Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (11): 112-120.DOI: 10.13304/j.nykjdb.2021.0918
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Jing ZHANG1(), Simeng GUO1, Yingchun HAN2, Yaping LEI2, Fangfang XING2, Wenli DU2, Yabing LI1,2(
), Lu FENG1,2(
)
Received:
2021-10-28
Accepted:
2022-04-12
Online:
2022-11-15
Published:
2022-11-29
Contact:
Yabing LI,Lu FENG
张静1(), 郭思梦1, 韩迎春2, 雷亚平2, 邢芳芳2, 杜文丽2, 李亚兵1,2(
), 冯璐1,2(
)
通讯作者:
李亚兵,冯璐
作者简介:
张静 E-mail:15139815006@163.com
基金资助:
CLC Number:
Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120.
张静, 郭思梦, 韩迎春, 雷亚平, 邢芳芳, 杜文丽, 李亚兵, 冯璐. 基于无人机RGB图像的棉花产量估算[J]. 中国农业科技导报, 2022, 24(11): 112-120.
生育时期 Growth stage | 20 m | 30 m | 40 m | |||
---|---|---|---|---|---|---|
因子 Factor | 符号 Symbol | 因子 Factor | 符号 Symbol | 因子 Factor | 符号 Symbol | |
花铃期 Flowering and boll stage | WI 方向度 Directionality | W D | WI ENT | W E | IDM | M |
吐絮期 Boll-opening stage | IKAW 方向度 Directionality | I D | WI | W | 粗糙度 Coarseness | C |
Table 1 Results of stepwise regression analysis
生育时期 Growth stage | 20 m | 30 m | 40 m | |||
---|---|---|---|---|---|---|
因子 Factor | 符号 Symbol | 因子 Factor | 符号 Symbol | 因子 Factor | 符号 Symbol | |
花铃期 Flowering and boll stage | WI 方向度 Directionality | W D | WI ENT | W E | IDM | M |
吐絮期 Boll-opening stage | IKAW 方向度 Directionality | I D | WI | W | 粗糙度 Coarseness | C |
生育时期 Growth stage | 因子Factor | 20 m | 30 m | 40 m |
---|---|---|---|---|
花铃期 Flowering and boll stage | FA1 | -271.4 | 235.7 | -180.7 |
FA2 | -139.2 | -197.1 | -39.1 | |
FA3 | 27.9 | -69.2 | 158.8 | |
吐絮期 Boll-opening stage | FA1 | 224.8 | 204.5 | 160.7 |
FA2 | -112.3 | -110.0 | 63.5 | |
FA3 | 104.3 | 100.5 | 165.2 |
Table 2 Results of factor analysis
生育时期 Growth stage | 因子Factor | 20 m | 30 m | 40 m |
---|---|---|---|---|
花铃期 Flowering and boll stage | FA1 | -271.4 | 235.7 | -180.7 |
FA2 | -139.2 | -197.1 | -39.1 | |
FA3 | 27.9 | -69.2 | 158.8 | |
吐絮期 Boll-opening stage | FA1 | 224.8 | 204.5 | 160.7 |
FA2 | -112.3 | -110.0 | 63.5 | |
FA3 | 104.3 | 100.5 | 165.2 |
高度 Height/m | 生育时期 Growth stage | 分析方法 Analysis method | 拟合模型 Fitting model | 决定 系数R2 | RMSE/(kg·hm-2) | NRMSE/% |
---|---|---|---|---|---|---|
20 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-3 598W+0.886 8D-1 250 | 0.733 3 | 184.4 | 5.71 |
因子分析FN | Y=-271.4FA1-139.2FA2+27.89FA3+3 228 | 0.735 8 | 183.5 | 5.68 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=18 792I+1.952D+2 260 | 0.606 5 | 224.0 | 6.94 | |
因子分析FN | Y=224.8FA1-112.3FA2+104.3FA3+3 252 | 0.592 6 | 230.6 | 7.14 | ||
30 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-3 085W-3 102E+15 016 | 0.784 9 | 165.6 | 5.13 |
因子分析FN | Y=235.2FA1-134.1FA2-152.6FA3+3 228 | 0.757 4 | 175.9 | 5.45 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=-296 8W+1 030 | 0.415 9 | 272.9 | 8.45 | |
FN | Y=204.5FA1-110FA2+100.5FA3 | 0.502 0 | 252.0 | 7.81 | ||
40 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-238 87M+11 146 | 0.435 5 | 268.3 | 8.31 |
因子分析FN | Y=-180.7FA1-39.06FA2+158.8FA3+3 228 | 0.465 6 | 261.0 | 8.09 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=-2 369C+19 032 | 0.506 0 | 251.0 | 7.78 | |
因子分析FN | Y=160.7FA1+63.53FA2+165.2FA3 | 0.448 1 | 265.3 | 8.22 |
Table 3 Comparative analysis of different yield models
高度 Height/m | 生育时期 Growth stage | 分析方法 Analysis method | 拟合模型 Fitting model | 决定 系数R2 | RMSE/(kg·hm-2) | NRMSE/% |
---|---|---|---|---|---|---|
20 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-3 598W+0.886 8D-1 250 | 0.733 3 | 184.4 | 5.71 |
因子分析FN | Y=-271.4FA1-139.2FA2+27.89FA3+3 228 | 0.735 8 | 183.5 | 5.68 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=18 792I+1.952D+2 260 | 0.606 5 | 224.0 | 6.94 | |
因子分析FN | Y=224.8FA1-112.3FA2+104.3FA3+3 252 | 0.592 6 | 230.6 | 7.14 | ||
30 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-3 085W-3 102E+15 016 | 0.784 9 | 165.6 | 5.13 |
因子分析FN | Y=235.2FA1-134.1FA2-152.6FA3+3 228 | 0.757 4 | 175.9 | 5.45 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=-296 8W+1 030 | 0.415 9 | 272.9 | 8.45 | |
FN | Y=204.5FA1-110FA2+100.5FA3 | 0.502 0 | 252.0 | 7.81 | ||
40 | 花铃期 Flowering and boll stage | 逐步回归SWR | Y=-238 87M+11 146 | 0.435 5 | 268.3 | 8.31 |
因子分析FN | Y=-180.7FA1-39.06FA2+158.8FA3+3 228 | 0.465 6 | 261.0 | 8.09 | ||
吐絮期 Boll-opening stage | 逐步回归SWR | Y=-2 369C+19 032 | 0.506 0 | 251.0 | 7.78 | |
因子分析FN | Y=160.7FA1+63.53FA2+165.2FA3 | 0.448 1 | 265.3 | 8.22 |
Fig. 1 Verification results of flowering and boll development stage and boll-opening stage yield estimation model at the height of 20 mA:Flowing and boll stage-SWR;B:Flowing and boll stage-FN;C:Boll-opening stage-SWR;D:Boll-opening stage-FN
Fig. 2 Verification results of flowering and boll development stage and boll-opening stage yield estimation model at the height of 30 mA:Flowing and boll stage-SWR;B:Flowing and boll stage-FN;C:Boll-opening stage-SWR;D:Boll-opening stage-FN
1 | 张美娜,冯爱晶,周建峰,等.基于无人机采集的视觉与光谱图像预测棉花产量[J].农业工程学报,2019,35(5):91-98. |
ZHANG M N, FENG A J, ZHOU J F, et al.. Cotton yield prediction using remote visual and spectral images captured by UAV system [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(5):91-98. | |
2 | XU W, LAN Y, LI Y, et al.. Classification method of cultivated land based on UAV visible light remote sensing [J]. Int. J. Agric. Biol. Eng., 2019, 12(3): 103-109. |
3 | XU W, CHEN P, ZHAN Y, et al.. Cotton yield estimation model based on machine learning using time series UAV remote sensing data [J/OL]. Int. J. Appl. Earth Obs., 2021, 104: 102511[2021-10-27]. . |
4 | COLOMINA I, MOLINA P. Unmanned aerial systems for photogrammetry and remote sensing: a review [J]. ISPRS J. Photogram. Rem. Sens., 2014, 92: 79-97. |
5 | 陶惠林,徐良骥,冯海宽,等.基于无人机数码影像的冬小麦株高和生物量估算[J].农业工程学报,2019,35(19):107-116. |
TAO H L, XU L J, FENG H K, et al.. Estimation of plant height and biomass of winter wheat based on UAV digital image [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(19):107-116. | |
6 | 万亮,岑海燕,朱姜蓬,等.基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J].智慧农业,2020,2(1):58-67. |
WAN L, CEN H Y, ZHU J P, et al.. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor [J]. Smart Agric.,2020,2(1):58-67. | |
7 | MUANGPRAKHON R, KAEWPLANG S. Estimation of paddy rice plant height using UAV remote sensing [J]. Eng. Access., 2021, 7(2): 93-97. |
8 | 邓江,谷海斌,王泽,等.基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J].干旱地区农业研究,2019,37(5):55-61, 69. |
DENG J, GU H B, WANG Z, et al.. Estimation and validation of above-ground biomass of cotton during main growth period using unmanned aerial vehicle (UAV) [J]. Agric. Res. Arid Areas, 2019,37(5):55-61, 69. | |
9 | DU X, WAN L, CEN H, et al.. Multi-temporal monitoring of leaf area index of rice under different nitrogen treatments using UAV images [J]. Int J. Precis Agric. Aviat., 2020, 3(1):7-12. |
10 | CÓRCOLES J I, ORTEGA J F, HERNÁNDEZ D, et al.. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle [J]. Biosyst. Eng., 2013, 115(1): 31-42. |
11 | 王来刚,徐建华,贺佳,等.基于无人机遥感的玉米叶面积指数与产量估算[J].玉米科学,2020,28(6):88-93. |
WANG L G, XU J H, HE J, et al.. Estimating leaf area index and yield of maize based on remote sensing by unmanned aerial vehicle [J]. J. Maize Sci., 2020,28(6):88-93. | |
12 | 申洋洋,陈志超,胡昊,等.基于无人机多时相遥感影像的冬小麦产量估算[J].麦类作物学报,2021(10): 1298-1306. |
SHEN Y Y, CHEN Z C, HU H, et al.. Estimation of water wheat yield based on UAV multi-temporal remote sensing image [J]. J. Triticeae Crops, 2021(10): 1298-1306. | |
13 | 汤勃,孔建益,伍世虔.机器视觉表面缺陷检测综述[J].中国图象图形学报,2017,22(12):1640-1663. |
TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision [J]. J. Image. Graph., 2017,22(12):1640-1663. | |
14 | 周元琦,王敦亮,陈晨,等.基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J].扬州大学学报(农业与生命科学版),2021,42(3):110-116. |
ZHOU Y Q, WANG D L, CHEN C, et al.. Prediction of wheat yield based on color index and texture feature index of unmanned aerial vehicle RGB images [J]. J. Yangzhou Univ. (Agric. Life Sci.), 2021,42(3):110-116. | |
15 | 刘欣谊,仲晓春,陈晨,等.利用无人机图像颜色与纹理特征数据在小麦生育前期对产量进行预测[J].麦类作物学报,2020,40(8):1002-1007. |
LIU X Y, ZHONG X C, CHEN C, et al.. Prediction of wheat yield using color and texture feature data of UAV image at early growth stage [J]. J. Triticeae Crops, 2020,40(8):1002-1007. | |
16 | 兰铭,费帅鹏,禹小龙,等.多光谱与热红外数据融合在冬小麦产量估测中的应用[J].麦类作物学报,2021,41(12): 1564-1572. |
LAN M, FEI S P, YU X L, et al.. Application of multispectral and thermal infrared data fusion in estimation of winter wheat yield [J]. J. Triticeae Crops, 2021,41(12): 1564-1572. | |
17 | 李昂. 基于无人机数码影像的水稻产量估测研究[D].沈阳:沈阳农业大学, 2018. |
LI A. Research on rice yield estimation based on digital imaging of UAV [D]. Shenyang: Shenyang Agricultural University, Master Dissertation, 2018. | |
18 | 胡莉婷,潘学标,王雪姣,等.基于COSIM模型的棉花区域产量动态预测研究——以新疆阿克苏市为例[J].棉花学报,2018,30(1):83-91. |
HU L T, PAN X B, WANG X J, et al.. Dynamic prediction of cotton regional yield based on the COSIM model-A case study of Akesu city, Xinjiang [J]. Cotton Sci., 2018,30(1):83-91. | |
19 | 王雪姣,潘学标,王森,等.基于COSIM模型的新疆棉花产量动态预报方法[J].农业工程学报,2017,33(8):160-165. |
WANG X J, PAN X B, WANG S, et al.. Dynamic prediction method for cotton yield based on COSIM model in Xinjiang [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(8):160-165. | |
20 | 刘焕军,康苒, SUSAN U,等.基于时间序列高光谱遥感影像的田块尺度作物产量预测[J].光谱学与光谱分析,2016,36(8):2585-2589. |
LIU H J, KANG R, SUSAN U, et al.. Study on the prediction of cotton yield within field scale with time series hyperspectral imagery [J]. Spectrosc. Spectral Anal., 2016,36(8):2585-2589. | |
21 | 毛文华,王一鸣,张小超,等.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报,2004(5):43-46. |
MAO W H, WANG Y M, ZHANG X C, et al.. Research advances of weed identification technology using machine vision [J]. Trans. Chin. Soc. Agric. Eng., 2004(5):43-46. | |
22 | LI S, YUAN F, ATA-UI-KARIM S T, et al.. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation [J/OL]. Remote Sens., 2019, 11(15): 1763 [2021-10-27]. . |
23 | MAO W, WANG Y, WANG Y. Real-time detection of between-row weeds using machine vision [C/OL]// Proceedings of ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2003:031004 [2021-10-27]. . |
24 | MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications [J]. Comput. Electron. agric., 2008, 63(2): 282-293. |
25 | BENDIG J, YU K, AASEN H, et al.. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. Int. J. Appl. Earth Obs., 2015, 39: 79-87. |
26 | LOUHAICHI M, BORMAN M M, JOHNSON D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocart. Int., 2001, 16(1): 65-70. |
27 | 唐银凤,黄志明,黄荣娟,等.基于多特征提取和SVM分类器的纹理图像分类[J].计算机应用与软件,2011,28(6):22-25, 46. |
TANG Y F, HUANG Z M, HUANG R J, et al.. Texture image classification based on multi-feature extraction and SVM classifier [J]. Comput. Appl. Software, 2011,28(6):22-25, 46. | |
28 | TAMURA H, MORI S, YAMAWAKI T. Textural features corresponding to visual perception [J]. IEEE Trans. Syst. Man. Cybern., 1978, 8(6): 460-473. |
29 | 王顺杰,齐春,程玉胜.Tamura纹理特征在水下目标分类中的应用[J].应用声学,2012,31(2):135-139. |
WANG S J, QI C, CHENG Y S. Application of Tamura texture feature to classify underwater targets [J]. J. Appl. Acoust., 2012,31(2):135-139. | |
30 | 周鹏飞,卢泽雨.基于SPSS多元线性回归模型在城市用水量的预测[J].水利科技与经济,2018,24(5):6-10. |
ZHOU P F, LU Z Y. Prediction of urban water consumption based on SPSS multiple linear regression model [J]. Water Conservancy Sci. Technol. Econ., 2018,24(5):6-10. | |
31 | 李凤.因子分析的原理与应用[J].产业与科技论坛,2014,13(10):76-77. |
LI F. Principle and application of factor analysis [J]. Ind. Sci. Tribune, 2014,13(10):76-77. | |
32 | 龚红菊.基于分形理论及图像纹理分析的水稻产量预测方法研究[D].南京:南京农业大学, 2008. |
GONG H J. Estimating paddy yield based on fractal and image texture analysis. [D]. Nanjing: Nanjing Agricultural University, 2008. | |
33 | 刘焕军,孟令华,张新乐,等.基于时间序列Landsat影像的棉花估产模型[J].农业工程学报,2015,31(17):215-220. |
LIU H J, MENG L H, ZHANG X L, et al.. Estimation model of cotton yield with time series Landsat images [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(17):215-220. | |
34 | BENDIG J, BOLTEN A, BENNERTZ S, et al.. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging [J]. Remote Sens., 2014, 6(11): 10395-10412. |
35 | 毛树春,李亚兵,董合忠,等.中国棉花栽培学[M].第四版.上海:上海科学技术出版社,2019:405-410. |
36 | 徐永胜,刘浩然,范伟伟,等.基于分水岭算法的无人机不同飞行高度下林木冠幅提取研究[J].西北林学院学报,2021,36(3):197-202, 259. |
XU Y S, LIU H R, FAN W W, et al.. Extraction of forest stand crown width at different flying heights of UAV based on watershed Algorithm [J]. J. Northwest Forestry Univ.,2021,36(3):197-202, 259. | |
37 | 张佩,陈郑盟,马顺登,等.用冠层叶色偏态分布模式RGB模型预测大豆产量[J].农业工程学报,2021,37(9):120-126. |
ZHANG P, CHEN Z M, MA S D, et al.. Prediction of soybean yield by using RGB model with skew distribution pattern of canopy leaf color [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(9):120-126. | |
38 | 唐晏. 基于无人机采集图像的植被识别方法研究[D].成都:成都理工大学,2014. |
TANG Y. Research on the vegetation identification method based on UAV image acquisition [D]. Chengdu: Chengdu University of Technology, 2014. | |
39 | 郑小南,杨凡,李富忠.农作物图像分割算法综述[J].现代计算机,2020(19):72-75. |
ZHENG X N, YANG F, LI F Z. Overview of crop image segmentation algorithm [J]. Mod. Comput., 2020(19):72-75. |
[1] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
[2] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
[3] | Yangyang LIU, Yue PAN, Shiwei WANG, Haifang HU. Light Response Model Fitting and Comprehensive Evaluation for Vitisamurensis [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 104-114. |
[4] | ZHANG Guanhong, WANG Xinjun, XU Xiaolong, YAN Linan, CHANG Mengdi, LI Yongkang, . Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
[5] | FU Rongtao, CHEN Cheng, WANG Jian, CHEN Xuejuan, LU Daihua*. Control Conditions and Effects of Plant Protection Unmanned Aerial Vehicle (UAV) on Diseases and Insect Pests of Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 103-109. |
[6] | ZHOU Kai1, ZHOU Tong1, DING Feng2, DING Dawei2, WU Wei1, YAO Zhaosheng1, LIU Tao1, HUO Zhongyang1, SUN Chengming1*. Wheat LAI Estimation in Main Growth Period Based on UAV Images [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 89-97. |
[7] | WANG Bingjie1, PAN Bo1, JIANG Lei1, LIN Yong1*, ZHAO Shuai2, MO Yuxing2. Effects of Spraying Parameters of Plant Protection Unmanned Aerial Vehicle on Deposition Distribution of Droplets in Pitaya Canopy [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 101-109. |
[8] | XU Peng1, XU Weicheng2, LUO Yangfan2, ZHAO Zuoxi2*. Precise Classification of Cultivated Land Based on Visible Remote Sensing Image of UAV [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 79-86. |
[9] | XU Weicheng1, CHEN Kai1, ZHANG Ming1, LI Zhengfeng2, ZHANG Tianshun1*. Life Lifting Scheme for Plant Protection UAV Based on Solar [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 62-68. |
[10] | ZHAO Rongrong1, SHAO Huifang1*, FAN Lei2, ZHANG Manman3, WANG Shanshan1, CHEN Fangquan1, LIU Zhihong1, NIU Guiyan1, HAO Haohao4, XU Zicheng1. Relationship Analasis between Chemical Compositions and Sensory Quality of in Drying Process [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 93-102. |
[11] | LI Yan1, CHU Zhiguo2, TIAN Haiying3, HAO Hui3, SONG Jinyong3, ZHOU Hao3, LI Huaiqi3, LIU Pengfei1, ZHAO Mingqin1*. Influences of Organic Acids on Deliveries of Harmful Components in Mainstream Smoke from Flue-curd Tobacco Leaf [J]. Journal of Agricultural Science and Technology, 2017, 19(1): 125-130. |
[12] | LIANG Fei, DOU Xue-cheng*. Coupling Degree Analysis of Circular Agriculture in Gansu Province under the Perspective of Ecological Industry Chain and Value Chain [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 200-207. |
[13] | AI Hong-juan1,2, JIANG He-ping1*. Studies on Evaluating Modern Agricultural Development Level in Xinjiang based on Factor Analysis Method [J]. , 2015, 17(4): 157-164. |
[14] | HUANG Yong-bao1, JI Yan-guang2*. Studies and Analysis on Agricultural Machinery Development in China Based on Factor Analysis [J]. , 2014, 16(4): 95-101. |
[15] | NIU Li\|li1, ZHANG Bao\|quan2, XU Zi\|cheng1*, GENG Zong\|ze3, HUANG Guang\|hua2. Difference Analysis of Neutral Aroma Component Contents in Flue\|cured Tobacco Groups with Different Taste Characteristic [J]. , 2014, 16(2): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||