学杂交剂SQ-1诱导小麦雄性不育及与不同小麦品种互作效应的研究[J].西北农林科技大学学报(自然科学版),2003,31(4):15-18. |
LIU H W, ZHANG G S, WANG J W, et al.. Effect of male sterility on different wheat genotype induced by SQ-1 [J]. J. Northwest A&F Univ. (Nat. Sci.), 2003, 31(4):15-18. | |
7 | 官春云,王国槐.几种化学药物对油菜杀雄效果的研究[J].作物研究,1993,7(3):13-16. |
GUAN C Y, WANG G H. Study on male-sterility of rapeseed induced several chemical agents [J]. Crop Res., 1993, 7(3):13-16. | |
8 | 宋瑜龙,王亮明,张改生,等.杀雄剂SQ-1诱导谷子雄性不育研究[J].作物学报, 2011,37(9):1695-1700. |
SONG Y L, WANG L M, ZANG G S, et al.. Male sterility induced by chemical hybridizing agent SQ-1 in Setaria italica Beauv. [J]. Acta Agron. Sin., 2011, 37(9):1695-1700. | |
9 | 郭瑞锋,任月梅,杨忠,等.谷子化学杀雄剂筛选[J].作物杂志,2019(5):64-68. |
GUO R F, REN Y M, YANG Z, et al.. Screening test of millet chemical hybridization agents [J]. Crops, 2019(5):64-68. | |
10 | 张菡倩,秦玉莹,黄凯,等.植物在非生物胁迫下代谢组学与转录组学的研究进展[J].江西农业学报, 2022,34(1):71-78. |
ZHANG H Q, QING Y Y, HUANG K, et al.. Research progress in metabolomics and transcriptomics of plants under abiotic stress [J]. Acta Agric. Jiangxi, 2022, 34(1):71-78. | |
11 | 祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用[J].遗传,2011,33(11):1191-1202. |
QI Y X, LIU Y B, RONG W H. RNA-Seq and its applications: a new technology for transcriptomics [J]. Hereditas, 2011, 33(11):1191-1202. | |
12 | 黄晓荣,张平治,吴新杰,等.植物内源激素测定方法研究进展[J].中国农学通报,2009, 25(11):84-87. |
HUANG X R, ZHANG P Z, WU X J, et al.. Review on plant endogenous hormones determination methods [J]. Chin. Agric. Sci. Bull., 2009, 25(11):84-87. | |
13 | 曹丹,张红梅,杨海鹏,等.高温胁迫下不同玉米材料间的基因差异表达分析[J].甘肃农业大学学报,2021,56(1):42-49. |
CAO D, ZHANG H M, YANG H P,et al..A differential expression of genes between different maizematerials under high temperature stress [J]. J. Gansu Agric. Univ., 2021, 56(1):42-49. | |
14 | 李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花粉组织内源激素的关系[J].农业生物技术学报,1996,4(4): 307-313. |
LI Y X, ZHANG A M, HUANG T C. Relationship between wheat cytoplasmic males terility and the content of endogenous hormones in the anther [J]. J. Agric. Biotechnol., 1996, 4(4):307-313. | |
15 | TANG R S, ZHENG J C, JIN Z Q, et al.. Possible correlation betweenhigh temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.) [J]. Plant Growth Regul., 2008, 54(1):37-43. |
16 | 解海岩,蒋培东,王晓玲,等.棉花细胞质雄性不育花药败育过程中内源激素的变化[J].作物学报,2006,32(7):1094 -1096. |
XIE H Y, JIANG P D, WANG X L, et al.. Changes of phytohormone contents in anther abortion of cytoplasmic male sterile cotton [J]. Sci. Agric. Sin., 2006, 32(7):1094 -1096. | |
17 | 张凯,乔新荣.化学杀雄剂2号诱导水稻雄性不育花药的内源激素变化特性[J].江苏农业科学,2016,44(8):95-96. |
ZHANG K, QIAO X R.Changes properties of endogenous hornones in rice male sterile anthers induced by chemical hybridizing agent Ⅱ [J]. Jiangsu Agric. Sci., 2016, 44(8):95-96. | |
18 | 巴青松,张改生,李桂萍,等.赤霉素与小麦生理型雄性不育的关系[J].麦类作物学报,2017,37(3):344-348. |
BA Q S, ZHANG G S, LI G P, et al.. Relationship between gibberellin and chemical induced male sterility in wheat [J]. J. Triticeae Crops, 2017, 37(3):344-348. | |
19 | 丁泽琴.茄子功能性不育的细胞学及内源激素变化研究[D].重庆:西南大学,2014. |
DING Z Q. The research on cytological and changes of endogenous hornones of functional male sterility eggplant [D]. Chongqing: Southwest University,2014. | |
20 | HORNER H, AR MILTON. Microsporogenesis in normal and cytoplasmicmale sterile pepper [J]. Am. J. Bot., 1973, 60(4):7-9. |
21 | 张爱民,李英贤,黄铁城,等.小麦雄性不育与内源激素关系的初步研究[J].农业生物技术学报,1996,4(1):56-61. |
ZHANG A M, LI Y X, HUANG T C, et al.. Relations between endogenous hormones and male sterility in wheat (Triticumaestivum): priliminary results [J]. J. Agric. Biotechnol., 1996,4(1):56-61. | |
22 | 刘玉.花铃期干旱胁迫影响棉花花粉育性的生理机制研究[D].南京:南京农业大学,2019. |
LIU Y. Effects of drought during flowering and boll-forming stage on cotton pollen fertility and related physiological metabolism in pollen [D]. Nanjing: Nanjing Agricultural University, 2019. | |
23 | 张琨,殷丽丽,韩志萍,等.黄花菜小孢子发育时期与花器官形态的关系[J].沈阳农业大学学报, 2020,51(4):482-487. |
ZHANG K, YIN L L, HAN Z P, et al.. Relationship between microspore development periods and floral organ morphology in daylily [J]. J. Shenyang Agric. Univ., 2020, 51(4):482-487. | |
24 | 王强.化学杀雄剂对棉花杀雄机理的研究[D].重庆:西南农业大学,2001. |
WANG Q. The research of chemical gametocide on the male-sterility mechnise in cotton [D]. Chongqing: Southwest University, 2001. | |
25 | LI Z J, CHENG Y F, CUI J M, et al.. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium [J]. BMC Genomics, 2015, 16(1):1-19. |
26 | 郝媛媛.化学杀雄剂诱导小麦雄性不育系的物质代谢及光合特性研究[D].泰安:山东农业大学,2008. |
HAO Y Y. Analysis of material metabolism and photosynthetic characteristics of wheat from chemical hybridization agent [D]. Tai’an: Shandong Agricultural University, 2008. | |
27 | 杨晓丽.芝麻核雄性不育的超微结构观察、内源激素测定及相关基因的克隆研究[D].南京:南京农业大学,2008. |
YANG X L. Studies on ultrastructure features, endogenos phytohormones contents and relative genes isolation of male sterile sesame [D]. Nanjing: Nanjing Agricultural University, 2008. |
[1] | 焦雄飞, 于晋, 冯乐勇, 郭耀东, 樊丽生. 不同播期对谷子DUS测试性状的影响[J]. 中国农业科技导报, 2022, 24(8): 55-64. |
[2] | 郝艳玲, 闫伟. 混合盐胁迫对白榆幼苗形态及生理指标的影响[J]. 中国农业科技导报, 2022, 24(7): 69-76. |
[3] | 崔宏亮, 宋晓晓, 姚庆, 安万刚, 邢宝, 秦培友. 伊犁河谷不同藜麦品种对盐胁迫的生理响应及耐盐评价[J]. 中国农业科技导报, 2022, 24(5): 32-45. |
[4] | 彭田伟, 谢会雅, 李思军, 刘怡轩, 帅开峰, 彭媛媛, 王青, 李迪秦. 复硝酚钠和枯草芽孢杆菌复配对烟苗生长和生理指标的影响[J]. 中国农业科技导报, 2022, 24(4): 154-161. |
[5] | 鱼冰星, 王宏富, 王振华, 张鹏, 成锴, 余爱丽, 闫海丽, 鱼冰洁. 多效唑对谷子茎秆特征及抗倒性的影响[J]. 中国农业科技导报, 2021, 23(8): 37-44. |
[6] | 李冉, 刘宇航, 梁杉, 张敏, . 硒肥对谷子产量因子及其籽粒富硒效果的影响[J]. 中国农业科技导报, 2021, 23(6): 140-146. |
[7] | 张宇杰, 郭平毅, 郭美俊, 周浩, 原向阳, 董淑琦, 王玉国. 外源硒矿粉对谷子保护酶活性、产量和籽粒中硒含量的影响[J]. 中国农业科技导报, 2021, 23(5): 153-159. |
[8] | 岳琳祺,郭佳晖,白雄辉,施卫萍,郭平毅*,郭杰*. 叶面喷施硒肥对不同基因型谷子农艺性状及籽粒硒含量的影响[J]. 中国农业科技导报, 2021, 23(4): 154-163. |
[9] | 田岗, 刘鑫, 王玉文, 刘永忠, 李会霞, 成锴, 王振华, 刘红. 遮光处理对谷子农艺性状、小米品质及蒸煮特性的影响[J]. 中国农业科技导报, 2021, 23(11): 47-54. |
[10] | 相吉山1,张恒儒2,刘涵1,索良喜2,贾姝婧1,张颖1,史景奇1,胡利喆1,蔡一宁1. 不同生态区谷子种质资源表型比较分析[J]. 中国农业科技导报, 2020, 22(9): 31-41. |
[11] | 杨瑞萍1,刘瑞香1,马迎梅1*,郭占斌2,张宏武2,白宇1,赵新宇1. 不同藜麦资源的抗旱性评价及渗透调节剂对其抗旱性的影响[J]. 中国农业科技导报, 2020, 22(9): 52-60. |
[12] | 张嘉雯,卢绍浩,赵喆,赵铭钦*. 外源褪黑素对低温胁迫下烟草幼苗生理指标的影响[J]. 中国农业科技导报, 2020, 22(9): 78-86. |
[13] | 张琛,韩婷,马洁,杨涓,刘根红,郑国琦* . 起垄高度对黑果枸杞生长及生理特性的影响[J]. 中国农业科技导报, 2020, 22(9): 153-161. |
[14] | 李会霞1§,郑植尹2§,田岗1,刘鑫1,王玉文1,刘红1,史关燕3*. 7个谷子杂交种及其亲本的抗旱性分析[J]. 中国农业科技导报, 2020, 22(7): 20-28. |
[15] | 李智,王宏富*,王钰云,杨净,鱼冰星,黄珊珊. 谷子大豆间作对作物光合特性及产量的影响[J]. 中国农业科技导报, 2020, 22(6): 168-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||