Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (6): 165-173.DOI: 10.13304/j.nykjdb.2021.1025
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Xudong WANG1(), Xuebing REN1, Shu TANG1, Qin GUO1, Mengyao XUE1, Peng JIN2, Yunhua ZHANG1(
)
Received:
2021-12-02
Accepted:
2022-05-06
Online:
2023-06-01
Published:
2023-07-28
Contact:
Yunhua ZHANG
王旭东1(), 任雪冰1, 汤舒1, 郭琴1, 薛梦瑶1, 金鹏2, 张云华1(
)
通讯作者:
张云华
作者简介:
王旭东 E-mail:651283191@qq.com;
基金资助:
CLC Number:
Xudong WANG, Xuebing REN, Shu TANG, Qin GUO, Mengyao XUE, Peng JIN, Yunhua ZHANG. Application of Sludge Biochar in Soil Improvement[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 165-173.
王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173.
方法 Method | 加热速率 Heating rate/(℃·s-1) | 反应时间 Response time | 温度 Temperature/℃ | 原材料粒径 Particle size/mm | 成炭率 Solid/% | 生物油 Liquid/% | 合成气 Syngas/% |
---|---|---|---|---|---|---|---|
慢速热解 Slow pyrolysis | 0.1~1 | 1~2 d | 300~700 | 5~50 | 35 | 30 | 35 |
中速热解 Medium pyrolysis | 1~10 | 0.5~20 s | 450~550 | 1~5 | 25 | 50 | 25 |
快速热解 Fast pyrolysis | 10~1 000 | <20 s | 420~600 | <1 | 10 | 70 | 20 |
闪速热解 Flash pyrolysis | >1 000 | <0.5 s | 750~1 000 | <1 | 10~25 | 50~75 | 10~30 |
Table 1 Preparation of biochar by conventional pyrolysis[11,14,19?20]
方法 Method | 加热速率 Heating rate/(℃·s-1) | 反应时间 Response time | 温度 Temperature/℃ | 原材料粒径 Particle size/mm | 成炭率 Solid/% | 生物油 Liquid/% | 合成气 Syngas/% |
---|---|---|---|---|---|---|---|
慢速热解 Slow pyrolysis | 0.1~1 | 1~2 d | 300~700 | 5~50 | 35 | 30 | 35 |
中速热解 Medium pyrolysis | 1~10 | 0.5~20 s | 450~550 | 1~5 | 25 | 50 | 25 |
快速热解 Fast pyrolysis | 10~1 000 | <20 s | 420~600 | <1 | 10 | 70 | 20 |
闪速热解 Flash pyrolysis | >1 000 | <0.5 s | 750~1 000 | <1 | 10~25 | 50~75 | 10~30 |
重金属 Heavy metal | 含量 Content/(mg·kg-1) | 国家标准(pH≥6.5) National standard (pH≥6.5)/(mg·kg-1) | 超标率 Over standard rate/% | 国家标准(pH<6.5) National standard (pH<6.5)/(mg·kg-1) | 超标率 Over standard rate/% |
---|---|---|---|---|---|
铜Cu | 55.7~2 867.4 | 1 500 | 2.3 | 800 | 7.1 |
镉Cd | 0.4~39.9 | 20 | 5.5 | 5 | 27.4 |
锌Zn | 42.1~3 568.3 | 3 000 | 5.9 | 2 000 | 10.3 |
铅Pb | 9.3~370.0 | 1 000 | 1.0 | 300 | 1.3 |
砷As | 0.9~61.8 | 75 | 0.0 | 75 | 0.0 |
泵Hg | 0.1~15.8 | 15 | 2.9 | 5 | 20.0 |
镍Ni | 13.1~495.3 | 200 | 3.5 | 100 | 12.1 |
铬Cr | 10.6~639.0 | 1 000 | 0.0 | 600 | 1.6 |
Table 2 Concentration of heavy metals in sewage sludge of China (2006—2013)[60]
重金属 Heavy metal | 含量 Content/(mg·kg-1) | 国家标准(pH≥6.5) National standard (pH≥6.5)/(mg·kg-1) | 超标率 Over standard rate/% | 国家标准(pH<6.5) National standard (pH<6.5)/(mg·kg-1) | 超标率 Over standard rate/% |
---|---|---|---|---|---|
铜Cu | 55.7~2 867.4 | 1 500 | 2.3 | 800 | 7.1 |
镉Cd | 0.4~39.9 | 20 | 5.5 | 5 | 27.4 |
锌Zn | 42.1~3 568.3 | 3 000 | 5.9 | 2 000 | 10.3 |
铅Pb | 9.3~370.0 | 1 000 | 1.0 | 300 | 1.3 |
砷As | 0.9~61.8 | 75 | 0.0 | 75 | 0.0 |
泵Hg | 0.1~15.8 | 15 | 2.9 | 5 | 20.0 |
镍Ni | 13.1~495.3 | 200 | 3.5 | 100 | 12.1 |
铬Cr | 10.6~639.0 | 1 000 | 0.0 | 600 | 1.6 |
1 | 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020,72(6): 30-34. |
2 | CHEN Y D, WANG R P, DUAN X G, et al.. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation [J/OL]. Water Res., 2020, 187: 116390 [2021-11-05]. . |
3 | PANDEY D, DAVEREY A, ARUNACHALAM K. Biochar: production, properties and emerging role as a support for enzyme immobilization [J/OL]. J. Clean. Prod., 2020, 255:120267 [2021-11-05]. . |
4 | CHA J S, PARK S H, JUNG S C, et al.. Production and utilization of biochar: a review [J]. J. Ind. Eng. Chem., 2016, 40:1-15. |
5 | KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications [J]. Renew. Sust. Energ. Rev., 2015, 45:359-378. |
6 | GURWICK N P, MOORE L A, KELLY C, et al.. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy [J/OL]. PLoS ONE, 2013, 8(9): e75932 [2021-11-05]. . |
7 | BRASSARD P, GODBOUT S, RAGHAVAN V. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved [J]. J. Environ. Manage., 2016, 181(10):484-497. |
8 | 林琳, 万金忠, 李群, 等. 生物炭负载纳米零价铁材料的制备及还原降解性能[J]. 生态与农村环境学报, 2017, 33(7): 660-664. |
LIN L, WAN J Z, LI Q, et al.. Preparation and reductive degradation properties of biochar loaded with nano zero-valent iron [J]. J. Ecol. Rural Environ., 2017,33(7):660-664. | |
9 | 杨婧, 钟慧, 潘欢, 等. 富磷型猪粪基生物炭肥对土壤-萝卜系统的影响[J]. 生态与农村环境学报, 2020, 36(9): 1169-1176. |
YANG J, ZHONG H, PAN H, et al.. Effect of phosphorus enriched biochar fertilizer prepared from pig-manure on the soil-radish system [J]. J. Ecol. Rural Environ., 2020, 36(9):1169-1176. | |
10 | SYED-HASSAN S S A, WANG Y, HU S, et al.. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations [J]. Renew. Sust. Energ. Rev., 2017, 80(12):888-913. |
11 | CANTINHO P, MATOS M, TRANCOSO M A, et al.. Behaviour and fate of metals in urban wastewater treatment plants: a review [J]. Int. J. Environ. Sci. Tech., 2016, 13(1):359-386. |
12 | RULKENS W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options [J]. Energy Fuels, 2008, 22(1):9-15. |
13 | CHEN Y D, LI S P, HO S H, et al.. Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery [J]. Renew. Sust. Energ. Rev., 2018, 96(11):76-90. |
14 | TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review [J]. Renew. Sust. Energ. Rev., 2016, 55:467-481. |
15 | PARMAR A, NEMA P K, AGARWAL T. Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management [J]. Curr. Sci., 2014, 107(25):1673-1682. |
16 | GAO L Y, DENG J H, HUANG G F, et al.. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge [J]. Bioresour. Technol., 2019, 272:114-122. |
17 | MANARA P, ZABANIOTOU A. Towards sewage sludge based biofuels via thermochemical conversion-a review [J]. Renew. Sust. Energ. Rev., 2012, 16(5):2566-2582. |
18 | PALANIVELU K, RAMACHANDRAN A, RAGHAVAN V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions-a review [J]. Biomass. Convers. Bior., 2021, 11(5):2247-2267. |
19 | MOHAN D, SARSWAT A, OK Y S, et al.. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review [J]. Bioresour. Technol., 2014, 160:191-202. |
20 | RAJA S A, KENNEDY Z R, PILLAI B C, et al.. Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor [J]. Energy, 2010, 35(7): 2819-2823. |
21 | NOVOTNY E H, MAIA C M B F, CARVALHO M T M, et al.. Biochar: pyrogenic carbon for agricultural use-a critical review [J]. Rev. Bras. Ciênc. Solo., 2015, 39: 321-344. |
22 | WANG X Y, QIN G X, CHEN M Q, et al.. Microwave-assisted pyrolysis of cotton stalk with additives [J]. BioResources, 2016, 11(3): 6125-6136. |
23 | BHATTACHARYA M, BASAK T. A review on the susceptor assisted microwave processing of materials [J]. Energy, 2016, 97: 306-338. |
24 | ZHANG Y N, CHEN P, LIU S Y, et al.. Effects of feedstock characteristics on microwave-assisted pyrolysis-a review [J]. Bioresour. Technol., 2017, 230:143-151. |
25 | ZAKER A, CHEN Z, WANG X L, et al.. Microwave-assisted pyrolysis of sewage sludge: a review [J]. Fuel Process. Technol., 2019, 187:84-104. |
26 | YIN C. Microwave-assisted pyrolysis of biomass for liquid biofuels production [J]. Bioresour. Technol., 2012, 120:273-284. |
27 | ZHANG Y, CUI Y, LIU S, et al.. Fast microwave-assisted pyrolysis of wastes for biofuels production-a review [J/OL]. Bioresour. Technol., 2020, 297: 122480 [2021-11-05]. . |
28 | FANG Z Q, LIU F F, LI Y L, et al.. Influence of microwave-assisted pyrolysis parameters and additives on phosphorus speciation and transformation in phosphorus-enriched biochar derived from municipal sewage sludge [J/OL]. J. Clean. Prod., 2021, 287:125550 [2021-11-05]. . |
29 | WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review [J]. Renew. Sust. Energ. Rev., 2019, 108:423-440. |
30 | CORREA C R, KRUSE A. Biobased functional carbon materials: production, characterization, and applications-a review [J/OL]. Materials, 2018, 11(9):11091568 [2021-11-05]. . |
31 | REZA M T, ANDERT J, WIRTH B, et al.. Hydrothermal carbonization of biomass for energy and crop production [J/OL]. Appl. Bioenergy, 2014, 1(1):1 [2021-11-05]. . |
32 | HE C, ZHANG Z, GE C F, et al.. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior [J]. Waste Manag., 2019, 100:171-181. |
33 | 王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):126-133. |
WANG R F, ZHAO L X, SHEN Y J, et al.. Research progress on preparing biochar and its effect on soil physio-chemical properties [J]. J. Agric. Sci. Technol., 2015, 17(2):126-133. | |
34 | MÉNDEZ A, TERRADILLOS M, GASCÓ G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures [J]. J. Anal. Appl. Pyrolysis, 2013, 102:124-130. |
35 | LU H, ZHANG W, WANG S Z, et al.. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. J. Anal. Appl. Pyrolysis, 2013, 102:137-143. |
36 | 桂成民, 李萍, 王亚炜, 等. 剩余污泥微波热解技术研究进展[J]. 化工进展, 2015, 34(9): 3435-3443, 3475. |
GUI C M, LI P, WANG Y W, et al.. Technology developments of sewage sludge pyrolysis by microwave [J]. Chem. Ind. Eng. Prog., 2015,34(9):3435-3443, 3475. | |
37 | ÖZÇIMEN D, ERSOY-MERIÇBOYU A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials [J]. Renewable Energy., 2010, 35(6):1319-1324. |
38 | 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3):1392-1399. |
LI Z W, WANG X D, LIN J J, et al.. Transformation of nitrogen,phosphorus,potassium and heavy metals during sewage sludge biochar preparation [J]. Chin. J. Environ. Eng., 2016, 10(3):1392-1399. | |
39 | JATAV H S, SINGH S K. Effect of biochar application in soil amended with sewage sludge on growth, yield and uptake of primary nutrients in rice (Oryza sativa L.) [J]. J. Indian Soc. Soil Sci., 2019, 67(1):115-119. |
40 | NOVAK J M, LIMA I, XING B, et al.. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand [J]. Ann. Environ. Sci., 2009, 3(2):195-206. |
41 | ZHANG M, LI J H, WANG Y C, et al.. Impacts of different biochar types on the anaerobic digestion of sewage sludge [J]. RSC Adv., 2019, 72(9):42375-42386. |
42 | 董智伟, 左宁, 王彦, 等. 热解污泥生物炭化学组成及环境效应研究进展[J]. 环境污染与防治, 2019, 41(4): 479-484. |
DONG Z W, ZUO N, WANG Y, et al.. Research progress in chemical properties and environmental effects of pyrolysis sludge biochar [J]. Environ. Pollut. Control, 2019, 41(4):479-484. | |
43 | REHMAN R A, RIZWAN M, QAYYUM M F, et al.. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum) [J]. J. Environ. Manag., 2018, 223:607-613. |
44 | ZIELINSKA A, OLESZCZUK P, CHARMAS B, et al.. Effect of sewage sludge properties on the biochar characteristic [J]. J. Anal. Appl. Pyrolysis, 2015, 112:201-213. |
45 | 姜秀艳. 污泥基生物炭制备表征及土壤改良应用研究[D].哈尔滨: 哈尔滨工业大学, 2014. |
JIANG X Y. Reaearch on the preparation and characterization of sludge-based biochar and its application of soil [J]. Harbin: Harbin Institute of Technology, 2014. | |
46 | YUAN H R, LU T, HUANG H Y, et al.. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge [J]. J. Anal. Appl. Pyrolysis, 2015, 112:284-289. |
47 | BRUNO G, JOHANNES L, WOLFGANG Z. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review [J]. Biol. Fert. Soils, 2002, 35(4):219-230. |
48 | SU C C, MA J F, CHEN Y P. Biochar can improve the soil quality of new creation farmland on the Loess Plateau [J]. Environ. Sci. Pollut. Res., 2019, 26(3):2662-2670. |
49 | ZONG Y T, WANG Y F, SHENG Y, et al.. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar [J]. Environ. Sci. Pollut. Res., 2018, 25(26):25726-25733. |
50 | BLANCO-CANQUI H. Biochar and soil physical properties [J]. Soil Sci. Soc. Am. J., 2017, 81(4):687-711. |
51 | OMONDI M O, XIA X, NAHAYO A, et al.. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data [J]. Geoderma, 2016, 274:28-34. |
52 | ZAFFAR M, ZONG Y T, LU S G, et al.. Effect of biochar and quicklime on growth of wheat and physicochemical properties of Ultisols [J]. Arab. J. Geosci, 2018, 11(17): 1-12. |
53 | 齐秀静, 许晓静, 徐杨. 利用热解炭化污水厂污泥对废弃盐池土改良绿化研究[J]. 现代园艺, 2021, 44(9): 31-32, 92. |
54 | 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79. |
WU Y, XU G, LYU Y C, et al.. Effects of biochar amendment on soil physical and chemical properties: current status and knowledge gaps [J]. Adv. Earth Sci., 2014, 29(1):68-79. | |
55 | 饶霜, 卢阳, 黄飞, 等. 生物炭对土壤微生物的影响研究进展[J]. 生态与农村环境学报, 2016, 32(1): 53-59. |
RAO S, LU Y, HUANG F, et al.. A review of researches on effects of biochars on soil microorganisms [J]. J. Ecol. Rural Environ., 2016, 32(1):53-59. | |
56 | HOSSAIN M K, STREZOV V, CHAN K Y, et al.. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere, 2010, 78(9):1167-1171. |
57 | MÉNDEZ A, CÁRDENAS-AGUIAR E, PAZ-FERREIRO J, et al.. The effect of sewage sludge biochar on peat-based growing media [J]. Biol. Agric. Hortic., 2017, 33(1):40-51. |
58 | REHMAN R A, RIZWAN M, QAYYUM M F, et al.. Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum) [J]. J. Environ. Manag., 2018, 223:607-613. |
59 | SINGH R P, AGRAWAL M. Potential benefits and risks of land application of sewage sludge [J]. Waste Manage., 2008, 28(2):347-358. |
60 | 杨艳琴. 市政污泥与农林废弃物共热解制备生物炭及其对土壤中重金属迁移转化的影响[D]. 无锡: 江南大学, 2020. |
YANG Y Q. Biochar preparation by co-pyrolysis of municipal sludge and agricultural and forestry waste and its impact on the migration and transformation of heavy metal in soil [J].Wuxi: Jiangnan University, 2020. | |
61 | SINGH R P, AGRAWAL M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants [J]. Chemosphere, 2007, 67(11):2229-2240. |
62 | WANG X D, LI C X, LI Z W, et al.. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge [J]. Ecotoxicol. Environ. Saf., 2019, 168:45-52. |
63 | LU T, YUAN H R, WANG Y Z, et al.. Characteristic of heavy metals in biochar derived from sewage sludge [J]. J. Mater. Cycles Waste Manag., 2016, 18(4):725-733. |
64 | MÉNDEZ A, GOMEZ A, PAZ-FERREIRO J, et al.. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil [J]. Chemosphere, 2012, 89(11):1354-1359. |
65 | CHAGAS J K M, DE FIGUEIREDO C C, SILVA J D A, et al.. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: evidence from a three-year field experiment [J/OL]. J. Environ. Manage., 2021, 279: 111824 [2021-11-05]. . |
66 | YUE Y, CUI L, LIN Q M, et al.. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth [J]. Chemosphere, 2017, 173:551-556. |
67 | KHAN S, CHAO C, WAQAS M, et al.. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil [J]. Environ. Sci. Technol., 2013, 47(15):8624-8632. |
68 | ZIELIŃSKA A, OLESZCZUK P. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils [J]. Environ. Sci. Pollut. Res., 2016, 23(21):21822-21832. |
69 | XING J, XU G, LI G. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars [J/OL]. Ecotoxicol. Environ. Saf., 2021, 208: 111756 [2021-11-05]. . |
70 | 王忠科, 陆江银, 王建俊. 响应面法优化污泥-花生壳共热解工艺条件[J]. 环境工程学报, 2017, 11(10): 5663-5670. |
WANG Z K, LU J Y, WANG J J, et al.. Optimizing co-pyrolysis process conditions of sludge-peanut shells by response surface methodology [J]. Chin. J. Environ. Eng., 2017, 11(10):5663-5670. | |
71 | 洪亚军, 徐祖信, 冯承莲, 等. 水葫芦/污泥共热解法制备生物炭粒及其对Cr3+的吸附特性[J]. 环境科学研究, 2020, 33(4):1052-1061. |
HONG Y J, XU Z X, FENG C L, et al.. Co-pyrolysis of water hyacinth and sewage sludge for preparation of biochar particles and its adsorption properties for Cr3+ [J]. Res. Environ. Sci., 2020, 33(4):1052-1061. | |
72 | JIN J W, WANG M Y, CAO Y C, et al.. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals [J]. Bioresour. Technol., 2017, 228:218-226. |
73 | 韩剑宏, 李艳伟, 姚卫华, 等. 玉米秸秆和污泥共热解制备的生物质炭及其对盐碱土壤理化性质的影响[J]. 水土保持通报, 2017, 37(4): 92-98. |
HAN J H, LI Y W, YAO W H, et al.. Co-pyrolysis preparing biochar with corn straw and sewage sludge and its effects onsaline soil improvement [J]. Bull. Soil Water Conserv., 2017, 37(4):92-98. | |
74 | HUANG H J, YANG T, LAI F Y, et al.. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar [J]. J. Anal. Appl. Pyrolysis, 2017, 125:61-68. |
75 | 赵伟繁, 戴亮, 王刚, 等. 污泥生物炭重金属吸附剂的制备及改性研究进展[J]. 功能材料, 2020, 51(11): 11083-11088. |
ZHAO W F, DAI L, WANG G, et al.. Advances in fabrication and modification of heavymetal adsorbents for sludge biochar [J]. J. Funct. Mater., 2020, 51(11):11083-11088. |
[1] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[2] | Guanqun CHAI, Li WANG, Guihua LIU, Xinjian LUOMU, Ya JIANG, Hong LIANG, Chengwu FAN. Health Risk Assessment of Heavy Metals and Differences in Cd Uptake and Accumulation of Three Types of Pod Peppers [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 169-177. |
[3] | Guanqun CHAI, Guihua LIU, Wei ZHOU, Xiujin ZHANG, Longpin LI, Chengwu FAN. Evaluation of Pollution Risk and Source Analysis of Heavy Metals in Greenhouse Soils in Wumeng Mountain Area, Guizhou Province [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 144-153. |
[4] | Juntao MA, Wen ZHOU, Jinghao LI, Yizhuo JING, Dan HAN, Huifang SHAO. Research Progress on the Regulation Mechanism of Exogenous Selenium on Heavy Metal Stress in Plants [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 27-35. |
[5] | Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217. |
[6] | Min LI, Gangtie LI, Hongwu ZHANG, Jiahuan CHEN. Effects of Stubble on Soil Physical and Chemical Properties of Three Kinds of Protein Mulberry Forest [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 172-182. |
[7] | HU Chaohua, LIU Yueming, PANG Ziqin, YUAN Zhaonian. Research Progress on the Current Status of Reactive Nitrogen Losses from Cropland Soil and the Regulation Pathways of Biochar Amendment [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 120-129. |
[8] | BAO Zhijuan, JIN Rong, YANG Jinqing, ZHANG Qi, ZHU Yongli, ZHAO Zhengxiong*. Effects of Pb and Zn Combination on Antioxidant Enzymes and Carbon-nitrogen Metabolism of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 65-72. |
[9] | WANG Xinyu1,2, ZHANG Xi2, MENG Haibo2, SHEN Yujun2, XIE Hengyan1*, ZHOU Haibin2, CHENG Hongsheng2, SONG Liqiu2. Impact of Temperature on Adsorption Characteristics of Biochar on Heavy Metals [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 150-158. |
[10] | HUANG Yanfei, CHEN Junmei, XIN Yaning, WU Qingli. Effects of Gypsum Application on Soil Physical and Chemical Properties of Soda Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 139-146. |
[11] | YANG Jingjing, ZHANG Qingqing*, Tuerxunnayi·Reyimu, Amanula·Yimingniyazi, Xueretijiang·Maitinuri. Effects of Nomadic Grazing and Settled Grazing on the Diversity of Fungi Community in Seriphidium transiliense Desert Grassland [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 166-173. |
[12] | ZHANG Lei, LI Yang, ZHANG Yang*. Research Progress on Effects of Common Fertilizers on Heavy Metal Accumulation in Crops and Its Mechanism [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 123-131. |
[13] | HUANG Zhi1,2, LIU Xiangnan2*, ZHAO Shuang3, ZHANG Xian4. Deriving the Spectral Characteristic Scale for Heavy Metal Stress Monitoring in Rice Based on Ground Spectral Data#br# [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 58-67. |
[14] | WANG Wei, LI Yong, WANG Wei, BIAN Xue, LI Xiying*. Anti-disease Effect and Mechanism of Y-S-Y12 Strain Fermentation Mixed with Biomass Pyrolysis Solution on Pepper Anthracnose [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 129-138. |
[15] | ZHANG Junye1,2, YU Fei3, LIU Xiaodong1, YU Yuanchun1*. Advance of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Foliar Particulate Matter of Urban Forest Plants [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 140-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||