Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (11): 68-75.DOI: 10.13304/j.nykjdb.2022.0566
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Jinfeng ZHAO(), Aili YU(
), Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG
Received:
2022-07-07
Accepted:
2022-08-22
Online:
2022-11-15
Published:
2022-11-29
Contact:
Aili YU
赵晋锋(), 余爱丽(
), 李颜方, 杜艳伟, 王高鸿, 王振华
通讯作者:
余爱丽
作者简介:
赵晋锋E-mail: zhaojfmail@126.com;
基金资助:
CLC Number:
Jinfeng ZHAO, Aili YU, Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG. Response Characteristics of SiCBL3 to Abiotic Stresses in Foxtail Millet[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 68-75.
赵晋锋, 余爱丽, 李颜方, 杜艳伟, 王高鸿, 王振华. 谷子SiCBL3对非生物胁迫响应特征分析[J]. 中国农业科技导报, 2022, 24(11): 68-75.
引物 Primer | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
---|---|---|
A | TGTCTAGACTCGAGGGATCCATGGTGCAGTGCCTG-GAC | GGCCGCTGTACACATGGATCCGTTGTCATCAACTTGAGAAT-GAAAG |
B | GACGCACAATCCCACTATCC | GGGTGAGCTTGCCGTAGGTG |
SiCBL3 | AGCCTCCCAGATTTGAGACAG | AAGCATTCATCACTGACGGC |
β-actin | CAGTGGACGCACAACAGGTAT | AGCAAGGTCAAGACGGAGAAT |
Table 1 Primers used in this study
引物 Primer | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
---|---|---|
A | TGTCTAGACTCGAGGGATCCATGGTGCAGTGCCTG-GAC | GGCCGCTGTACACATGGATCCGTTGTCATCAACTTGAGAAT-GAAAG |
B | GACGCACAATCCCACTATCC | GGGTGAGCTTGCCGTAGGTG |
SiCBL3 | AGCCTCCCAGATTTGAGACAG | AAGCATTCATCACTGACGGC |
β-actin | CAGTGGACGCACAACAGGTAT | AGCAAGGTCAAGACGGAGAAT |
顺式元件Cis-element | 预测元件Predicted cis-element | |
---|---|---|
植物激素应答 Auxin-responsive | 脱落酸(ABRE)、茉莉酮酸甲酯 (CGTCA-motif、TGACG-motif)、 赤霉素 (GARE-motif)、 水杨酸 (TCA-element) Abscisic acid (ABRE),methyl jasmonate (CGTCA- motif, TGACG-motif),gibberellin ( GARE-motif), salicylic acid (TCA-element) | |
逆境应答 Stress-responsive | 干旱诱导MBS结合位点、低温响应 (LTR) MBS binding sites induced by drought, response to low temperature (LTR) | |
光应答 Light-responsive | G-box, Box 4, GT1-motif, TCCC-motif | |
其他应答 Others responsive | 昼夜节律 、玉米蛋白代谢调控 (O2-site)、厌氧诱导 ( ARE) Circadian, metabolic regulationof corn protein (O2-site), anaerobic induction (ARE) |
Table 2 Putative cis-elements in the promoter of SiCBL3
顺式元件Cis-element | 预测元件Predicted cis-element | |
---|---|---|
植物激素应答 Auxin-responsive | 脱落酸(ABRE)、茉莉酮酸甲酯 (CGTCA-motif、TGACG-motif)、 赤霉素 (GARE-motif)、 水杨酸 (TCA-element) Abscisic acid (ABRE),methyl jasmonate (CGTCA- motif, TGACG-motif),gibberellin ( GARE-motif), salicylic acid (TCA-element) | |
逆境应答 Stress-responsive | 干旱诱导MBS结合位点、低温响应 (LTR) MBS binding sites induced by drought, response to low temperature (LTR) | |
光应答 Light-responsive | G-box, Box 4, GT1-motif, TCCC-motif | |
其他应答 Others responsive | 昼夜节律 、玉米蛋白代谢调控 (O2-site)、厌氧诱导 ( ARE) Circadian, metabolic regulationof corn protein (O2-site), anaerobic induction (ARE) |
Fig. 2 Expression analysis of SiCBL3 under different stresses in seedlingNote:* and ** indicate significant difference compared with 0 h treatment at P<0.05 and P<0.01 levels, respectively.
Fig. 3 Expression analysis of SiCBL3 in different tissuesNoe: * and ** indicate significant difference compared with flag leaf at P<0.05 and P<0.01 levels, respectively.
Fig. 4 Expression analysis of SiCBL3 under drought stress at key growth stagesNote: * and ** indicate significant difference compared with stem-leaf at P<0.05 and P<0.01 levels, respectively.
Fig. 5 Expression analysis of SiCBL3 in different tissues under drought stress at filling stageNote: * and ** indicate significant difference compared with CK at P<0.05 and P<0.01 levels, respectively.
1 | LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al.. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. Plant Cell, 2002, 14 (Sl): S389-S400. |
2 | KUDLA J, BATISTIC O. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta, 2004, 219: 915-924. |
3 | KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58. |
4 | DU W, LIN H, CHEN S, et al.. Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis [J]. Plant Physiol., 2011, 156 (4): 2235-2243. |
5 | LIN H X, YANG Y Q, QUAN R D, et al.. Phosphorylation of SOS3-like calcium binding protein 8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis [J]. Plant Cell, 2009, 21 (5): 1607-1619. |
6 | LIN H, DU W M, YANG Y Q, et al.. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase 24 by its interacting SOS3-like calcium binding protein1 [J]. Plant Physiol., 2014, 164 (4): 2197-2206. |
7 | MAHAJAN S, TUTEJA N. Cold salinity and drought stresses: an overview [J]. Arch Biochem. Biophy., 2005, 444: 139-158. |
8 | KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58. |
9 | 赵晋锋,余爱丽,王高鸿,等.植物CBL/CIPK网络系统逆境应答研究进展[J].中国农业科技导报, 2011, 13(4): 32-38. |
ZHAO J F, YU A L, WANG G H, et al.. Progress of CBL/CIPK signal system in response to stresses in plant [J]. J. Agric. Sci. Technol., 2011, 13(4): 32-38. | |
10 | 杨秀,邓艳凤,肖水平,等.亚洲棉CBL基因家族鉴定及生物信息学分析[J].棉花科学, 2021, 43(2): 14-21. |
YANG X, DENG Y F, XIAO S P, et al.. Identification and bioinformatics analysis of GACBL family gene in Gossypium arboretum [J]. Cotton Sci., 2021, 43(2) : 14-21. | |
11 | 张兴政,黄浩捷,孙一闻,等.蒺藜苜蓿CBL基因家族全基因组鉴定及表达分析[J].中国草地学报, 2021, 43(7): 1-11. |
ZHANG X Z, HUANG H J, SUN Y W, et al.. Genome-wide identification and expression analysis od CBL gene family in Medicago truncatula [J]. Chin. J. Grassland, 2021, 43(7):1-11. | |
12 | 高玲,王斐,谢双全,等.乌拉尔甘草CBL基因家族的鉴定与表达分析[J].生物技术通报, 2021, 37(4): 18-27. |
GAO L, WANG F, XIE S Q, et al.. Genome-wide identification and expression analysis of CBL gene family in Glycyrrhiza uralensis [J]. Biotechnol. Bull., 2021, 37(4):18-27. | |
13 | 曹齐卫,刘明毓,陈伟,等. 黄瓜CBL基因的鉴定和特征分析[J].核农学报, 2016, 30(11): 2127-2132. |
CAO Q W, LIU M Y, CHEN W, et al.. Identification and vharacterization of cucumber CBL genes [J]. J. Nucl. Agric. Sci., 2016, 30(11): 2127-2132. | |
14 | 许园园,蔺经,李晓刚,等.梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析[J].中国农业科学, 2015, 48(4):735-747. |
XU Y Y, LIN J, LI X G, et al.. Identification and expression analysis under abiotic stresses of the CBL gene family in pear [J]. Sci. Agric. Sin., 2015, 48(4): 735-747. | |
15 | HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97( 7): 3735-3740. |
16 | MARTINEZ A J, JIANG X, GARCIADEBLAS B, et al.. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiol., 2007, 143: 1001-1012. |
17 | ZHANG Y M, LINGHU J J, WANG D, et al.. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance [J]. Plant Mol. Biol. Rep., 2017, 35(6): 634-646. |
18 | WANG M Y, GU D, LIU T S, et al.. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance [J]. Plant Mol. Biol., 2007, 65: 733-746. |
19 | GAO P, ZHAO P M, WANG J, et al.. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton [J]. Plant Physiol. Biochem., 2008, 46: 925-940. |
20 | XU J, LI H D, CHEN L Q, et al.. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125: 1347-1360. |
21 | TANG R J, LIU H, YANG Y, et al.. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis [J]. Cell Res., 2012, 22(12):1650-1665. |
22 | ECKERT C, OFFENBORN J N, HEINZ T, et al.. The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana [J]. Plant J., 2014, 78(1):146-156. |
23 | HWANG Y H, BETHKE P C, CHEONG Y H, et al.. A gibberellin-regulated calcineurin B in rice localizes to thetonoplast and is implicated in vacuole function [J]. Plant Physiol., 2005,138: 1347-1358. |
24 | D'NGELO C, WEINL S, BATISTIC O, et al.. Alternative complex formation of the Ca2 + -regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J]. Plant J., 2006, 48(6): 857-872. |
25 | HO C H, LIN S H, HU H C, et al.. CHL1 functions as a nitrate sensor in plants [J]. Cell, 2009, 138(6):1184-1194. |
26 | DRERUP M M, SCHLUCKING K, HASHIMOTO K, et al... The calcineurin B-like calciumsensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol. Plant, 2013, 6(2):559-569. |
27 | NOZAWA A, KOIZUMI N, SANO H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light [J]. Plant Cell Physiol., 2001, 42(9):976-981. |
28 | 赵晋锋,杜艳伟,王高鸿,等.谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J].作物学报, 2020, 46(5): 700-711. |
ZHAO J F, DU Y WEI, WANG G H, et al.. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agron. Sin., 2020, 46(5): 700-711. | |
29 | ZHANG Y, SU J, DUAN S, et al.. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J/OL]. Plant Methods, 2011, 7(1):30 [2022-08-31]. . |
30 | GU L, ZHANG Y, ZHANG M, et al.. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A [J]. Plant Mol. Biol., 2016, 90(1-2):157-170. |
31 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25: 402-408. |
[1] | Xiongfei JIAO, Jin YU, Leyong FENG, Yaodong GUO, Lisheng FAN. Effect of Different Sowing Dates on the Expression of Grain DUS Testing Characteristics [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 55-64. |
[2] | Meili LI, Junji SU, Yonglin YANG, Jianghong QIN, Xianxian LI, Delong YANG, Qi MA, Caixiang WANG. Identification of COI Family Genes and Their Expression in Gossypium hirsutum L. Under Drought and Salt Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 63-74. |
[3] | Yu MENG, Gang TAO, Deqi HUANG, Xiajun YAO. Diversity of Phosphate⁃solubilizing Fungi and Their Applications in Agriculture and Ecology [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 208-217. |
[4] | Ruifeng GUO, Yuemei REN, Zhong YANG, Guishan LIU, Guangbing REN, Shou ZHANG, Wenjuan ZHU. Transcriptomic Analysis of Mechanism of Foxtail Millet Male Infertility Induced by Glyphosate Ammonium Salt [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 35-43. |
[5] | LIU Zhengwen, WANG Xingfen, MENG Chengsheng, ZHANG Yan, SUN Zhengwen, WU Liqiang, MA Zhiying, ZHANG Guiyin. Genome-Wide Identification and Analysis of GH9 Gene Family in Gossypium barbadense L. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 30-45. |
[6] | YU Bingxing, WANG Hongfu, WANG Zhenhua, ZHANG Peng, CHENG Kai, YU Aili, YAN Haili, YU Bingjie. Effects of Paclobutrazol on Stalk Characteristics and Lodging Resistance of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 37-44. |
[7] | PU Quanming, YANG Peng, YONG Lei, DENG Yuchuan, HE Zihan, LIN Bangmin, SHI Songmei, XIANG Chengyong, FANG Fang. Studies on Pigment Content and Photosyntheic Characteristics of Purple-red Leaf Color Mutant in Radish [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 45-54. |
[8] | ZHANG Yujie, GUO Pingyi, GUO Meijun, ZHOU Hao, YUAN Xiangyang, DONG Shuqi, WANG Yuguo. Influences of Exogenous Selenium Mineral Powder on Protective Enzyme Activity, Yield and Selenium Content of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 153-159. |
[9] | CUI Jianghui§, YANG Puyuan§, CHANG Jinhua*. Identification and Expression Analysis Under Abiotic Stress of GRF Gene Family in Sorghum [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 37-46. |
[10] | YUE Linqi, GUO Jiahui, BAI Xionghui, SHI Weiping, GUO Pingyi*, GUO Jie*. Influences of Spraying Selenium Fertilizer on Leaves on Agronomic Characters and Selenium Content of Different Genotypes of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 154-163. |
[11] | LUO Ping, PANG Bo, CUI Jinxin, YU Shuang, WANG Xiaonan, CHENG Ming, CHEN Yong, GAO Wenwei, HAO Zhuangfang. Gene Structural Characteristics and Regulation Prediction of SNAC Transcription Factors Against Stresses in Maize [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 35-44. |
[12] | XIANG Jishan1, ZHANG Hengru2, LIU Han1, SUO Liangxi2, JIA Shujing1, ZHANG Ying1, SHI Jingqi1, HU Lizhe1, CAI Yining1. Comparison of Phenotypic Traits of Foxtail Millet Germplasm Resources in Different Ecological Regions [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 31-41. |
[13] |
LI Huixia1§, ZHENG Zhiyin2§, TIAN Gang1, LIU Xin1, WANG Yuwen1, LIU Hong1, SHI Guanyan3*.
Drought Resistance Analysis of 7 Foxtail Millet Hybrids and Their Parents
[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 20-28.
|
[14] | LI Ziwei1, CHEN Simeng1, WANG Fazhan1, ZHANG Haoyang1, ZHANG Li2*, XU Zicheng1*. Mechanism Research Advances in Plant Abiotic Stress Resistance Regulated by Hydrogen Sulfide [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 24-32. |
[15] |
LIU Peng1,WEI Jie1,YANG Yiqing1, ZHANG Na1,WEN Xiaolei1,2, FAN Xuefeng1,YANG Wenxiang1*,LIU Daqun1*.
A New Subtype of Calmodulinlike TaCML25/26 in Wheat Regulate Resistance to Leaf Rust
[J]. Journal of Agricultural Science and Technology, 2020, 22(4): 120-128.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||