Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 68-77.DOI: 10.13304/j.nykjdb.2022.0985
• INNOVATIVE TECHNOLOGY • Previous Articles Next Articles
Jingkun ZHANG1,2(), Wenjia LI3,4, Peng ZENG1,2, Xiangbing MENG1, Hong YU1,2, Jiayang LI1,2,3(
)
Received:
2022-11-14
Accepted:
2022-11-30
Online:
2022-12-15
Published:
2023-02-06
Contact:
Jiayang LI
张静昆1,2(), 李文佳3,4, 曾鹏1,2, 孟祥兵1, 余泓1,2, 李家洋1,2,3(
)
通讯作者:
李家洋
作者简介:
张静昆 E-mail: zhangjingkun@genetics.ac.cn;
基金资助:
CLC Number:
Jingkun ZHANG, Wenjia LI, Peng ZENG, Xiangbing MENG, Hong YU, Jiayang LI. Innovation and Progresses in de novo Domestication of Crops[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 68-77.
张静昆, 李文佳, 曾鹏, 孟祥兵, 余泓, 李家洋. 作物从头驯化策略的提出与进展[J]. 中国农业科技导报, 2022, 24(12): 68-77.
1 | TIAN Z X, WANG J W, LI J Y, et al.. Designing future crops: challenges and strategies for sustainable agriculture [J]. Plant J., 2021, 105(5): 1165-1178. |
2 | YU H, LI J Y. Short- and long-term challenges in crop breeding [J/OL]. Natl. Sci. Rev., 2021, 8(2): nwab002 [2022-11-21]. . |
3 | 张静昆,曾鹏,余泓,等.多倍体水稻从头驯化:育种策略与展望[J].中国科学:生命科学, 2021, 51(10): 1467-1476. |
ZHANG J K, ZENG P, YU H, et al.. De novo domestication of polyploid rice: a novel breeding strategy and future prospects [J]. Sci. Sin. Vitae, 2021, 51(10):1467-1476. | |
4 | SANG T, Li J Y. Molecular genetic basis of the domestication syndrome in cereals [M]// GUPTA P, VARSHNEY R. Cereal Genomics Ⅱ. Dordrecht: Springer Netherlands,, 2013:319-340. |
5 | SANG T, GE S. Understanding rice domestication and implications for cultivar improvement [J]. Curr. Opin. Plant Biol., 2013, 16(2): 139-146. |
6 | SHAN Q W, WANG Y P, LI J, et al.. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nat. Biotechnol., 2013, 31(8): 686-688. |
7 | LI J F, NORVILLE J E, AACH J, et al.. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nat. Biotechnol., 2013, 31(8): 688-691. |
8 | NEKRASOV V, STASKAWICZ B, WEIGEL D, et al.. Targeted mutagenesis in the model plant Nicotiana Benthamiana using Cas9 RNA-guided endonuclease [J]. Nat. Biotechnol., 2013, 31(8): 691-693. |
9 | ZSOGON A, CERMAK T, VOYTAS D, et al.. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato [J]. Plant Sci., 2017, 256: 120-130. |
10 | OSTERBERG J T, XIANG W, OLSEN L I, et al.. Accelerating the domestication of new crops: feasibility and approaches [J]. Trends Plant Sci., 2017, 22(5): 373-384. |
11 | ZSOGON A, CERMAK T, NAVES E R, et al.. De novo domestication of wild tomato using genome editing [J]. Nat. Biotechnol., 2018, 36(12): 1211-1216. |
12 | LI T D, YANG X P, YU Y, et al.. Domestication of wild tomato is accelerated by genome editing [J]. Nat. Biotechnol., 2018, 36(12): 1160-1163. |
13 | LEMMON Z H, REEM N T, DALRYMPLE J, et al.. Rapid improvement of domestication traits in an orphan crop by genome editing [J]. Nat. Plants, 2018, 4(10): 766-770. |
14 | YU H, LIN T, MENG X, et al.. A route to de novo domestication of wild allotetraploid rice [J]. Cell, 2021, 184(5):1156-1170. |
15 | WITEK K, LIN X, KARKI H S, et al.. A complex resistance locus in Solanum americanum recognizes a conserved phytophthora effector [J]. Nat. Plants, 2021, 7(2): 198-208. |
16 | 邓一文,刘裕强,王静,等.农作物抗病虫研究的战略思考[J].中国科学:生命科学, 2021, 51(10): 1435-1446. |
DENG Y W, LIU Y Q, WANG J, et al.. Strategic thinking and research on crop disease and pest resistance in China [J]. Sci. Sin. Vitae, 2021, 51(10):1435-1446. | |
17 | DOEBLEY J F, GAUT B S, SMITH B D. The molecular genetics of crop domestication [J]. Cell, 2006, 127(7): 1309-1321. |
18 | MEYER R S, DUVAL A E, JENSEN H R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops [J]. New Phytol., 2012, 196(1): 29-48. |
19 | CHEN R Z, DENG Y W, DING Y L, et al.. Rice functional genomics: Decades’ efforts and roads ahead [J]. Sci. China Life Sci., 2022, 65(1): 33-92. |
20 | LI C, ZHOU A, SANG T. Rice domestication by reducing shattering [J]. Science, 2006, 311(5769): 1936-1939. |
21 | KONISHI S, IZAWA T, LIN S Y, et al.. An SNP caused loss of seed shattering during rice domestication [J]. Science, 2006, 312(5778): 1392-1396. |
22 | TAN L B, LI X R, LIU F X, et al.. Control of a key transition from prostrate to erect growth in rice domestication [J]. Nat. Genet., 2008, 40(11): 1360-1364. |
23 | JIN J, HUANG W, GAO J P, et al.. Genetic control of rice plant architecture under domestication [J]. Nat. Genet., 2008, 40(11): 1365-1369. |
24 | ZHU Z F, TAN L B, FU Y C, et al.. Genetic control of inflorescence architecture during rice domestication [J/OL]. Nat. Commun., 2013, 4: 2200 [2022-11-21]. . |
25 | ISHII T, NUMAGUCHI K, MIURA K, et al.. OsLG1 regulates a closed panicle trait in domesticated rice [J]. Nat. Genet., 2013, 45(4): 462-465. |
26 | LUO J, LIU H, ZHOU T, et al.. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice [J]. Plant Cell, 2013, 25(9): 3360-3376. |
27 | HUA L, WANG D R, TAN L, et al.. LABA1, a domestication gene associated with long, barbed awns in wild rice [J]. Plant Cell, 2015, 27(7): 1875-1888. |
28 | BESSHO-UEHARA K, WANG D R, FURUTA T, et al.. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(32): 8969-8974. |
29 | DUAN P G, XU J S, ZENG D L, et al.. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice [J]. Mol. Plant, 2017, 10(5): 685-694. |
30 | SWEENEY M T, THOMSON M J, PFEIL B E, et al.. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice [J]. Plant Cell, 2006, 18(2): 283-294. |
31 | GU X Y, FOLEY M E, HORVATH D P, et al.. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice [J]. Genetics, 2011, 189(4): 1515-1524. |
32 | ZHU B F, SI L Z, WANG Z X, et al.. Genetic control of a transition from black to straw-white seed hull in rice domestication [J]. Plant Physiol., 2011, 155(3): 1301-1311. |
33 | 朱霁晖,张昌泉,顾铭洪,等. 水稻Wx基因的等位变异及育种利用研究进展[J].中国水稻科学, 2015, 29(4): 431-438. |
ZHANG C Q, ZHU J H, GU M H, et al.. Progress in the allelic variation of Wx gene and its application in rice breeding [J]. Chin. J. Rice Sci., 2015, 29(4): 431-438. | |
34 | ZONG W B, REN D, HUANG M H, et al.. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading [J]. New Phytol., 2020, 229(3):1635-1649. |
35 | ZHOU S R, ZHU S S, CUI S, et al.. Transcriptional and post-transcriptional regulation of heading date in rice [J]. New Phytol., 2021, 230(3): 943-956. |
36 | STITZER M C, ROSS-IBARRA J. Maize domestication and gene interaction [J]. New Phytol., 2018, 220(2): 395-408. |
37 | DOEBLEY J, STEC A. Genetic-analysis of the morphological differences between maize and teosinte [J]. Genetics, 1991, 129(1): 285-295. |
38 | DOEBLEY J, STEC A. Inheritance of the morphological differences between maize and teosinte-comparison of results for two F2 populations [J]. Genetics, 1993, 134(2): 559-570. |
39 | VOLLBRECHT E, SPRINGER P S, GOH L, et al.. Architecture of floral branch systems in maize and related grasses [J]. Nature, 2005, 436(7054): 1119-1126. |
40 | BOMBLIES K, WANG R L, AMBROSE B A, et al.. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize [J]. Development, 2003, 130(11): 2385-2395. |
41 | LIN Z W, LI X R, SHANNON L M, et al.. Parallel domestication of the shattering1 genes in cereals [J]. Nat. Genet., 2012, 44(6): 720-724. |
42 | WANG H, NUSSBAUM-WAGLER T, LI B L, et al.. The origin of the naked grains of maize [J]. Nature, 2005, 436(7051): 714-719. |
43 | STUDER A, ZHAO Q, ROSS-IBARRA J, et al.. Identification of a functional transposon insertion in the maize domestication gene tb1 [J]. Nat. Genet., 2011, 43(11): 1160-1163. |
44 | AVNI R, NAVE M, BARAD O, et al.. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication [J]. Science, 2017, 357(6346): 93-96. |
45 | FARIS J D, FELLERS J P, BROOKS S A, et al.. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene [J]. Genetics, 2003, 164(1): 311-321. |
46 | SIMONS K J, FELLERS J P, TRICK H N, et al.. Molecular characterization of the major wheat domestication gene Q [J]. Genetics, 2006, 172(1): 547-555. |
47 | FARIS J D, ZHANG Z C, CHAO S M. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication [J]. Gene, 2014, 542(2): 198-208. |
48 | SAISHO D, ISHII M, HORI K, et al.. Natural variation of barley vernalization requirements: Implication of quantitative variation of winter growth habit as an adaptive trait in east Asia [J]. Plant Cell Physiol., 2011, 52(5): 775-784. |
49 | YAN L, LOUKOIANOV A, TRANQUILLI G, et al.. Positional cloning of the wheat vernalization gene VRN1 [J]. Proc. Natl. Acad. Sci. USA, 2003, 100(10): 6263-6268. |
50 | PNUELI L, CARMEL-GOREN L, HAREVEN D, et al.. The self-pruning gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1 [J]. Development, 1998, 125(11): 1979-1989. |
51 | ESHED Y, LIPPMAN Z B. Revolutions in agriculture chart a course for targeted breeding of old and new crops [J/OL]. Science, 2019, 366(6466): eaax0025705 [2022-11-21]. . |
52 | FRARY A, NESBITT T C, FRARY A, et al.. Fw2.2: A quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000, 289(5476): 85-88. |
53 | CONG B, BARRERO L S, TANKSLEY S D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication [J]. Nat. Genet., 2008, 40(6): 800-804. |
54 | ALSEEKH S, SCOSSA F, WEN W W, et al.. Domestication of crop metabolomes: Desired and unintended consequences [J]. Trends Plant Sci., 2021, 26(6): 650-661. |
55 | ZHU G T, WANG S C, HUANG Z J, et al.. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1-2): 249-261. |
56 | CHEN WK, CHEN L, ZHANG X, et al.. Convergent selection of a WD40 protein that enhances grain yield in maize and rice [J/OL]. Science, 2022, 375(6587): eabg7985 [2022-11-21]. . |
57 | LIU J, FERNIE A R, YAN J B. The past, present, and future of maize improvement: Domestication, genomics, and functional genomic routes toward crop enhancement [J/OL]. Plant Commun., 2020, 1(1):100010 [2022-11-21]. . |
58 | WANG M, LI WZ, FANG C, et al.. Parallel selection on a dormancy gene during domestication of crops from multiple families [J]. Nat. Genet., 2018, 50(10): 1435-1441. |
59 | LIU H H, LIU H Q, ZHOU L N, et al.. Parallel domestication of the heading date 1 gene in cereals [J]. Mol. Biol. Evol., 2015, 32(10): 2726-2737. |
60 | 冉毅东,梁振,张毅,等.植物基因组编辑试剂材料的导入及转化系统的研究现状及前景[J].中国科学:生命科学, 2017, 47(11): 1159-1176. |
61 | CAO X, XIE H, SONG M, et al.. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture [J]. Innovation, 2023, 4(1): 100345 [2022-11-21]. . |
62 | HIEI Y, OHTA S, KOMARI T, et al.. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA [J]. Plant J., 1994, 6(2): 271-282. |
63 | LIN Y J, ZHANG Q F. Optimising the tissue culture conditions for high efficiency transformation of Indica rice [J]. Plant Cell Rep., 2005, 23(8): 540-547. |
64 | MOHAMMED S, SAMAD AABD, RAHMAT Z. Agrobacterium-mediated transformation of rice: constraints and possible solutions [J]. Rice Sci., 2019, 26(3): 133-146. |
65 | SHIMIZU-SATO S, TSUDA K, NOSAKA-TAKAHASHI M, et al.. Agrobacterium-mediated genetic transformation of wild oryza species using immature embryos [J/OL]. Rice, 2020, 13(1):33 [2022-11-21]. . |
66 | MAHER M F, NASTI R A, VOLLBRECHT M, et al.. Plant gene editing through de novo induction of meristems [J]. Nat. Biotechnol., 2020, 38(1): 84-89. |
67 | DEBERNARDI J M, TRICOLI D M, ERCOLI M F, et al.. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants [J]. Nat. Biotechnol., 2020, 38(11): 1274-1279. |
68 | ALI Z, ABUL-FARAJ A, LI L X, et al.. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system [J]. Mol. Plant, 2015, 8(8): 1288-1291. |
69 | WANG M G, LU Y M, BOTELLA J R, et al.. Gene targeting by homology-directed repair in rice using a geminivirus-based Crispr/Cas9 system [J]. Mol. Plant, 2017, 10(7): 1007-1010. |
70 | KAZAMA T, OKUNO M, WATARI Y, et al.. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing [J]. Nat. Plants, 2019, 5(7): 722-730. |
71 | KANG B C, BAE S J, LEE S, et al.. Chloroplast and mitochondrial DNA editing in plants [J]. Nat. Plants, 2021, 7(7): 899-905. |
72 | SUN Y Q, SHANG L G, ZHU Q H, et al.. Twenty years of plant genome sequencing: Achievements and challenges [J]. Trends Plant Sci., 2022, 27(4): 391-401. |
73 | SHANG L G, LI X X, HE H Y, et al.. A super pan-genomic landscape of rice [J]. Cell Res., 2022, 32(10): 878-896. |
74 | GAO L, GONDA I, SUN H H, et al.. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor [J]. Nat. Genet., 2019, 51(6): 1044-1051. |
75 | HUBNER S, BERCOVICH N, TODESCO M, et al.. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance [J]. Nat. Plants, 2019, 5(1): 54-62. |
76 | LIU Y C, DU H L, LI P C, et al.. Pan-genome of wild and cultivated soybeans [J]. Cell, 2020, 182(1): 162-176. |
77 | 郑怀国,赵静娟,秦晓婧,等.全球作物种业发展概况及对我国种业发展的战略思考[J].中国工程科学, 2021, 23(4): 45-55. |
ZHENG H G, ZHAO J J, QIN X J, et al.. Overview of the global crop seed industry and strategic thinking on its development in China [J]. Strategic Study CAE, 2021, 23(4): 45-55. |
[1] | Hui XU, Yangyang ZHAO, Dongyue SUN, Yuanyuan KE, Lele ZHANG, Xiang CHEN, Fengzhen WEI, Jincai LI. Progress in Integrated Rice-crayfish Farming System [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 160-168. |
[2] | Jing ZHAN, Bin LIU, Ming CHEN. Influences and Prevention of Food Security in China Under Global Momentous Public Health Event [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 49-57. |
[3] | Jian ZHANG. Prospects for Commercialization of Biotech Breeding Technology of Important Crops in China [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 15-24. |
[4] | Beibei FAN, Jin LI, Chen MA. Digital Development of China’s Crop Industry: Achievements, Difficulties and Prospects [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 25-32. |
[5] | Xianwei SONG, Shanjie TANG, Xiaofeng CAO. Epigenetic Regulation and Crop Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 33-38. |
[6] | WANG Xiaomei§, HE Wei§, YANG Xiaowei§, KONG Lingbo, LIN Qiao. Impact of COVID\|19 Pandemic on Global Food Security and Countermeasures [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 1-7. |
[7] | YANG Dongqun, JIANG Heping*. Food Security of Main Grain Sales Regions in China——Based on a Gap in Balance between Grain Supply and Demand [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 1-9. |
[8] | GUAN Dahai1, ZHANG Jun2, WANG Qingmei1, ZHANG Yanping1, . Climate-Smart Agriculture and its Enlightenment to Agricultural Development of China [J]. Journal of Agricultural Science and Technology, 2017, 19(10): 7-13. |
[9] | ZHANG Kai, ZENG Zhao-hai*, ZHAO Jie, WANG Xi-quan, ZHOU Jie, XU He-shui, WANG Zhi-min. Impact Analysis of Reduce the Extraction of Groundwater on Wheat Production in North China Plain [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 111-117. |
[10] | LI Yuan-yuan1,2, CAO Qing-he1,2*. Mechanism of Brassinosteroid Involved in Regulating Plant Development, Stress Resistance and its Application in Breeding [J]. , 2015, 17(2): 25-32. |
[11] | LIU Xu. Thoughts of Chinas Food Security Strategy in the New Era [J]. , 2013, 15(1): 1-6. |
[12] | SONG Li-li1, WANG Xiu-dong2*. Thoughts about Century Drought in USA [J]. , 2012, 14(6): 1-5. |
[13] | LIU Pei-lei1|ZHAO Yong-guo2|LI Ning1|ZHOU Yun-long1. Impacts of Transgenic Technology on Food Security and Relevant Countermeasures [J]. , 2010, 12(4): 1-5. |
[14] | ZHANG Fu1,2, GAO Wang-sheng1. The Development Process and Strategy of High-tech Research on Crops Breeding in China [J]. , 2010, 12(3): 67-72. |
[15] | ZHANG Ying. Drawbacks and Control of High Copper [J]. , 2009, 11(S1): 20-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||