Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (6): 91-101.DOI: 10.13304/j.nykjdb.2022.0912
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Peihan JIANG1(), Xiaonan YANG2, Chenxu YANG1, Aijun ZHANG2,3(
)
Received:
2022-10-26
Accepted:
2023-01-06
Online:
2024-06-15
Published:
2024-06-12
Contact:
Aijun ZHANG
通讯作者:
张爱军
作者简介:
蒋沛含E-mail:875604794@qq.com;
基金资助:
CLC Number:
Peihan JIANG, Xiaonan YANG, Chenxu YANG, Aijun ZHANG. Estimation of Nitrogen Content in Millet Canopy Based on Multi Parameter Partial Least Squares Model[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 91-101.
蒋沛含, 杨晓楠, 杨晨旭, 张爱军. 基于偏最小二乘回归的谷子冠层氮素含量高光谱估测研究[J]. 中国农业科技导报, 2024, 26(6): 91-101.
参数 Parameter | 变量参数 Variable parameter | 计算公式 Calculation formula |
---|---|---|
植被指数 Vegetation index | 红边归一化植被指数 Red edge normalized difference spectral (RENDVI) | (R750-R705)/(R750+R705) |
归一化植被指数 Normalized difference spectral (NDVI) | (R800-R670)/(R800+R670) | |
绿色归一化植被指数 Green normalized difference spectral (GNDVI) | (R801-R550)/(R801+R550) | |
比值指数 Ratio spectral index (RSI) | R800/R550 | |
差值指数 Difference spectral index (DSI) | R800-R550 | |
绿度指数 Green index (GVI) | 3[(R700-R670)-0.2(R700-R550)(R700/R670)] | |
修改叶绿素吸收反射指数 Modified chlorophyll absorption reflex index (MCARI) | [(R700-R670)-0.2(R700-R550)](R700/R670) | |
红边优化指数 Optimize red edge index (OREI) | R740-R720 | |
双峰冠层氮素指数 Double canopy nitrogen index (DCNI) | (R800-R680)/(R800+R680) | |
陆地叶绿素指数 Terrestrial chlorophyll index (MTCI) | (R800-R635)/(R800+R635) | |
叶绿素吸收反射率指数 Transformed chlorophyll absorption in reflectance index (TCARI) | 3[(R700-R670)-0.2(R700-R550)(R700/R670)] | |
叶绿素吸收比值指数 Chlorophyll absorption in reflectance index (CARI) | (R700-R670)-0.2(R700+R670) | |
光化学植被指数 Photochemistry reflectance index (PRI) | (R570-R531)/(R570+R531) |
Table 1 Common nitrogen vegetation index and hyperspectral characteristic parameters
参数 Parameter | 变量参数 Variable parameter | 计算公式 Calculation formula |
---|---|---|
植被指数 Vegetation index | 红边归一化植被指数 Red edge normalized difference spectral (RENDVI) | (R750-R705)/(R750+R705) |
归一化植被指数 Normalized difference spectral (NDVI) | (R800-R670)/(R800+R670) | |
绿色归一化植被指数 Green normalized difference spectral (GNDVI) | (R801-R550)/(R801+R550) | |
比值指数 Ratio spectral index (RSI) | R800/R550 | |
差值指数 Difference spectral index (DSI) | R800-R550 | |
绿度指数 Green index (GVI) | 3[(R700-R670)-0.2(R700-R550)(R700/R670)] | |
修改叶绿素吸收反射指数 Modified chlorophyll absorption reflex index (MCARI) | [(R700-R670)-0.2(R700-R550)](R700/R670) | |
红边优化指数 Optimize red edge index (OREI) | R740-R720 | |
双峰冠层氮素指数 Double canopy nitrogen index (DCNI) | (R800-R680)/(R800+R680) | |
陆地叶绿素指数 Terrestrial chlorophyll index (MTCI) | (R800-R635)/(R800+R635) | |
叶绿素吸收反射率指数 Transformed chlorophyll absorption in reflectance index (TCARI) | 3[(R700-R670)-0.2(R700-R550)(R700/R670)] | |
叶绿素吸收比值指数 Chlorophyll absorption in reflectance index (CARI) | (R700-R670)-0.2(R700+R670) | |
光化学植被指数 Photochemistry reflectance index (PRI) | (R570-R531)/(R570+R531) |
Fig. 2 Nitrogen content in millet canopy under different nitrogen treatments at each growth stageDifferent lowercase letters indicate significant differences between different treatments in same stage at P<0.05 level.
波段 Band | 拔节期 Jointing stage | 抽穗期 Heading stage | 灌浆期 Pustulation stage | 成熟期 Mature stage | 全生育期 Whole growth stage |
---|---|---|---|---|---|
350~499 | 370, 450 | 351, 355 | 377, 397, 447 | 350, 415, 450 | 395, 410, 430 |
500~599 | 550 | — | 550, 560 | 505 | 525, 540 |
600~679 | 760 | — | 700 | — | — |
680~759 | 660, 730 | 700, 730 | 755 | 740, 795 | 725 |
760~1 200 | 780, 900, 1 100 | 920, 970, 1 100 | 870, 945, 1 018 | 820, 1 000 | 876,915, 985, 1 050 |
Table 2 Sensitive bands selected by SPA
波段 Band | 拔节期 Jointing stage | 抽穗期 Heading stage | 灌浆期 Pustulation stage | 成熟期 Mature stage | 全生育期 Whole growth stage |
---|---|---|---|---|---|
350~499 | 370, 450 | 351, 355 | 377, 397, 447 | 350, 415, 450 | 395, 410, 430 |
500~599 | 550 | — | 550, 560 | 505 | 525, 540 |
600~679 | 760 | — | 700 | — | — |
680~759 | 660, 730 | 700, 730 | 755 | 740, 795 | 725 |
760~1 200 | 780, 900, 1 100 | 920, 970, 1 100 | 870, 945, 1 018 | 820, 1 000 | 876,915, 985, 1 050 |
参数 Parameter | 拔节期 Jointing stage | 抽穗期 Heading stage | 灌浆期 Pustulation stage | 成熟期 Mature stage | 全生长期 Whole growth stage | |||||
---|---|---|---|---|---|---|---|---|---|---|
指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | |
植被指数 Vegetation index | 差值 指数 DSI | 0.863** | 差值 指数 DSI | 0.743** | 差值 指数 DSI | 0.916** | 差值 指数 DSI | 0.858** | 差值 指数 DSI | 0.926** |
双峰冠层氮素指数 DCNI | 0.783** | 双峰冠层氮素指数 DCNI | 0.421** | 归一化植被 指数 NDVI | -0.609** | 双峰冠层氮素指数 DCNI | 0.841** | 双峰冠层氮素指数 DCNI | 0.828** | |
叶绿素吸收反射率指数 TCARI | 0.402** | 叶绿素吸收反射率指数 TCARI | 0.230** | 比值植被指数 RSI | -0.591** | 叶绿素吸收反射率 指数 TCARI | 0.565** | 修改叶绿素吸收反射率指数 MCARI | 0.747** | |
修改叶绿素吸收反射率指数 MCARI | 0.368** | 修改叶绿素吸收反射率指数 MCARI | 0.200** | 双峰冠层氮素指数 DCNI | 0.577** | 修改叶绿素吸收反射率指数 MCARI | 0.546** | 陆地叶绿素指数 MTCI | 0.575** | |
归一化植被指数 NDVI | -0.230** | 叶绿素吸收反射率 指数 TCARI | 0.554** | 叶绿素吸收反射率指数 TCARI | 0.555** | |||||
高光谱 特征参数 Hyperspectralcharacteristic parameters | 红边位置 SDr | 0.837** | 红边位置SDr | 0.808** | 红边 位置 SDr | 0.935** | 红边 位置 SDr | 0.860** | 红边振幅 Dr | 0.712** |
红边振幅 Dr | 0.806** | 黄边位置SDy | -0.399** | 红边 振幅 Dr | 0.758** | 红边 振幅 Dr | 0.810** | 红边位置/蓝边位置 V13 | -0.651** | |
蓝边振幅 Db | 0.382** | 黄边振幅Dy | -0.348** | 黄边 位置 SDy | -0.645** | 蓝边 振幅 Db | 0.515** | 黄边振幅 Dy | 0.649** | |
蓝边位置 SDb | 0.377** | 蓝边振幅Db | 0.325** | 蓝边 振幅 Db | 0.587** | 蓝边 位置 SDb | 0.507** | 黄边位置SDy | 0.624** | |
黄边位置SDy | -0.365** | 蓝边位置SDb | 0.315** | 蓝边 位置SDb | 0.553** | 黄边位置SDy | -0.343 ** | 红边位置 SDr | 0.621** |
Table 3 Correlation of vegetation index and hyperspectral characteristic parameters in each growth period
参数 Parameter | 拔节期 Jointing stage | 抽穗期 Heading stage | 灌浆期 Pustulation stage | 成熟期 Mature stage | 全生长期 Whole growth stage | |||||
---|---|---|---|---|---|---|---|---|---|---|
指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | 指数 Index | 相关系数 Correlation coefficient | |
植被指数 Vegetation index | 差值 指数 DSI | 0.863** | 差值 指数 DSI | 0.743** | 差值 指数 DSI | 0.916** | 差值 指数 DSI | 0.858** | 差值 指数 DSI | 0.926** |
双峰冠层氮素指数 DCNI | 0.783** | 双峰冠层氮素指数 DCNI | 0.421** | 归一化植被 指数 NDVI | -0.609** | 双峰冠层氮素指数 DCNI | 0.841** | 双峰冠层氮素指数 DCNI | 0.828** | |
叶绿素吸收反射率指数 TCARI | 0.402** | 叶绿素吸收反射率指数 TCARI | 0.230** | 比值植被指数 RSI | -0.591** | 叶绿素吸收反射率 指数 TCARI | 0.565** | 修改叶绿素吸收反射率指数 MCARI | 0.747** | |
修改叶绿素吸收反射率指数 MCARI | 0.368** | 修改叶绿素吸收反射率指数 MCARI | 0.200** | 双峰冠层氮素指数 DCNI | 0.577** | 修改叶绿素吸收反射率指数 MCARI | 0.546** | 陆地叶绿素指数 MTCI | 0.575** | |
归一化植被指数 NDVI | -0.230** | 叶绿素吸收反射率 指数 TCARI | 0.554** | 叶绿素吸收反射率指数 TCARI | 0.555** | |||||
高光谱 特征参数 Hyperspectralcharacteristic parameters | 红边位置 SDr | 0.837** | 红边位置SDr | 0.808** | 红边 位置 SDr | 0.935** | 红边 位置 SDr | 0.860** | 红边振幅 Dr | 0.712** |
红边振幅 Dr | 0.806** | 黄边位置SDy | -0.399** | 红边 振幅 Dr | 0.758** | 红边 振幅 Dr | 0.810** | 红边位置/蓝边位置 V13 | -0.651** | |
蓝边振幅 Db | 0.382** | 黄边振幅Dy | -0.348** | 黄边 位置 SDy | -0.645** | 蓝边 振幅 Db | 0.515** | 黄边振幅 Dy | 0.649** | |
蓝边位置 SDb | 0.377** | 蓝边振幅Db | 0.325** | 蓝边 振幅 Db | 0.587** | 蓝边 位置 SDb | 0.507** | 黄边位置SDy | 0.624** | |
黄边位置SDy | -0.365** | 蓝边位置SDb | 0.315** | 蓝边 位置SDb | 0.553** | 黄边位置SDy | -0.343 ** | 红边位置 SDr | 0.621** |
参数 Parameter | 生育期 Growth stage | 建模集Modeling set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
决定 系数R2 | 均方根误差 RMSE | 相对分析 误差RPD | 决定 系数R2 | 均方根误差 RMSE | 相对分析误差RPD | ||
敏感波段 Sensitive band | 拔节期Jointing stage | 0.943 | 0.095 | 2.338 | 0.668 | 0.153 | 1.733 |
抽穗期Heading stage | 0.638 | 0.125 | 1.518 | 0.772 | 0.147 | 1.730 | |
灌浆期Pustulation stage | 0.697 | 0.085 | 1.680 | 0.853 | 0.102 | 1.380 | |
成熟期Mature stage | 0.884 | 0.107 | 1.780 | 0.686 | 0.180 | 1.484 | |
全生育期Whole growth stage | 0.851 | 0.134 | 2.176 | 0.932 | 0.117 | 1.969 | |
植被指数 Vegetation index | 拔节期Jointing stage | 0.810 | 0.120 | 2.197 | 0.876 | 0.094 | 1.820 |
抽穗期Heading stage | 0.783 | 0.125 | 2.042 | 0.441 | 0.458 | 1.249 | |
灌浆期Pustulation stage | 0.898 | 0.102 | 1.562 | 0.799 | 0.063 | 1.694 | |
成熟期Mature stage | 0.800 | 0.122 | 2.133 | 0.924 | 0.094 | 2.395 | |
全生育期Whole growth stage | 0.872 | 0.144 | 2.701 | 0.843 | 0.124 | 2.522 | |
高光谱特征参数 Hyperspectral characteristic | 拔节期Jointing stage | 0.749 | 0.113 | 1.884 | 0.848 | 0.100 | 2.314 |
抽穗期Heading stage | 0.745 | 0.122 | 1.856 | 0.618 | 0.160 | 1.469 | |
灌浆期Pustulation stage | 0.720 | 0.082 | 1.768 | 0.749 | 0.078 | 1.838 | |
成熟期Mature stage | 0.737 | 0.135 | 2.039 | 0.649 | 0.112 | 1.771 | |
全生育期Whole growth stage | 0.693 | 0.210 | 1.667 | 0.645 | 0.236 | 1.474 | |
敏感波段、植被 指数组合模型 Sensitive band, vegetation index | 拔节期Jointing stage | 0.795 | 0.102 | 2.098 | 0.895 | 0.080 | 2.136 |
抽穗期Heading stage | 0.829 | 0.102 | 2.328 | 0.822 | 0.105 | 2.342 | |
灌浆期Pustulation stage | 0.715 | 0.083 | 1.743 | 0.848 | 0.061 | 2.497 | |
成熟期Mature stage | 0.892 | 0.087 | 2.966 | 0.878 | 0.067 | 2.952 | |
全生育期Whole growth stage | 0.878 | 0.134 | 2.778 | 0.903 | 0.119 | 3.010 | |
敏感波段、高光谱特征参数组合模型 Sensitive band, hyperspectral characteristic | 拔节期Jointing stage | 0.878 | 0.081 | 2.787 | 0.867 | 0.085 | 2.660 |
抽穗期Heading stage | 0.807 | 0.102 | 2.181 | 0.809 | 0.119 | 2.078 | |
灌浆期Pustulation stage | 0.769 | 0.072 | 1.981 | 0.802 | 0.059 | 2.108 | |
成熟期Mature stage | 0.773 | 0.122 | 1.995 | 0.815 | 0.090 | 2.440 | |
全生育期Whole growth stage | 0.858 | 0.144 | 2.559 | 0.896 | 0.124 | 3.004 | |
植被指数、高光谱特征参数组合模型 Vegetation index,hyperspectral characteristic | 拔节期Jointing stage | 0.765 | 0.160 | 1.945 | 0.684 | 0.191 | 1.646 |
抽穗期Heading stage | 0.748 | 0.172 | 0.873 | 0.706 | 0.187 | 1.718 | |
灌浆期Pustulation stage | 0.699 | 0.185 | 1.685 | 0.666 | 0.187 | 1.575 | |
成熟期Mature stage | 0.792 | 0.185 | 2.087 | 0.721 | 0.206 | 1.807 | |
全生育期Whole growth stage | 0.894 | 0.125 | 2.970 | 0.856 | 0.131 | 2.829 | |
敏感波段、植被指数、高光谱特征参数组合模型 Sensitive band, vegetation index, hyperspectral characteristic | 拔节期Jointing stage | 0.924 | 0.064 | 2.720 | 0.928 | 0.063 | 2.762 |
抽穗期Heading stage | 0.814 | 0.100 | 2.229 | 0.819 | 0.116 | 2.099 | |
灌浆期Pustulation stage | 0.763 | 0.080 | 1.935 | 0.793 | 0.063 | 2.019 | |
成熟期Mature stage | 0.755 | 0.127 | 1.906 | 0.853 | 0.080 | 2.765 | |
全生育期Whole growth stage | 0.875 | 0.135 | 2.742 | 0.906 | 0.118 | 2.949 |
Table 4 Results of PLSR model
参数 Parameter | 生育期 Growth stage | 建模集Modeling set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
决定 系数R2 | 均方根误差 RMSE | 相对分析 误差RPD | 决定 系数R2 | 均方根误差 RMSE | 相对分析误差RPD | ||
敏感波段 Sensitive band | 拔节期Jointing stage | 0.943 | 0.095 | 2.338 | 0.668 | 0.153 | 1.733 |
抽穗期Heading stage | 0.638 | 0.125 | 1.518 | 0.772 | 0.147 | 1.730 | |
灌浆期Pustulation stage | 0.697 | 0.085 | 1.680 | 0.853 | 0.102 | 1.380 | |
成熟期Mature stage | 0.884 | 0.107 | 1.780 | 0.686 | 0.180 | 1.484 | |
全生育期Whole growth stage | 0.851 | 0.134 | 2.176 | 0.932 | 0.117 | 1.969 | |
植被指数 Vegetation index | 拔节期Jointing stage | 0.810 | 0.120 | 2.197 | 0.876 | 0.094 | 1.820 |
抽穗期Heading stage | 0.783 | 0.125 | 2.042 | 0.441 | 0.458 | 1.249 | |
灌浆期Pustulation stage | 0.898 | 0.102 | 1.562 | 0.799 | 0.063 | 1.694 | |
成熟期Mature stage | 0.800 | 0.122 | 2.133 | 0.924 | 0.094 | 2.395 | |
全生育期Whole growth stage | 0.872 | 0.144 | 2.701 | 0.843 | 0.124 | 2.522 | |
高光谱特征参数 Hyperspectral characteristic | 拔节期Jointing stage | 0.749 | 0.113 | 1.884 | 0.848 | 0.100 | 2.314 |
抽穗期Heading stage | 0.745 | 0.122 | 1.856 | 0.618 | 0.160 | 1.469 | |
灌浆期Pustulation stage | 0.720 | 0.082 | 1.768 | 0.749 | 0.078 | 1.838 | |
成熟期Mature stage | 0.737 | 0.135 | 2.039 | 0.649 | 0.112 | 1.771 | |
全生育期Whole growth stage | 0.693 | 0.210 | 1.667 | 0.645 | 0.236 | 1.474 | |
敏感波段、植被 指数组合模型 Sensitive band, vegetation index | 拔节期Jointing stage | 0.795 | 0.102 | 2.098 | 0.895 | 0.080 | 2.136 |
抽穗期Heading stage | 0.829 | 0.102 | 2.328 | 0.822 | 0.105 | 2.342 | |
灌浆期Pustulation stage | 0.715 | 0.083 | 1.743 | 0.848 | 0.061 | 2.497 | |
成熟期Mature stage | 0.892 | 0.087 | 2.966 | 0.878 | 0.067 | 2.952 | |
全生育期Whole growth stage | 0.878 | 0.134 | 2.778 | 0.903 | 0.119 | 3.010 | |
敏感波段、高光谱特征参数组合模型 Sensitive band, hyperspectral characteristic | 拔节期Jointing stage | 0.878 | 0.081 | 2.787 | 0.867 | 0.085 | 2.660 |
抽穗期Heading stage | 0.807 | 0.102 | 2.181 | 0.809 | 0.119 | 2.078 | |
灌浆期Pustulation stage | 0.769 | 0.072 | 1.981 | 0.802 | 0.059 | 2.108 | |
成熟期Mature stage | 0.773 | 0.122 | 1.995 | 0.815 | 0.090 | 2.440 | |
全生育期Whole growth stage | 0.858 | 0.144 | 2.559 | 0.896 | 0.124 | 3.004 | |
植被指数、高光谱特征参数组合模型 Vegetation index,hyperspectral characteristic | 拔节期Jointing stage | 0.765 | 0.160 | 1.945 | 0.684 | 0.191 | 1.646 |
抽穗期Heading stage | 0.748 | 0.172 | 0.873 | 0.706 | 0.187 | 1.718 | |
灌浆期Pustulation stage | 0.699 | 0.185 | 1.685 | 0.666 | 0.187 | 1.575 | |
成熟期Mature stage | 0.792 | 0.185 | 2.087 | 0.721 | 0.206 | 1.807 | |
全生育期Whole growth stage | 0.894 | 0.125 | 2.970 | 0.856 | 0.131 | 2.829 | |
敏感波段、植被指数、高光谱特征参数组合模型 Sensitive band, vegetation index, hyperspectral characteristic | 拔节期Jointing stage | 0.924 | 0.064 | 2.720 | 0.928 | 0.063 | 2.762 |
抽穗期Heading stage | 0.814 | 0.100 | 2.229 | 0.819 | 0.116 | 2.099 | |
灌浆期Pustulation stage | 0.763 | 0.080 | 1.935 | 0.793 | 0.063 | 2.019 | |
成熟期Mature stage | 0.755 | 0.127 | 1.906 | 0.853 | 0.080 | 2.765 | |
全生育期Whole growth stage | 0.875 | 0.135 | 2.742 | 0.906 | 0.118 | 2.949 |
Fig. 5 Measured value and predicted value of PLSR modelA: Sensitive waveband; B: Vegetation Index; C: Hyperspectral characteristic parameters; D: Sensitive waveband and vegetation index; E: Sensitive waveband and hyperspectral characteristic parameters; F: Vegetation index and hyperspectral characteristic parameters; G: Sensitive waveband, vegetation index and hyperspectral characteristic parameters
1 | WANG L, CHEN S, LI D, et al.. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery [J/OL]. Remote Sens., 2021, 13:2956 [2022-09-10]. . |
2 | JAY S, MAUPAS F, BENDOULA R, et al.. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping [J]. Field Crops Res., 2017, 210:33-46. |
3 | FENG H Y, FENG S, YAO W, et al.. BAS-ELM based UAV hyperspectral remote sensing inversion modeling of rice canopy nitrogen content [J]. Int. J. Precision Agric. Aviation, 2018, 3(3):59-64. |
4 | 喻俊,李晓敏,张权,等.基于高光谱遥感的植被冠层氮素反演方法研究进展[J].陕西林业科技,2016(6):93-97. |
YU J, LI X M, ZHANG Q, et al.. Research progress of vegetation canopy nitrogen retrieval methods based on hyperspectral remote sensing [J]. Shaanxi For. Sci. Technol., 2016(6):93-97. | |
5 | 刘帅兵,杨贵军,景海涛,等.基于无人机数码影像的冬小麦氮含量反演[J].农业工程学报,2019,35(11):75-85. |
LIU S B, YANG G J, JING H T, et al.. Inversion of winter wheat nitrogen content based on UAV digital image [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(11):75-85. | |
6 | BERGER K, VERRELST J, FÉRET J B, et al.. Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions [J/OL]. Remote Sens. Environ., 2020, 242:111758 [2022-09-10]. . |
7 | 李岚涛,汪善勤,任涛,等.基于高光谱的冬油菜叶片磷含量诊断模型[J].农业工程学报,2016,32(14):209-218. |
LI L T, WANG S Q, REN T, et al.. Diagnosis model of phosphorus content in winter rape leaves based on hyperspectral analysis [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(14):209-218. | |
8 | 张艾英,郭二虎,王军,等.施氮量对春谷农艺性状、光合特性和产量的影响[J].中国农业科学,2015,48(15):2939-2951. |
ZHANG A Y, GUO E H, WANG J, et al.. Effects of nitrogen application rate on agronomic characters, photosynthetic characteristics and yield of spring millet [J]. Sci. Agric. Sin., 2015, 48(15):2939-2951. | |
9 | 冯帅,曹英丽,许童羽,等.高光谱和NSGA2-ELM算法的粳稻叶片氮素含量反演[J].光谱学与光谱分析,2020,40(8):2584-2591. |
FENG S, CAO Y L, XU T Y, et al.. Retrieval of nitrogen content in japonica rice leaves by hyperspectral and NSGA2-ELM algorithm [J]. Spectrosc. Spect. Anal., 2020, 40(8):2584-2591. | |
10 | 白丽敏,李粉玲,常庆瑞,等.结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J].植物营养与肥料学报,2018,24(5):1178-1184. |
BAI L M, LI F L, CHANG Q R, et al.. Combining SPA and PLS methods to improve the accuracy of winter wheat canopy total nitrogen hyperspectral estimation [J]. J. Plant Nutr. Fert., 2018, 24(5):1178-1184. | |
11 | HE L, SONG X, FENG W, et al.. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data [J]. Remote Sens. Environ., 2016, 174:122-133. |
12 | 王玉娜,李粉玲,王伟东,等.基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J].麦类作物学报,2020,40(11):1389-1398. |
WANG Y N, LI F L, WANG W D, et al.. Hyperspectral remote sensing estimation of winter wheat biomass based on continuous projection algorithm and spectral transformation [J]. J. Triticeae Crops, 2020, 40(11):1389-1398. | |
13 | 辛景树,郑磊,黄耀蓉,等. 植株全氮含量测定自动定氮仪法: [S]. 北京:中国标准出版社, 2013. |
14 | 王娇娇,宋晓宇,梅新,等.基于高斯回归分析的水稻氮素敏感波段筛选及含量估算[J].光谱学与光谱分析,2021,41(6):1722-1729. |
WANG J J, SONG X Y, MEI X, et al.. Screening and content estimation of rice nitrogen sensitive bands based on gaussian regression analysis [J]. Spectrosc. Spect. Anal., 2021, 41(6):1722-1729. | |
15 | 冯帅, 许童羽, 于丰华,等.基于无人机高光谱遥感的东北粳稻冠层叶片氮素含量反演方法研究[J].光谱学与光谱分析, 2019, 39(10):3281-3287. |
FENG S, XU T Y, YU F H, et al.. Retrieval method of nitrogen content in northeast japonica rice canopy based on hyperspectral remote sensing of unmanned aerial vehicle [J]. Spectrosc. Spect. Anal., 2019, 39(10):3281-3287. | |
16 | 李丹,李斐,胡云才,等.基于光谱指数波段优化算法的小麦玉米冠层含氮量估测[J].光谱学与光谱分析,2016,36(4):1150-1157. |
LI D, LI F, HU Y C, et al.. Estimation of nitrogen content in wheat and maize canopy based on spectral index band optimization algorithm [J]. Spectrosc. Spect. Anal., 2016, 36(4):1150-1157. | |
17 | 赵小敏,孙小香,王芳东,等.水稻高光谱遥感监测研究综述[J].江西农业大学学报,2019,41(1):1-12. |
ZHAO X M, SUN X X, WANG F D, et al.. A summary of the researches on hyperspectral remote sensing monitoring of rice [J]. Acta Agric. Univ. Jiangxiensis, 2019, 41(1):1-12. | |
18 | 张子晗,晏磊,刘思远,等.基于偏振反射模型和随机森林回归的叶片氮含量反演[J].光谱学与光谱分析,2021,41(9):2911-2917. |
ZHANG Z H, YAN L, LIU S Y, et al.. Inversion of leaf nitrogen content based on polarization reflection model and stochastic forest regression [J]. Spectrosc. Spect. Anal., 2021, 41(9):2911-2917. | |
19 | 冯海宽,杨福芹,杨贵军,等.基于特征光谱参数的苹果叶片叶绿素含量估算[J].农业工程学报,2018,34(6):182-188. |
FENG H K, YANG F Q, YANG G J, et al.. Estimation of chlorophyll content in apple leaves based on characteristic spectral parameters [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(6):182-188. | |
20 | 张银杰,王磊,白由路,等.基于高光谱分析的玉米叶片氮含量分层诊断研究[J].光谱学与光谱分析,2019,39(9):2829-2835. |
ZHANG Y J, WANG L, BAI Y L, et al.. Hierarchical diagnosis of nitrogen content in maize leaves based on hyperspectral analysis [J]. Spectrosc. Spect. Anal., 2019, 39(9):2829-2835. | |
21 | WU B, HUANG W, YE H, et al.. Using multi-angular hyperspectral data to estimate the vertical distribution of leaf chlorophyll content in wheat [J]. J. Remote. Sens., 2021, 13:1501-1511. |
[1] | Yiwei LU, Xueyan XIA, Yu ZHAO, Jihan CUI, Meng LIU, Meihong HUANG, Cheng CHU, Jianjun LIU, Shunguo LI. Transcriptome Profiling and Gene Mining of Millet Response to Potassium Deficiency Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 30-44. |
[2] | Ruizhen LI, Jianmin YAO, Zhongxiang WANG, Fengxiang GAO, Guixin DOU, Ruiping YANG, Zhao LIU, Ji ZHANG, Zhenyu ZHANG. Analysis on Relationship Between Yield Structure of Winter-sown Millet Covered Fully Biodegradable Water Permeable Plastic Film [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 185-191. |
[3] | Hui ZHANG, Yueyue WANG, Bo ZHAO, Liling ZHANG, Qianru QIE, Yuanhuai HAN, Xukai LI. Identification of Co-expression Genes Related to Cold Stress in Foxtail Millet by WGCNA [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 22-34. |
[4] | Xiongfei JIAO, Jin YU, Leyong FENG, Yaodong GUO, Lisheng FAN. Effect of Different Sowing Dates on the Expression of Grain DUS Testing Characteristics [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 55-64. |
[5] | Jinfeng ZHAO, Aili YU, Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG. Response Characteristics of SiCBL3 to Abiotic Stresses in Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 68-75. |
[6] | Ruifeng GUO, Yuemei REN, Zhong YANG, Guishan LIU, Guangbing REN, Shou ZHANG, Wenjuan ZHU. Transcriptomic Analysis of Mechanism of Foxtail Millet Male Infertility Induced by Glyphosate Ammonium Salt [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 35-43. |
[7] | YU Bingxing, WANG Hongfu, WANG Zhenhua, ZHANG Peng, CHENG Kai, YU Aili, YAN Haili, YU Bingjie. Effects of Paclobutrazol on Stalk Characteristics and Lodging Resistance of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 37-44. |
[8] | LI Ran, LIU Yuhang, LIANG Shan, ZHANG Min, . Influences of Selenium Fertilizer on Millet Yield and Grain Selenium Enrichment [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 140-146. |
[9] | ZHANG Yujie, GUO Pingyi, GUO Meijun, ZHOU Hao, YUAN Xiangyang, DONG Shuqi, WANG Yuguo. Influences of Exogenous Selenium Mineral Powder on Protective Enzyme Activity, Yield and Selenium Content of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 153-159. |
[10] | YUE Linqi, GUO Jiahui, BAI Xionghui, SHI Weiping, GUO Pingyi*, GUO Jie*. Influences of Spraying Selenium Fertilizer on Leaves on Agronomic Characters and Selenium Content of Different Genotypes of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 154-163. |
[11] | TIAN Gang, LIU Xin, WANG Yuwen, LIU Yongzhong, LI Huixia, CHENG Kai, WANG Zhenhua, LIU Hong. Effects of Shading Treatment on Millet Agronomic Traits, Millet Quality and Cooking Characteristics [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 47-54. |
[12] | XIANG Jishan1, ZHANG Hengru2, LIU Han1, SUO Liangxi2, JIA Shujing1, ZHANG Ying1, SHI Jingqi1, HU Lizhe1, CAI Yining1. Comparison of Phenotypic Traits of Foxtail Millet Germplasm Resources in Different Ecological Regions [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 31-41. |
[13] |
LI Huixia1§, ZHENG Zhiyin2§, TIAN Gang1, LIU Xin1, WANG Yuwen1, LIU Hong1, SHI Guanyan3*.
Drought Resistance Analysis of 7 Foxtail Millet Hybrids and Their Parents
[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 20-28.
|
[14] |
LI Zhi, WANG Hongfu*, WANG Yuyun, YANG Jing, YU Bingxing, HUANG Shanshan.
Impact of Millet and Soybean Intercropping on Their Photosynthetic Characteristics and Yield
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 168-175.
|
[15] | WANG Yuyun, WANG Hongfu*, LI Zhi, DUAN Hongkai, HUANG Shanshan. Influences of MilletPeanut Intercropping on Photosynthetic Characteristics and Yield of Millet [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 153-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||