Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (1): 52-62.DOI: 10.13304/j.nykjdb.2022.0490
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Shengyan YANG(), Man CAO, Baoshi GUO, Chao YANG, Zhixia HOU()
Received:
2022-06-09
Accepted:
2022-06-23
Online:
2024-01-15
Published:
2024-01-08
Contact:
Zhixia HOU
通讯作者:
侯智霞
作者简介:
杨圣艳 E-mail:1610704627@qq.com;
基金资助:
CLC Number:
Shengyan YANG, Man CAO, Baoshi GUO, Chao YANG, Zhixia HOU. Effects of Different Iron Environments on the Growth and Leaf Chlorophyll Fluorescence Characteristics of Blueberry[J]. Journal of Agricultural Science and Technology, 2024, 26(1): 52-62.
杨圣艳, 曹漫, 郭宝石, 杨超, 侯智霞. 不同铁环境对蓝莓生长及叶片叶绿素荧光特性的影响[J]. 中国农业科技导报, 2024, 26(1): 52-62.
大量元素 | 微量元素 | 浓度 | 用量 | ||
---|---|---|---|---|---|
K2SO4 | 0.5 | 6.0 | MnSO4·H2O | 0.25 | 60.0 |
MgSO4·7H2O | 1.0 | 1.5 | ZnSO4·7H2O | 0.25 | 7.2 |
NH4H2PO4 | 1.0 | 2.0 | CuSO4·5H2O | 0.50 | 3.0 |
Ca(NO3)2·4H2O | 3.0 | 3.0 | H3BO3 | 0.50 | 64.0 |
Na2MoO4 | 1.00 | 0.2 |
Table 1 Hogland nutrient solution formula
大量元素 | 微量元素 | 浓度 | 用量 | ||
---|---|---|---|---|---|
K2SO4 | 0.5 | 6.0 | MnSO4·H2O | 0.25 | 60.0 |
MgSO4·7H2O | 1.0 | 1.5 | ZnSO4·7H2O | 0.25 | 7.2 |
NH4H2PO4 | 1.0 | 2.0 | CuSO4·5H2O | 0.50 | 3.0 |
Ca(NO3)2·4H2O | 3.0 | 3.0 | H3BO3 | 0.50 | 64.0 |
Na2MoO4 | 1.00 | 0.2 |
Fig. 1 Basal branch number,basal branch growth and ground diameter of blueberry under different iron environmentsNote: Different lowercase letters indicate significant differences between different iron treatments at the same incubation time at P<0.05 level.
Fig. 2 Average weight per plant and mean leaf area of blueberry under different iron environmentsNote: Different lowercase letters indicate significant differences between different iron treatments at the same incubation time at P<0.05 level.
指标 Index | 处理 Treatment | 时间 Time/d | ||
---|---|---|---|---|
120 | 150 | 180 | ||
叶绿素相对含量(SPAD值) Chlorophyll relative content(SPAD value) | B2 | 34.436±1.03 aα | 31.971±0.99 aα | 33.057±1.28 1aα |
B1 | 8.543±0.76 cβ | 13.214±0.89 bα | 9.929±1.03 bβ | |
B3 | 15.107±0.62 bα | 12.586±1.06 bα | 9.286±0.95 bβ | |
叶绿素 a Chlorophyll a/(mg·g-1) | B2 | 8.164±0.14 aβ | 5.858±0.03 aγ | 11.367±0.28 aα |
B1 | 2.220±0.03 cβ | 3.278±0.08 cα | 3.163±0.08 bα | |
B3 | 7.048±0.12 bα | 4.620±0.04 bβ | 2.322±0.06 cγ | |
叶绿素 b Chlorophyll b/(mg·g-1) | B2 | 3.866±0.09 aα | 2.525±0.03 aβ | 2.354±0.06 aβ |
B1 | 0.960±0.03 cβ | 1.365±0.04 cα | 0.653±0.04 bγ | |
B3 | 3.316±0.07 bα | 1.884±0.04 bβ | 0.474±0.02 cγ | |
总叶绿素 Total chlorophyll/(mg·g-1) | B2 | 12.030±0.22 aβ | 8.383±0.06 aγ | 13.722±0.33 aα |
B1 | 3.180±0.06 cγ | 4.643±0.12 cα | 3.816±0.05 bβ | |
B3 | 10.364±0.19 bα | 6.504±0.08 bβ | 2.795±0.08 cγ |
Table 2 Chlorophyll content and SPAD of blueberry under different iron envirments
指标 Index | 处理 Treatment | 时间 Time/d | ||
---|---|---|---|---|
120 | 150 | 180 | ||
叶绿素相对含量(SPAD值) Chlorophyll relative content(SPAD value) | B2 | 34.436±1.03 aα | 31.971±0.99 aα | 33.057±1.28 1aα |
B1 | 8.543±0.76 cβ | 13.214±0.89 bα | 9.929±1.03 bβ | |
B3 | 15.107±0.62 bα | 12.586±1.06 bα | 9.286±0.95 bβ | |
叶绿素 a Chlorophyll a/(mg·g-1) | B2 | 8.164±0.14 aβ | 5.858±0.03 aγ | 11.367±0.28 aα |
B1 | 2.220±0.03 cβ | 3.278±0.08 cα | 3.163±0.08 bα | |
B3 | 7.048±0.12 bα | 4.620±0.04 bβ | 2.322±0.06 cγ | |
叶绿素 b Chlorophyll b/(mg·g-1) | B2 | 3.866±0.09 aα | 2.525±0.03 aβ | 2.354±0.06 aβ |
B1 | 0.960±0.03 cβ | 1.365±0.04 cα | 0.653±0.04 bγ | |
B3 | 3.316±0.07 bα | 1.884±0.04 bβ | 0.474±0.02 cγ | |
总叶绿素 Total chlorophyll/(mg·g-1) | B2 | 12.030±0.22 aβ | 8.383±0.06 aγ | 13.722±0.33 aα |
B1 | 3.180±0.06 cγ | 4.643±0.12 cα | 3.816±0.05 bβ | |
B3 | 10.364±0.19 bα | 6.504±0.08 bβ | 2.795±0.08 cγ |
指标 Index | 叶面积 Leaf area | 单株生物量 Biomass per plant | 基生枝数量 Number of basal shoots | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll | SPAD | Y(Ⅱ) | ETR | Y(NO) | 1-qP |
---|---|---|---|---|---|---|---|---|---|---|---|
单株生物量 Biomass per plant | 0.994** | ||||||||||
基生枝数量 Number of basal shoots | 0.990** | 1.000** | |||||||||
叶绿素a Chlorophyll a | 0.457 | 0.356 | 0.327 | ||||||||
叶绿素b Chlorophyll b | 0.162 | 0.053 | 0.023 | 0.951** | |||||||
总叶绿素 Total chlorophyll | 0.415 | 0.312 | 0.283 | 0.999** | 0.964** | ||||||
SPAD | 0.611 | 0.518 | 0.490 | 0.968** | 0.859** | 0.958** | |||||
Y(Ⅱ) | 0.903** | 0.946** | 0.956** | 0.039 | -0.265 | -0.007 | 0.212 | ||||
ETR | 0.904** | 0.947** | 0.956** | 0.041 | -0.263 | -0.005 | 0.214 | 1.000** | |||
Y(NO) | -0.994** | -1.000** | -0.999** | -0.360 | -0.057 | -0.316 | -0.521 | -0.944** | -0.945** | ||
1-qP | -0.989** | -0.999** | -1.000** | -0.325 | -0.021 | -0.281 | -0.489 | -0.956** | -0.957** | 0.999** | |
Fv/Fm | 0.994** | 0.975** | 0.967** | 0.551 | 0.269 | 0.512 | 0.695 | 0.850** | 0.851** | -0.976** | -0.967** |
Table 3 Correlation between different growth and development indexes and photosynthetic capacity parameters of leaves
指标 Index | 叶面积 Leaf area | 单株生物量 Biomass per plant | 基生枝数量 Number of basal shoots | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 总叶绿素 Total chlorophyll | SPAD | Y(Ⅱ) | ETR | Y(NO) | 1-qP |
---|---|---|---|---|---|---|---|---|---|---|---|
单株生物量 Biomass per plant | 0.994** | ||||||||||
基生枝数量 Number of basal shoots | 0.990** | 1.000** | |||||||||
叶绿素a Chlorophyll a | 0.457 | 0.356 | 0.327 | ||||||||
叶绿素b Chlorophyll b | 0.162 | 0.053 | 0.023 | 0.951** | |||||||
总叶绿素 Total chlorophyll | 0.415 | 0.312 | 0.283 | 0.999** | 0.964** | ||||||
SPAD | 0.611 | 0.518 | 0.490 | 0.968** | 0.859** | 0.958** | |||||
Y(Ⅱ) | 0.903** | 0.946** | 0.956** | 0.039 | -0.265 | -0.007 | 0.212 | ||||
ETR | 0.904** | 0.947** | 0.956** | 0.041 | -0.263 | -0.005 | 0.214 | 1.000** | |||
Y(NO) | -0.994** | -1.000** | -0.999** | -0.360 | -0.057 | -0.316 | -0.521 | -0.944** | -0.945** | ||
1-qP | -0.989** | -0.999** | -1.000** | -0.325 | -0.021 | -0.281 | -0.489 | -0.956** | -0.957** | 0.999** | |
Fv/Fm | 0.994** | 0.975** | 0.967** | 0.551 | 0.269 | 0.512 | 0.695 | 0.850** | 0.851** | -0.976** | -0.967** |
1 | 李亚东,盖禹含,王芳,等. 2021年全球蓝莓产业数据报告 [J/OL].吉林农业大学学报,2022,44(1):1-12. |
LI Y D, GAI Y H, WANG F, et al..Global blueberry industry data report 2021 [J/OL]. J. Jilin Agric. Univ., 2022,44(1):1-12. | |
2 | 尤式备,徐佳慧,郭怡文,等.蓝莓根毛缺失的机制及内生菌根真菌的促生作用[J].浙江大学学报(农业与生命科学版),2020,46(4):417-427. |
YOU S B, XU J H, GUO Y W, et al..Mechanism of root hair loss in blueberry and growth promoting effect of endophytic mycorrhizal fungi [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2020,46(4):417-427. | |
3 | 孙贵宝.浅谈欧美及日本等国蓝莓栽培的立地条件[J].北方园艺,2006(4):103-105. |
SUN G B.Study on the site conditions of blueberry cultivation in Europe, America and Japan [J].Northern Hortic., 2006(4):103-105. | |
4 | 李亚东,陈伟,张志东,等.土壤pH值对越桔幼苗生长及元素吸收的影响[J].吉林农业大学学报,1994,16(3):51-54. |
LI Y D, CHEN W, ZHANG Z D, et al..Effects of soil pH on growth and elemental absorption of bilberry seedlings [J].J. Jilin Agric. Univ., 1994,16(3):51-54. | |
5 | 曹增强,徐莹莹,张宁,等.不同pH对蓝莓组培苗生长和元素吸收的影响[J].中国农业大学学报,2016,21(2):50-57. |
CAO Z Q, XU Y Y, ZHANG N, et al..Effects of different pH values on the growth and element absorption of blueberry tissue culture seedlings [J].J. Chin. Agric. Univ., 2016,21(2):50-57. | |
6 | COVILLE F V.Experiments in Blueberry Culture [M].Whitefish: Kessinger Publishing, 1911:1-138. |
7 | 陈雅彬,李永强,孙琳,等.非酸性根际土壤对蓝莓铁元素吸收及其代谢相关基因表达的影响[J].园艺学报,2015,42(2):233-242. |
CHEN Y B, LI Y Q, SUN L, et al..Effects of non-acidic rhizosphere soil on iron uptake and metabolization-related gene expression in blueberry [J].Acta Hortic. Sin., 2015,42(2):233-242. | |
8 | 叶美娟.蓝莓缺铁响应机制研究[D].金华:浙江师范大学,2017. |
YE M J.Research on the mechanism of iron deficiency in blueberry [D]. Jinhua: Zhejiang Normal University, 2017. | |
9 | 孙攀,杨静慧,冀馨宁,等.不同铁肥对蓝莓黄化叶片光合特性的影响[J].天津农林科技,2019(2):16-18. |
SUN P, YANG J H, JI X N, et al..Effects of different Iron fertilizer on photosynthetic characteristics of chlorinated blueberry leaves [J]. Sci. Technol. Tianjin Agric. For., 2019(2):16-18. | |
10 | 陈娜.铁、钾营养对越橘苗生长和生理特性的影响[D].大连:大连理工大学,2010. |
CHEN N.Effects of iron and potassium on growth and physiological characteristics of Huckleberry seedlings [D].Dalian: Dalian University of Technology, 2010. | |
11 | EIDE D, BRODERIUS M, FETT J, et al..A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proc. Natl. Acad Sci. USA,1996,93(11):5624-5628. |
12 | GUERINOT M L, YI Y.Iron: nutritious, noxious, and not readily available [J]. Plant Phys., 1994,104(3):815-820. |
13 | TERRY N, ABADÍA J.Function of iron in chloroplasts [J]. J. Plant Nutr., 1986,9(3-7):609-646. |
14 | ZHOU H J, KORCAK R F, WERGIN W P, et al..Cellular ultrastructure and net photosynthesis of appleseed lings,under iron stree [J]. J. Plant Nutr., 1984,7(6):911-928. |
15 | 伍丽华,代林利,胡永颜,等.供铁水平对杉木幼苗叶片叶绿素荧光参数和抗氧化酶活性的影响[J].江西农业大学学报,2021,43(5):1087-1097. |
WU L H, DAI L L, HU Y Y, et al..Effects of iron supply on chlorophyll fluorescence parameters and antioxidant enzyme activity of Cunninghamia lanceolata seedlings [J].Acta Agric. Univ. Jiangxiensis, 2021,43(5):1087-1097. | |
16 | BERTAMINI M, MUTHUCHELIAN K, NEDUNCHEZHIAN N. Iron deficiency induced changes on the donor side of PSⅡ in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves [J].Plant Sci., 2002,162(4):599-605. |
17 | 邱强,饶德民,赵婧,等.不同铁效率大豆品种叶片和根系超微结构的比较研究[J].大豆科学,2017,36(6):927-931. |
QIU Q, RAO D M, ZHAO J, et al.. Comparison of leaf and root ultrastructure of soybean varieties with different iron efficiency [J].Soybean Sci., 2017,36(6):927-931. | |
18 | 郭燕萍,顾家家,陈冰聪,等.蓝莓铁代谢调控机制初探[J].浙江师范大学学报(自然科学版),2021,44(3):311-318. |
GUO Y P, GU J J, CHEN B C, et al..Research on the regulation mechanism of iron metabolism in blueberry [J].J. Zhejiang Norm. Univ. (Nat. Sci.), 2021,44(3):311-318. | |
19 | 黄宗安,徐坚,史建磊, 等.缺铁胁迫对温州盘菜幼苗叶片光合特性和抗氧化酶活性的影响[J].浙江农业学报,2014,26(6):1495-1500. |
HUANG Z A, XU J, SHI J L, et al.. Effects of iron deficiency stress on photosynthetic characteristics and antioxidant enzyme activities of cabbage seedlings [J].Acta Agric. Zhejiangensis, 2014,26(6):1495-1500. | |
20 | 姜闯道,高辉远,邹琦.缺铁使大豆叶片激发能的耗散增加[J].植物生理与分子生物学学报,2002(2):127-132. |
JIANG C D, GAO H Y, ZOU Q.Effect of iron deficiency on excitation energy dissipation in soybean leaves [J].Physiol. Mol. Biol. Plants, 2002(2):127-132. | |
21 | 杨颖丽,司廉邦,李嘉敏,等.铁胁迫对小麦幼苗叶绿素荧光与光合特性的影响[J].兰州大学学报(自然科学版),2019,55(6):814-820. |
YANG Y L, SI L B, LI J M, et al..Effects of iron stress on chlorophyll fluorescence and photosynthetic characteristics of wheat seedlings [J].J. Lanzhou Univ.(Nat. Sci.), 2019,55(6):814-820. | |
22 | ADAMSKI J M, PETERS J A, DANIELOSKI R, et al.. Excess iron-induced changes in the photosynthetic characteristics of sweet potato [J]. J. Plant Physiol., 2011,168(17):2056-2062. |
23 | 陈薇.温室、大棚、露地三种栽培模式下越橘光合特性研究[D].长春:吉林农业大学,2006. |
CHEN W. Photosynthetic characteristics of huckleberry under greenhouse, greenhouse and open field cultivation [D].Changchun: Jilin Agricultural University, 2006. | |
24 | LICHTENTHALER H.Chlorophylls and carotenoids: pig-ments of photosynthetic biomembranes [J].Meth. Enzymol., 1987,148C:350-382. |
25 | LARBI A, MORALES F, LÓPEZ-MILLÁN A F, et al..Technical advance: reduction of Fe(Ⅲ)-chelates by mesophyll leaf diska of sugar beet.multi-component origin and effects Fe deficiency [J]. Plant cell Physiol., 2001, 42 (1):94-105. |
26 | 黄小辉,吴焦焦,王玉书,等.不同供氮水平核桃的生长及叶绿素荧光特性[J/OL].南京林业大学学报(自然科学版), 2022 [2022-05-12].. |
HUANG X H, WU J J, WANG Y S, et al..Growth and chlorophyll fluorescence characteristics of walnut with different nitrogen supply levels [J/OL].J. Nanjing For. Univ.(Nat. Sci.), 2022 [2022-05-12]. . | |
27 | 龙文靖,万年鑫,辜涛,等.玉米苗期耐低铁能力的综合评价及其预测[J].植物遗传资源学报,2015,16(4):734-742. |
LONG W J, WAN N X, GU T, et al.. Comprehensive evaluation and prediction of low iron tolerance of maize seedling [J]. J. Plant Genet. Resour., 2015,16(4):734-742. | |
28 | 游丹丹,张子威,王贞红.西藏墨脱县4个茶树良种叶片表型及光合特性分析[J/OL].分子植物育种,2023,21(17):5794-5801. |
YOU D D, ZHANG Z W, WANG Z H.Analysis of leaf phenotype and photosynthetic characteristics of four tea cultivars in Motuo county, Xizang province [J/OL]. Mol. Plant Breeding,2023,21(17):5794-5801.. | |
29 | 厉广辉,张昆,刘风珍,等.不同抗旱性花生品种的叶片形态及生理特性[J].中国农业科学,2014,47(4):644-654. |
LI G H, ZHANG K, LIU F Z, et al..Leaf morphology and physiological characteristics of peanut cultivars with different drought resistance [J]. Sci. Agric. Sin., 2014,47(4):644-654. | |
30 | TAGLIAVINI M, SCUDELLARI D, MARANGONI B, et al..Acid-spray regreening of kiwifruit leaves affected by lime induced Fe chlorosis [J]. Iron Nutr. Soils Plants,1995:191-195. |
31 | 牛永昆,李军乔,曲俊儒,等.铁胁迫对蕨麻叶绿素荧光及生理特性的影响[J].天津农业科学,2022,28(2):1-6. |
NIU Y K, LI J Q, QU J R, et al..Effects of iron stress on chlorophyll fluorescence and physiological characteristics of potentilla anserine [J]. Tianjin Agric. Sci., 2022,28(2):1-6. | |
32 | 姚宇洁,姜存仓.缺铁胁迫柑橘砧木幼苗的光合特性和叶绿体超微结构 [J].植物营养与肥料学报,2017,23(5):1345-1351. |
YAO Y J, JIANG C C.Photosynthetic characteristics and chloroplast ultrastructure of citrus rootstock seedlings under iron deficiency stress [J]. J. Plant Nutr. Fert., 2017,23(5):1345-1351. | |
33 | 王凯,吴祥云,段海侠,等.辽西北主要绿化树种叶绿素含量分异特征及与SPAD值关系[J].植物研究,2014,34(5):634-641. |
WANG K, WU X Y, DUAN H X, et al..Characteristics of chlorophyll content and its relationship with SPAD value of main tree species in Northwest Liaoning province [J]. Bull. Bot. Res., 2014,34(5):634-641. | |
34 | MOLASSIOTIS A, TANOU G, DIAMANTIDIS G, et al.. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance [J]. J. Plant Physiol., 2006, 163(2):176-185. |
35 | 李佳佳,于旭东,蔡泽坪,等.高等植物叶绿素生物合成研究进展[J].分子植物育种,2019,17(18):6013-6019. |
LI J J, YU X D, CAI Z P, et al..Research progress of chlorophyll biosynthesis in higher plants [J]. Mol. Plant Breed., 2019,17(18):6013-6019. | |
36 | SUN X L, XU Y, ZHANG Q Q, et al.. Combined effect of water inundation and heavy metals on the photosynthesis and physiology of Spartina alterniflora [J]. Ecotox. Environ. Safe., 2018,153(5):248-258. |
37 | MORANT-MANCEAU A, PRADIER E, TREMBLIN G.Osmotic adjustment,gas exchanges and chlorophy Ⅱ fluorescence of a hexaploid triticale and its parental species under salt stress [J]. J. Plant Physiol., 2004,161(1):25-33. |
38 | 闫超.不同蓝莓品种光合特性初步研究[D].哈尔滨:东北农业大学,2016. |
YAN C.Preliminary study on photosynthetic characteristics of different blueberry cultivars [D]. Harbin: Northeast Agricultural University, 2016. | |
39 | DEMMIG-ADAMS B, ADAMS W W, HEBER U, et al..Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach and chloroplast [J]. Plant Physiol., 1990,92(2):293-301. |
40 | 彭海欢,翁晓燕,徐红霞,等.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625. |
PENG H H, WENG X Y, XU H X, et al.. Effects of potassium deficiency stress on photosynthetic characteristics and photosynthetic defense mechanism of rice [J]. Chin. J. Rice Sci., 2006,20(6):621-625. | |
41 | 肖家欣, 齐笑笑, 张绍铃. 铁胁迫对三种柑橘砧木的生长、生理特性及铁分布的影响[J]. 广西植物, 2011, 31(1): 97-101. |
XIAO J X, QI X X, ZHANG S L.Effects of Iron stress on growth, physiological characteristics and iron distribution of three citrus rootstocks [J]. J. Guihaia, 2011, 31(1): 97-101. |
[1] | Weiwei PEI, Zhe YANG, Yunying WANG, Xin WANG, Yangong DU. Carbon Sink Characteristics and Regulatory Factors of Qinghai Spruce Forests in the Qilian Mountains [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 226-233. |
[2] | Xiaoyun HUANG, Xiusheng HUANG, Yuanquan CHEN, Xiaohong LIN, Haidong HAN, Deqing FENG, Tao LUO. Environmental Impact Analysis of Anoectochilus roxburghii Imitated Wild Cultivated Under Fir Trees [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 176-185. |
[3] | Lingli YUE, Yongzhong CHEN, Xiong XIA, Dong LIU, Xiangnan WANG, Youjie WU. Study on Isotopic Composition and Influencing Factors of Rainfall in Southern Hilly Region [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 224-233. |
[4] | Xin JIN, Lu ZHANG, Peng WU, Ping LI, Wei TAN, Mingying GUI. Effects of Shading Treatment on Growth and Enzyme Activity of Bonsai Ganoderma lucidum [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 147-156. |
[5] | Yanfang ZHANG, Yanfang ZHU, Yan HAO, Yu’an WANG. Effect of Thermal Environment on Tartaric Acid Degradation of ‘Italian Riesling’ Wine Grape in Hexi Corridor [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 86-99. |
[6] | Yujing LI, Yuqing FENG, Yuanyuan ZHAO, Hongzhi SHI. Review of Absorption and Utilization of Different Nitrogen Forms and Their Effects on Plant Physiological Metabolism [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 128-139. |
[7] | Jun CHEN, Qi ZHANG, Mengyu YANG, Zhenyang YUAN. Effects of Growing Grass on Microclimate Environment and Apple Leaves in Apple Orchard [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 158-167. |
[8] | Peixin LIANG, Rong TANG, Jianguo LIU. Effects of Mixed Saline-alkali Stress on Photosynthetic Physiology and Yield in Cyperus esculentus L. [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 195-204. |
[9] | Ping WU, Xiaoyu WANG, Junxia GUO, Songlin ZHANG, Qingmiao LI, Qingmao FANG. Effects of Early Bolting on Growth and Quality of Angelica dahurica [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 58-66. |
[10] | Qi ZHEN, Guangze YAN, Na TA, Zhiyong ZHAO, Huimin YU. Effect of Different CO2 Contents on Temperature Distribution in Potato Storage Room [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 154-165. |
[11] | Ao ZHANG, Hao BAI, Yulin BI, Yingquan HUANG, Zhixiu WANG, Yong JIANG, Guohong CHEN, Guobin CHANG. Research Progress on Influencing Factors of Chicken Core Temperature [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 26-34. |
[12] | Long ZHENG. Research on Effects of Genotypes and Environments on Cd Contents in Pakchoi [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 58-65. |
[13] | Shuxin QI, Xiaolei WEN, Tingfeng JI, Zengzhi SI, Chunming ZHAO, Yake QIAO, Yanmin WANG, Aijun CAI, Haihua ZHANG, Zhixin JI. Effect of Fox Raccoon Manure on the Growth and Development of Black Soldier Fly [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 201-206. |
[14] | Ruixue ZHAO, Tan SUN, Xiaorong YANG, Jian WANG. Research on the Development Path of Agricultural Scientific Informatization Under Data-intensive Environments [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 1-7. |
[15] | Siqi BAI, Xiaorong ZOU, Peng DING, Ming LIN. Surplus Production Model for Chilean Jack Mackerel in the Southeast Pacific Ocean Based on the Environmental Factors [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 197-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||