中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (7): 199-209.DOI: 10.13304/j.nykjdb.2022.1026
• 生物制造 资源生态 • 上一篇
孔令玮1,2(), 王孔檀1,3, 麦力文1,4, 伍玉鹏2, 王熊飞5, 王朝弼5, 林嘉聪1,4(
), 李勤奋1,4(
)
收稿日期:
2022-11-24
接受日期:
2023-03-21
出版日期:
2024-07-15
发布日期:
2024-07-12
通讯作者:
林嘉聪,李勤奋
作者简介:
孔令玮E-mail: klwdqy@163.com
基金资助:
Lingwei KONG1,2(), Kongtan WANG1,3, Liwen MAI1,4, Yupeng WU2, Xiongfei WANG5, Zhaobi WANG5, Jiacong LIN1,4(
), Qinfen LI1,4(
)
Received:
2022-11-24
Accepted:
2023-03-21
Online:
2024-07-15
Published:
2024-07-12
Contact:
Jiacong LIN,Qinfen LI
摘要:
传统蚯蚓堆肥原料配制依赖质量比、体积比或碳氮比(C/N)的配制方法,忽略了不同碳源有机质生物可利用组分的差异,存在不合理性。为探究不同生物可利用度碳源对蚯蚓生长繁殖和堆肥碳氮固定的影响,在C/N=30下,以牛粪(氮源)和生物利用度低、中、高的碳源物料(菠萝皮渣、水稻秸秆和番茄秸秆)复配,开展60 d蚯蚓堆肥试验。结果表明,蚯蚓日均增数量最高达6.4倍。易利用碳源菠萝皮渣处理中腐殖质含量最高,为15.11%,但总有机碳固定率最低,仅39.63%;添加难利用碳源番茄秸秆处理组中的蚯蚓总数最高,为385条,且总氮固定率最高。生物利用度高的碳源废弃物占比越高,蚯蚓增重越大;生物利用度低的碳源废弃物占比越高,可促进蚯蚓繁殖;蚯蚓转化后的蚓粪总有机碳固定率为39.63%~59.28%,全氮固定率为65.04%~95.59%。碳源生物可利用度增大时,蚯蚓堆肥体系中的总有机碳固定率降低,而总氮的固定率升高。以上研究结果阐明了原料中不同利用度碳源对蚯蚓生产和碳氮固持的影响规律,为蚯蚓高效养殖与绿色低碳的固废堆肥处理工艺改进提供参考借鉴。
中图分类号:
孔令玮, 王孔檀, 麦力文, 伍玉鹏, 王熊飞, 王朝弼, 林嘉聪, 李勤奋. 不同生物利用度碳源对蚯蚓堆肥影响分析[J]. 中国农业科技导报, 2024, 26(7): 199-209.
Lingwei KONG, Kongtan WANG, Liwen MAI, Yupeng WU, Xiongfei WANG, Zhaobi WANG, Jiacong LIN, Qinfen LI. Effects of Carbon Source with Different Bioavailability on Vermicomposting[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 199-209.
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
pH | 4.69±0.11 | 7.79±0.01 | 7.60±0.01 | 7.39±0.04 |
电导率Electrical conductivity/(mS·cm-1) | 3.93±0.03 | 3.62±0.04 | 1.91±0.01 | 1.98±0.01 |
总有机碳TOC/% | 37.52±0.23 | 36.41±0.11 | 42.51±0.32 | 41.12±0.21 |
全氮TN/% | 0.59±0.01 | 0.58±0.02 | 1.01±0.01 | 1.96±0.02 |
碳氮比C/N | 63.59 | 62.77 | 42.09 | 20.98 |
表1 堆肥基料基本理化性质
Table 1 Basic physical and chemical properties of compost base material
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
pH | 4.69±0.11 | 7.79±0.01 | 7.60±0.01 | 7.39±0.04 |
电导率Electrical conductivity/(mS·cm-1) | 3.93±0.03 | 3.62±0.04 | 1.91±0.01 | 1.98±0.01 |
总有机碳TOC/% | 37.52±0.23 | 36.41±0.11 | 42.51±0.32 | 41.12±0.21 |
全氮TN/% | 0.59±0.01 | 0.58±0.02 | 1.01±0.01 | 1.96±0.02 |
碳氮比C/N | 63.59 | 62.77 | 42.09 | 20.98 |
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
易利用有机碳含量LCP1 content/(g·kg-1) | 197.71±1.13 | 91.13±0.81 | 128.31±1.24 | 133.13±0.90 |
中等利用度有机碳含量LCP2 content/(g·kg-1) | 173.10±0.64 | 108.33±0.80 | 63.42±0.90 | 18.50±0.21 |
非活性有机碳含量RCP content/(g·kg-1) | 4.42±0.11 | 164.21±0.90 | 233.22±1.20 | 202.06±1.30 |
易利用碳素有效率ACC1/% | 52.69±0.31 | 25.05±0.24 | 30.20±0.60 | 32.30±0.11 |
中等利用碳素有效率ACC2/% | 46.13±0.22 | 29.78±0.30 | 14.92±0.20 | 18.54±0.33 |
碳素有效率ACC/% | 50.91±0.44 | 54.84±0.52 | 27.23±0.20 | 50.91±0.44 |
表2 堆肥基料中不同生物利用度碳素含量及有效率
Table 2 Carbon content and efficiency of different bioavailability in compost base material
指标 Index | 菠萝皮渣 Pineapple peel | 水稻秸秆 Rice straw | 番茄秸秆 Tomato straw | 牛粪 Cow manure |
---|---|---|---|---|
易利用有机碳含量LCP1 content/(g·kg-1) | 197.71±1.13 | 91.13±0.81 | 128.31±1.24 | 133.13±0.90 |
中等利用度有机碳含量LCP2 content/(g·kg-1) | 173.10±0.64 | 108.33±0.80 | 63.42±0.90 | 18.50±0.21 |
非活性有机碳含量RCP content/(g·kg-1) | 4.42±0.11 | 164.21±0.90 | 233.22±1.20 | 202.06±1.30 |
易利用碳素有效率ACC1/% | 52.69±0.31 | 25.05±0.24 | 30.20±0.60 | 32.30±0.11 |
中等利用碳素有效率ACC2/% | 46.13±0.22 | 29.78±0.30 | 14.92±0.20 | 18.54±0.33 |
碳素有效率ACC/% | 50.91±0.44 | 54.84±0.52 | 27.23±0.20 | 50.91±0.44 |
处理 Treatment | 易利用有机碳含量 LCP1 content/% | 中等利用度有机碳含量 LCP2 content/% | 非活性有机碳含量 RCP content/% |
---|---|---|---|
PCM | 41.51 | 30.96 | 27.53 |
RCM | 29.05 | 23.64 | 47.31 |
TCM | 31.10 | 16.42 | 52.48 |
CM | 32.37 | 18.54 | 49.13 |
表3 不同处理组碳素占比
Table 3 Carbon proportion of different treatment groups
处理 Treatment | 易利用有机碳含量 LCP1 content/% | 中等利用度有机碳含量 LCP2 content/% | 非活性有机碳含量 RCP content/% |
---|---|---|---|
PCM | 41.51 | 30.96 | 27.53 |
RCM | 29.05 | 23.64 | 47.31 |
TCM | 31.10 | 16.42 | 52.48 |
CM | 32.37 | 18.54 | 49.13 |
类别Type | 指标Index | 时间Time/d | CM | PCM | RCM | TCM |
---|---|---|---|---|---|---|
蚯蚓繁殖Earthworm propagation | 总数 Total number | 0 | 15 β | 15 α | 15 β | 15 β |
60 | 93±11.01 αc | 19±7.02 αd | 344±11.21 αb | 385±11.02 αa | ||
幼蚓数 Number of juvenile earthworms | 0 | — | — | — | — | |
60 | 81±3.54 c | 6±0.21 d | 336±5.17 b | 375±4.21 a | ||
成蚓数 Number of adult earthworms | 0 | 15 α | 15 α | 15 α | 15 α | |
60 | 12±0.58 αa | 14±2.12 αa | 8±2.30 βb | 10±2.83 βb | ||
蚓茧数 Cocoon number | 60 | 46±0.21 b | 27±3.54 c | 37±6.01 b | 61±8.49 a | |
总增数量 Total increment | 60 | 78±0.07 c | 4±0.03 d | 329±0.04 b | 370±1.12 a | |
日增数量 Daily incremental number | 60 | 1.30 c | 0.07 d | 5.72 b | 6.41 a | |
蚯蚓生长 Earthworm growth | 总质量 Total mass/g | 0 | 4.00±0.03 βa | 4.00±0.02 βa | 3.90±0.01 βa | 4.10±0.04 βa |
60 | 6.50±0.82 αb | 7.90±0.88 αb | 15.50±3.31 αa | 16.10±0.13 αa | ||
幼蚓质量 Mass of juvenile earthworms/g | 0 | — | — | — | — | |
60 | 1.73±0.53 b | 0.06±0.01 c | 10.90±1.74 a | 11.00±0.31 a | ||
成蚓质量 Mass of adult earthworms/g | 0 | 4.05±0.12 αa | 4.01±0.02 βa | 3.90±0.05 αa | 4.10±0.11 αa | |
60 | 4.80±0.29 αb | 7.80±0.79 αa | 4.50±0.61 αb | 5.10±0.18 αb | ||
单只幼蚓质量/g Mass of single juvenile earthworm/g | 0 | — | — | — | — | |
60 | 0.02±0.003 a | 0.01±0.001 a | 0.03±0.003 a | 0.03±0.005 b | ||
单只成蚓质量 Mass of single adult earthworm/g | 0 | 0.27±0.03 βa | 0.27±0.02 βa | 0.26±0.02 βa | 0.27±0.01 βa | |
60 | 0.40±0.04 αb | 0.60±0.02 αa | 0.60±0.16 αa | 0.50±0.09 αb | ||
总增质量 Gross mass gain/g | 60 | 2.61±0.97 b | 3.91±0.88 c | 11.60±3.45 a | 12.32±0.34 a | |
日增质量 Daily incremental mass gain/(g·d-1) | 60 | 0.04±0.01 c | 0.07±0.01 b | 0.19±0.02 a | 0.21±0.03 a |
表4 蚯蚓生长繁殖效果
Table 4 Effect of earthworm growth and reproduction
类别Type | 指标Index | 时间Time/d | CM | PCM | RCM | TCM |
---|---|---|---|---|---|---|
蚯蚓繁殖Earthworm propagation | 总数 Total number | 0 | 15 β | 15 α | 15 β | 15 β |
60 | 93±11.01 αc | 19±7.02 αd | 344±11.21 αb | 385±11.02 αa | ||
幼蚓数 Number of juvenile earthworms | 0 | — | — | — | — | |
60 | 81±3.54 c | 6±0.21 d | 336±5.17 b | 375±4.21 a | ||
成蚓数 Number of adult earthworms | 0 | 15 α | 15 α | 15 α | 15 α | |
60 | 12±0.58 αa | 14±2.12 αa | 8±2.30 βb | 10±2.83 βb | ||
蚓茧数 Cocoon number | 60 | 46±0.21 b | 27±3.54 c | 37±6.01 b | 61±8.49 a | |
总增数量 Total increment | 60 | 78±0.07 c | 4±0.03 d | 329±0.04 b | 370±1.12 a | |
日增数量 Daily incremental number | 60 | 1.30 c | 0.07 d | 5.72 b | 6.41 a | |
蚯蚓生长 Earthworm growth | 总质量 Total mass/g | 0 | 4.00±0.03 βa | 4.00±0.02 βa | 3.90±0.01 βa | 4.10±0.04 βa |
60 | 6.50±0.82 αb | 7.90±0.88 αb | 15.50±3.31 αa | 16.10±0.13 αa | ||
幼蚓质量 Mass of juvenile earthworms/g | 0 | — | — | — | — | |
60 | 1.73±0.53 b | 0.06±0.01 c | 10.90±1.74 a | 11.00±0.31 a | ||
成蚓质量 Mass of adult earthworms/g | 0 | 4.05±0.12 αa | 4.01±0.02 βa | 3.90±0.05 αa | 4.10±0.11 αa | |
60 | 4.80±0.29 αb | 7.80±0.79 αa | 4.50±0.61 αb | 5.10±0.18 αb | ||
单只幼蚓质量/g Mass of single juvenile earthworm/g | 0 | — | — | — | — | |
60 | 0.02±0.003 a | 0.01±0.001 a | 0.03±0.003 a | 0.03±0.005 b | ||
单只成蚓质量 Mass of single adult earthworm/g | 0 | 0.27±0.03 βa | 0.27±0.02 βa | 0.26±0.02 βa | 0.27±0.01 βa | |
60 | 0.40±0.04 αb | 0.60±0.02 αa | 0.60±0.16 αa | 0.50±0.09 αb | ||
总增质量 Gross mass gain/g | 60 | 2.61±0.97 b | 3.91±0.88 c | 11.60±3.45 a | 12.32±0.34 a | |
日增质量 Daily incremental mass gain/(g·d-1) | 60 | 0.04±0.01 c | 0.07±0.01 b | 0.19±0.02 a | 0.21±0.03 a |
图1 蚯蚓堆肥基本理化特性注:不同小写字母表示同一时间不同处理间在P<0.05水平差异显著;**表示同一处理中不同时间在P<0.01水平差异显著。
Fig. 1 Basic physicochemical properties of vermicompostNote:Different lowercase letters indicate significant differences between different treatments of same time at P<0.05level; ** indicates significant difference between different times of same treatment at P<0.01 level.
图2 蚯蚓堆肥碳氮转化与固持效果注:不同小写字母表示同一时间不同处理间在P<0.05水平差异显著;**表示同一处理中不同时间在P<0.01水平差异显著。
Fig. 2 Carbon and nitrogen conversion and sequestration effect of vermicompostNote:Different lowercase letters indicate significant differences between different treatments of same time at the P<0.05level; ** indicates significant difference between different times of same treatment at P<0.01 level.
图3 不同原料碳组分与蚯蚓生长繁殖相关性分析注:LCP1—易利用有机碳;LCP2—中等利用有机碳;RCP—非活性有机碳;LCP—活性有机碳。
Fig. 3 Correlation analysis between different raw material carbon fractions and earthworm growth and reproductionNote:LCP1—Labile carbon pool Ⅰ; LCP2—Labile carbon pool Ⅱ; RCP—Recalcitrant carbon pool.
图4 不同原料碳组分与堆肥产物碳氮变化相关性注:LCP1—易利用有机碳;LCP2—中等利用有机碳;RCP—非活性有机碳;NH4+-N—铵态氮;NO3--N—硝态氮;TOC—总有机碳;TN—全氮;HS—腐殖质;HA—胡敏酸;FA—富里酸;FRTOC—TOC固定率;FRTN—TN固定率。
Fig. 4 Correlation analysis between carbon fraction of different raw materials and carbon and nitrogen changesNote:LCP1—Labile carbon pool Ⅱ; LCP2—Labile carbon pool Ⅱ; RCP—Recalcitrant carbon pool; NH4+-N—Ammonium nitrogen; NO3--N—Nitrate nitrogen; TOC—Total organic carbon; TN—Total nitrogen; HS—Humus; HA—Humic acid; FA—Fulvic acid; FRTOC—TOC fixed rate;FRTN—TN fixed rate.
参数 Parameter | 成蚓质量 Mass of adult earthworms | 幼蚓质量 Mass of young earthworms | 成蚓数 Number of adult earthworms | 幼蚓数 Number of young earthworms | TOC固定率 Fixed rate of TOC | TN固定率Fixed rate of TN |
---|---|---|---|---|---|---|
总有机碳TOC | 0.65 | 1.26 | 1.42 | 1.28 | 1.52 | 1.31 |
全氮TN | 0.67 | 0.42 | 0.70 | 0.43 | 0.43 | 0.42 |
易利用有机碳LCP1 | 1.24 | 1.31 | 1.37 | 1.32 | 1.32 | 1.36 |
中等利用有机LCP2 | 0.99 | 1.14 | 0.95 | 1.14 | 1.12 | 1.15 |
难利用有机碳RCP | 1.05 | 1.56 | 0.84 | 1.56 | 1.52 | 1.56 |
碳素活度AC | 1.12 | 0.43 | 0.89 | 0.43 | 0.26 | 0.43 |
易利用碳素活度AC1 | 1.15 | 0.32 | 0.95 | 0.32 | 0.32 | 0.33 |
中等利用碳素活度AC2 | 1.09 | 0.29 | 0.85 | 0.29 | 0.29 | 0.29 |
碳素有效率ACC | 1.09 | 0.16 | 0.87 | 0.16 | 0.15 | 0.16 |
易利用碳素有效率ACC1 | 1.15 | 0.13 | 1.17 | 0.13 | 0.13 | 0.13 |
中等利用碳素有效率ACC2 | 0.96 | 0.13 | 0.90 | 0.13 | 0.13 | 0.13 |
活性有机碳LCP | 1.13 | 1.45 | 0.95 | 1.44 | 1.42 | 1.46 |
活性有机碳/全氮LCP/TN | 0.84 | 1.37 | 0.85 | 1.37 | 1.36 | 1.36 |
易利用有机碳/全氮 LCP1/TN | 0.81 | 1.13 | 1.11 | 1.13 | 1.17 | 1.15 |
中等利用有机碳/全氮LCP2/TN | 0.82 | 1.01 | 0.84 | 1.01 | 0.98 | 0.99 |
难利用有机碳/全氮RCP/TN | 1.07 | 1.52 | 0.95 | 1.52 | 1.50 | 1.49 |
表5 原料碳组分参数VIP值
Table 5 VIP value of raw materiali carbon components
参数 Parameter | 成蚓质量 Mass of adult earthworms | 幼蚓质量 Mass of young earthworms | 成蚓数 Number of adult earthworms | 幼蚓数 Number of young earthworms | TOC固定率 Fixed rate of TOC | TN固定率Fixed rate of TN |
---|---|---|---|---|---|---|
总有机碳TOC | 0.65 | 1.26 | 1.42 | 1.28 | 1.52 | 1.31 |
全氮TN | 0.67 | 0.42 | 0.70 | 0.43 | 0.43 | 0.42 |
易利用有机碳LCP1 | 1.24 | 1.31 | 1.37 | 1.32 | 1.32 | 1.36 |
中等利用有机LCP2 | 0.99 | 1.14 | 0.95 | 1.14 | 1.12 | 1.15 |
难利用有机碳RCP | 1.05 | 1.56 | 0.84 | 1.56 | 1.52 | 1.56 |
碳素活度AC | 1.12 | 0.43 | 0.89 | 0.43 | 0.26 | 0.43 |
易利用碳素活度AC1 | 1.15 | 0.32 | 0.95 | 0.32 | 0.32 | 0.33 |
中等利用碳素活度AC2 | 1.09 | 0.29 | 0.85 | 0.29 | 0.29 | 0.29 |
碳素有效率ACC | 1.09 | 0.16 | 0.87 | 0.16 | 0.15 | 0.16 |
易利用碳素有效率ACC1 | 1.15 | 0.13 | 1.17 | 0.13 | 0.13 | 0.13 |
中等利用碳素有效率ACC2 | 0.96 | 0.13 | 0.90 | 0.13 | 0.13 | 0.13 |
活性有机碳LCP | 1.13 | 1.45 | 0.95 | 1.44 | 1.42 | 1.46 |
活性有机碳/全氮LCP/TN | 0.84 | 1.37 | 0.85 | 1.37 | 1.36 | 1.36 |
易利用有机碳/全氮 LCP1/TN | 0.81 | 1.13 | 1.11 | 1.13 | 1.17 | 1.15 |
中等利用有机碳/全氮LCP2/TN | 0.82 | 1.01 | 0.84 | 1.01 | 0.98 | 0.99 |
难利用有机碳/全氮RCP/TN | 1.07 | 1.52 | 0.95 | 1.52 | 1.50 | 1.49 |
1 | 孙振钧. 蚯蚓养殖实用技术[M]. 北京: 中国科学技术出版社, 2018: 1-4. |
2 | BHAT S A, SINGH J. Earthworms as organic waste managers and biofertilizer producers [J]. Waste Biomass Valoriz., 2018, 9:1073-1086. |
3 | 林嘉聪, 刘志刚, 袁巧霞, 等. 蚯蚓分离方法与设备的研究现状[J]. 中国农业科技导报, 2017, 19(2): 103-109. |
LIN J C, LIU Z G, YUAN Q X, et al.. Research progress on earthworm separating methods and devices [J]. J. Agric. Sci. Technol., 2017, 19(2): 103-109. | |
4 | 李贺, 郭海滨, 魏雅冬. 农作物秸秆及食用菌菌渣等农业废弃物资源化利用现状分析[J]. 现代农业研究, 2022, 28(5): 17-19. |
LI H, GUO H B, WEI Y D. Analysis on the resource utilization of agricultural waste such as crop straw and edible fungus residue [J]. Mod. Agric. Res., 2022, 28(5): 17-19. | |
5 | RAZA S T, WU J P, RENE E R, et al.. Reuse of agricultural wastes, manure, and biochar as an organic amendment: a review on its implications for vermicomposting technology [J]. J. Cleaner Prod., 2022, 360(8): 1-14. |
6 | 郎跃深, 郑方强. 蚯蚓养殖关键技术与应用[M].北京:科学技术文献出版社, 2015:10-11. |
7 | YU X L, LI X L, REN C Q, et al.. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom [J/OL]. Bioresour. Technol., 2022, 358:127386 [2022-10-20]. . |
8 | YADAV A, GARG V K. Biotransformation of bakery industry sludge into valuable product using vermicomposting [J/OL]. Bioresour. Technol., 2019, 274:023 [2022-10-20]. . |
9 | 张智, 李双来, 陈云峰, 等. 蚯蚓堆肥模式的环境效益评价[J]. 中国土壤与肥料, 2022(8): 198-204. |
ZHANG Z, LI S L, CHEN Y F, et al.. Environmental benefits evaluation of vermicomposting [J]. Soil Fert. Sci., 2022(8): 198-204. | |
10 | 董炜华, 殷秀琴, 辛树权. 赤子爱胜蚓对不同猪粪和秸秆的分解作用[J]. 生态学杂志, 2012, 31(12): 3109-3115. |
DONG W H, YIN X Q, XIN S Q. Roles of Eisenia foetida in decomposing different kinds pig dung and crop straw [J]. Chin. J. Ecol., 2012, 31(12):3109-3115. | |
11 | 牛德真. 好氧堆肥与蚯蚓堆肥对农业废弃物降解效果研究[D]. 邯郸: 河北工程大学, 2022. |
NIU D Z. Study on the degradation effect of aerobic compost and vermicompost on agricultural waste [D]. Handan: Hebei University of Engineering, 2022. | |
12 | WANG G, TU Q P, DONG D, et al.. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting [J]. J. Hazardous Materials, 2014, 280: 409-416. |
13 | GUO H H, GU J, WANG X J, et al.. Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure [J/OL]. Bioresour. Technol., 2020, 298: 122384 [2022-10-20]. . |
14 | DEVI C, KHWAIRAKPAM M. Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture [J/OL]. Bioresour. Technol., 2020, 296: 122308 [2022-10-20]. . |
15 | CHE J G, LIN W F, YE J, et al.. Insights into compositional changes of dissolved organic matter during a full-scale vermicomposting of cow dung by combined spectroscopic and electrochemical techniques [J/OL]. Bioresour. Technol., 2020, 301:122757 [2022-10-20]. . |
16 | 刘鹏. 利用蚯蚓对不同配比牛粪和玉米秸秆堆肥效果的影响[J]. 中国畜禽种业, 2022, 18(6): 37-39. |
17 | QU S, ZHANG L J, ZHANG X, et al.. Biochar combined with gypsum reduces both nitrogen and carbon losses during agricultural waste composting and enhances overall compost quality by regulating microbial activities and functions [J/OL]. Bioresour. Technol., 2020, 314:123781 [2022-10-20]. . |
18 | 刘科, 韦秀丽, 郭萧, 等. 利用乡村有机废弃物进行蚯蚓养殖的种类筛选及配比优化研究[J]. 中国沼气, 2022, 40(4): 50-54. |
LIU K, WEI X L, GUO X, et al.. Study on the species selection and proportion optimization of earthworms culture using rural organic waste [J]. China Biogas, 2022, 40(4): 50-54. | |
19 | 徐雪东. 四种饵料及配比对蚯蚓生长繁殖及堆肥质量的影响[D]. 杨凌: 西北农林科技大学, 2020. |
XU X D. Effects of four kinds of bait and batio on growth and reproduction of earthworms and quality of compost [D]. Yangling: Northwest A&F University, 2020. | |
20 | ROVIRA P, VALLEJO V R. Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial [J]. Soil Biol. Biochem., 2002, 34(3): 327-339. |
21 | 沈宏, 曹志洪. 长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J]. 热带亚热带土壤科学, 1998, 7(1): 1-5. |
SHEN H, CAO Z H. Effect of long-term fertilization on soil available carbon pool and available ratio of soil carbon under different agroecosystems [J]. Trop. Subtrop. Soil Sci., 1998, 7(1): 1-5. | |
22 | 田有国,李季,沈其荣,等. 有机肥料: [S].北京:中国标准出版社,2021. |
23 | 李金津, 史静怡, 文婷, 等. 不同四环素浓度对好氧堆肥和蚯蚓堆肥过程影响的对比研究[J]. 环境科学学报, 2022, 42(4): 259-267. |
LI J J, SHI J Y, WEN T, et al.. Comparative study on the effects of tetracycline content on aerobic composting and vermicomposting processes [J]. Acta Sci. Circumstantiae, 2022, 42(4): 259-267. | |
24 | GONG X Q, ZHANG Z T, WANG H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw [J/OL]. J. Environ. Manage., 2021, 295:113136 [2022-10-20]. . |
25 | 刘媛媛, 徐智, 陈卓君, 等. 外源添加磷石膏对堆肥碳组分及腐殖质品质的影响[J]. 农业环境科学学报, 2018, 37(11): 2483-2490. |
LIU Y Y, XU Z, CHEN Z J, et al.. Effects of phosphogypsum addition on carbon fractions and humus quality during composting [J]. J. Agro⁃Environ. Sci., 2018, 37(11): 2483-2490. | |
26 | 史雅静, 徐明, 王振宇, 等. 蚯蚓对菇渣中纤维素和木质素生物转化的研究[J]. 环境科学学报, 2020, 40(5): 1779-1785. |
SHI Y J, XU M, WANG Z Y, et al.. Biotransformation of lignocellulose in mushroom residue by earthworm [J]. Acta Sci. Circumstantiae, 2020, 40(5): 1779-1785. | |
27 | 李加龙, 罗纯良, 吕恒, 等. 2002—2018年滇池外海蓝藻水华暴发时空变化特征及其驱动因子分析[J]. 生态学报, 2023, 43(2): 878-891. |
LI J L, LUO C L, LYU H, et al.. Spatio-temporal variation and driving factirs of algal bloom at lake Dianchi during 2002—2018 [J]. Acta Ecol. Sin., 2023, 43(2): 878-891. | |
28 | 周强, 袁明昊, 曾彬, 等. ICP-MS法结合OPLS-DA鉴别6种鹿茸[J]. 中药, 2022, 44(10): 3229-3233. |
ZHOU Q, YUAN M H, ZENG B, et al.. Identification of six kinds of Cervi Cornu Pantotrichum by ICP-MS combined with OPLS-DA [J]. Chin. Trad. Patent Med., 2022, 44(10):3229-3233. | |
29 | RAMOS R F, SANTANA N A, ANDRADE N D, et al.. Vermicomposting of cow manure: effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost [J/OL]. Bioresour. Technol., 2022, 345:126572 [2022-10-20]. . |
30 | 龚小强. 外源添加物对园林绿化废弃物蚯蚓堆肥影响研究[D]. 北京: 北京林业大学, 2019. |
GONG X Q. Study on the effect of exogenous additives on vermicomposting of green waste [D]. Beijing: Beijing Forestry University, 2019. | |
31 | 张威. 蚯蚓处理不同畜禽粪和秸秆组合试验研究[D]. 长春:东北师范大学, 2008. |
ZHANG W. Study on treatment of earthworm to different combinations of livestock manure and stalk [D]. Changchun: Northeast Normal University, 2008. | |
32 | 解新宇, 史明子, 魏自民, 等. 堆肥腐殖化: 非生物学与生物学调控机制概述[J]. 生物技术通报, 2022, 38(5): 29-35. |
XIE X Y, SHI M Z, WEI Z M, et al.. Compost humification: an overview of abiotic and biological regulatory mechanisms [J]. Biotech. Bull., 2022, 38(5): 29-35. | |
33 | 师恩慧. 蚯蚓在秸秆堆制过程中对氮代谢的影响[D]. 长春: 吉林大学, 2022. |
SHI E H. The effect of Eisenia fetida on nitrogen metabolism during corn straw composting [D]. Changchun: Jilin University, 2022. | |
34 | ZHONG H Y, YANG S, ZHU L, et al.. Effect of microplastics in sludge impacts on the vermicomposting [J/OL]. Bioresour. Technol., 2021, 326: 124777[2022-10-20]. . |
35 | 韩相龙. 饵料配比与调理剂对蚯蚓生长繁殖与堆肥质量的影响[D]. 杨凌: 西北农林科技大学, 2019. |
HAN X L. Effect of feeding ratio and conditioning agent on growth and reproduction of earthworm and vermicomposting quality [D]. Yangling: Northwest A&F University, 2019. | |
36 | JAIN M S, JAMBHULKAR R, AJAY S. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties [J]. Bioresour. Technol., 2018, 253: 204-213. |
37 | KHAN M B, CUI X Q, JILANI G, et al.. Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality [J]. Sci. Total Environ., 2019, 684(9): 597-609. |
38 | 马建林. 蚯蚓与微型生物的协同作用对堆肥过程的影响[D]. 兰州: 兰州交通大学, 2021. |
MA J L. The synergistic effect of earthworm and microbiota on vermicomposting process [D]. Lanzhou: Lanzhou Jiaotong University, 2021. | |
39 | 蔡琳琳. 园林绿化废弃物蚯蚓堆肥腐熟过程控制及氮转化机制研究[D]. 北京: 北京林业大学, 2021. |
CAI L L. Mechanism in green waste vermicomposting study on decomposing process control and nitrogen conversion [D]. Beijing: Beijing Forestry University, 2021 | |
40 | HUANG K, XIA H, ZHANG Y Y, et al.. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis [J/OL]. Bioresour. Technol., 2020, 297:122451 [2022-10-20]. . |
41 | CHEN Y X, ZHANG Y, SHI X, et al.. The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung [J/OL]. Bioresour. Technol., 2022, 364:128283 [2023-10-20]. . |
42 | CAI S Y, LIU M, ZHANG Y, et al.. Molecular transformation of dissolved organic matter and formation pathway of humic substances in dredged sludge under aerobic composting [J/OL]. Bioresour. Technol., 2022, 364: 128141 [2023-10-20]. . |
[1] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[2] | 刘峰峰, 吴明, 周迎辉, 吴勇, 田嘉树, 许嘉阳, 许自成, 何结望. 生长素与钼配施对烤烟上部叶生理代谢及品质的影响[J]. 中国农业科技导报, 2024, 26(2): 208-215. |
[3] | 高静娟, 朱晨宇, 柯玉琴, 郑朝元, 李春英, 李文卿. 烟稻轮作条件下有机肥施用时期对烤烟碳氮代谢的影响[J]. 中国农业科技导报, 2023, 25(9): 157-165. |
[4] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[5] | 吴雨露, 扈嘉鑫, 陈宇熙, 郑炳松, 闫道良. 外施α-酮戊二酸对盐胁迫下海滨锦葵生长、碳氮磷养分积累及其计量关系的影响[J]. 中国农业科技导报, 2023, 25(7): 170-177. |
[6] | 蒯雁, 苏欣悦, 王晋峰, 范志勇, 李建华, 孙楠, 张久权, 徐明岗. 大理典型烟区土壤有机质与全氮时空演变特征[J]. 中国农业科技导报, 2023, 25(12): 177-185. |
[7] | 申云鑫, 施竹凤, 韩天华, 周旭东, 贺彪, 赵文山, 和强, 马斌, 陈齐斌, 杨佩文. 土壤微生物多样性对有机碳源物料输入的响应特征[J]. 中国农业科技导报, 2023, 25(10): 221-233. |
[8] | 苏煜, 黄劭理. 增施生物有机肥对烤烟光合特性及根际土壤微生物的影响[J]. 中国农业科技导报, 2022, 24(1): 164-171. |
[9] | 伊淼1,2§,王建国 2§,尹金1,郭峰2,张佳蕾2,唐朝辉2,李新国2,3*,万书波2,3*. 减氮增钙及施用时期对花生生长发育及生理特性的影响[J]. 中国农业科技导报, 2021, 23(4): 164-172. |
[10] | 保志娟,金蓉,杨金清,张琦,朱永立,赵正雄*. Pb、Zn复合作用对烤烟抗氧化酶及碳氮代谢的影响[J]. 中国农业科技导报, 2021, 23(2): 65-72. |
[11] | 胡红文,夏运红,查琳,刘贵平,李清亮. 不同添料频率对蚯蚓堆肥的影响[J]. 中国农业科技导报, 2020, 22(9): 162-168. |
[12] | 李一凡,赵松超,刘博远,赵铭钦*. 采收时间对雪茄碳氮代谢关键酶活性和化学成分的影响[J]. 中国农业科技导报, 2019, 21(3): 126-132. |
[13] | 吴飞跃1,申燕2,杨振智2,喻奇伟2,黄化刚1,2*,马明3*,贾宏昉1. 不同施肥对烤烟中部叶碳氮代谢及基因表达的影响[J]. 中国农业科技导报, 2018, 20(10): 21-28. |
[14] | 王远1,许嘉阳2,任志广1,邵惠芳1,黄五星1,许自成1*. 氟节胺对烤烟碳氮代谢及叶片超微结构的影响[J]. 中国农业科技导报, 2017, 19(9): 34-41. |
[15] | 王佩雯1,朱金峰2,任志广1,陈征1,许自成1*. 不同土壤改良剂处理下连作植烟土壤化学性质及土壤酶活性的耦合分析[J]. 中国农业科技导报, 2017, 19(4): 82-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||