Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (4): 132-146.DOI: 10.13304/j.nykjdb.2022.1068
• ANIMAL AND PLANT HEALTH • Previous Articles
Haochun KE(), Kun LI(
), Ruifeng CHENG(
)
Received:
2022-12-07
Accepted:
2023-02-13
Online:
2023-04-01
Published:
2023-06-26
Contact:
Kun LI,Ruifeng CHENG
通讯作者:
李琨,程瑞锋
作者简介:
柯昊纯 E-mail:kehaochun@caas.cn
基金资助:
CLC Number:
Haochun KE, Kun LI, Ruifeng CHENG. Simulation and Optimization on Ultraviolet LED Nutrient Solution Sterilization Module Based on Response Surface Method[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 132-146.
柯昊纯, 李琨, 程瑞锋. 营养液紫外LED杀菌模组仿真与响应面法优化[J]. 中国农业科技导报, 2023, 25(4): 132-146.
Fig. 3 Measurement of transmittance for quartz tubeA:UV-LED measurement board; B:UV transmittance measurement device for quartz tube. 1—UV-LED measurement board; 2—Semicircular quartz plate with the same specifications as quartz tube; 3—Measurement probe of ultraviolet spectrometer
指标Index | 遮盖前Before covering | 遮盖后After covering | 透过率Transmittance |
---|---|---|---|
辐照度Irradiance/(μW·cm-2) | 123.5 | 115.7 | 0.937 |
133.9 | 125.4 | 0.937 | |
144.8 | 136.9 | 0.945 | |
157.1 | 146.2 | 0.931 | |
194.9 | 175.5 | 0.900 |
Table 1 UV irradiance before and after covering the quartz plate and its transmittance
指标Index | 遮盖前Before covering | 遮盖后After covering | 透过率Transmittance |
---|---|---|---|
辐照度Irradiance/(μW·cm-2) | 123.5 | 115.7 | 0.937 |
133.9 | 125.4 | 0.937 | |
144.8 | 136.9 | 0.945 | |
157.1 | 146.2 | 0.931 | |
194.9 | 175.5 | 0.900 |
Fig. 9 Ultraviolet irradiance distribution of the reference surface and the corresponding position of the light-receiving surface of the spectrometer probe under unilateral lighting
因子Factor | 编码Coding | 水平Level | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | 1 | 2 | ||
管道内径Inner diameter of tube/mm | A | 24.00 | 30.50 | 37.00 | 43.50 | 50.00 |
管壁厚度Thickness of tube wall/mm | B | 0.00 | 0.75 | 1.50 | 2.25 | 3.00 |
管灯距离Tube-lamp distance/mm | C | 0.00 | 1.25 | 2.50 | 3.75 | 5.00 |
双向反射分布函数BRDF | D | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
Table 2 Parameter factor level and code
因子Factor | 编码Coding | 水平Level | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | 1 | 2 | ||
管道内径Inner diameter of tube/mm | A | 24.00 | 30.50 | 37.00 | 43.50 | 50.00 |
管壁厚度Thickness of tube wall/mm | B | 0.00 | 0.75 | 1.50 | 2.25 | 3.00 |
管灯距离Tube-lamp distance/mm | C | 0.00 | 1.25 | 2.50 | 3.75 | 5.00 |
双向反射分布函数BRDF | D | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | EURR/% | ID | ||
1 | -1 | -1 | -1 | -1 | 18.94 | 0.381 2 | |
2 | 1 | -1 | -1 | -1 | 24.66 | 0.387 9 | |
3 | -1 | 1 | -1 | -1 | 18.60 | 0.303 3 | |
4 | 1 | 1 | -1 | -1 | 24.09 | 0.325 7 | |
5 | -1 | -1 | 1 | -1 | 15.96 | 0.312 4 | |
6 | 1 | -1 | 1 | -1 | 21.30 | 0.314 8 | |
7 | -1 | 1 | 1 | -1 | 15.30 | 0.272 6 |
Table 3 Design scheme and results of simulation experiments
试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | EURR/% | ID | ||
1 | -1 | -1 | -1 | -1 | 18.94 | 0.381 2 | |
2 | 1 | -1 | -1 | -1 | 24.66 | 0.387 9 | |
3 | -1 | 1 | -1 | -1 | 18.60 | 0.303 3 | |
4 | 1 | 1 | -1 | -1 | 24.09 | 0.325 7 | |
5 | -1 | -1 | 1 | -1 | 15.96 | 0.312 4 | |
6 | 1 | -1 | 1 | -1 | 21.30 | 0.314 8 | |
7 | -1 | 1 | 1 | -1 | 15.30 | 0.272 6 |
试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | EURR/% | ID | ||
8 | 1 | 1 | 1 | -1 | 20.58 | 0.280 1 | |
9 | -1 | -1 | -1 | 1 | 33.20 | 0.342 9 | |
10 | 1 | -1 | -1 | 1 | 37.88 | 0.358 5 | |
11 | -1 | 1 | -1 | 1 | 31.36 | 0.279 5 | |
12 | 1 | 1 | -1 | 1 | 35.00 | 0.305 8 | |
13 | -1 | -1 | 1 | 1 | 27.40 | 0.303 8 | |
14 | 1 | -1 | 1 | 1 | 31.31 | 0.307 9 | |
15 | -1 | 1 | 1 | 1 | 24.73 | 0.261 8 | |
16 | 1 | 1 | 1 | 1 | 29.36 | 0.271 5 | |
17 | -2 | 0 | 0 | 0 | 17.43 | 0.274 2 | |
18 | 2 | 0 | 0 | 0 | 29.12 | 0.310 6 | |
19 | 0 | -2 | 0 | 0 | 28.01 | 0.357 4 | |
20 | 0 | 2 | 0 | 0 | 23.18 | 0.263 6 | |
21 | 0 | 0 | -2 | 0 | 28.85 | 0.412 3 | |
22 | 0 | 0 | 2 | 0 | 19.56 | 0.294 9 | |
23 | 0 | 0 | 0 | -2 | 17.94 | 0.314 0 | |
24 | 0 | 0 | 0 | 2 | 49.78 | 0.298 9 | |
25 | 0 | 0 | 0 | 0 | 24.61 | 0.304 7 |
Table 3 Design scheme and results of simulation experimentsxu
试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | EURR/% | ID | ||
8 | 1 | 1 | 1 | -1 | 20.58 | 0.280 1 | |
9 | -1 | -1 | -1 | 1 | 33.20 | 0.342 9 | |
10 | 1 | -1 | -1 | 1 | 37.88 | 0.358 5 | |
11 | -1 | 1 | -1 | 1 | 31.36 | 0.279 5 | |
12 | 1 | 1 | -1 | 1 | 35.00 | 0.305 8 | |
13 | -1 | -1 | 1 | 1 | 27.40 | 0.303 8 | |
14 | 1 | -1 | 1 | 1 | 31.31 | 0.307 9 | |
15 | -1 | 1 | 1 | 1 | 24.73 | 0.261 8 | |
16 | 1 | 1 | 1 | 1 | 29.36 | 0.271 5 | |
17 | -2 | 0 | 0 | 0 | 17.43 | 0.274 2 | |
18 | 2 | 0 | 0 | 0 | 29.12 | 0.310 6 | |
19 | 0 | -2 | 0 | 0 | 28.01 | 0.357 4 | |
20 | 0 | 2 | 0 | 0 | 23.18 | 0.263 6 | |
21 | 0 | 0 | -2 | 0 | 28.85 | 0.412 3 | |
22 | 0 | 0 | 2 | 0 | 19.56 | 0.294 9 | |
23 | 0 | 0 | 0 | -2 | 17.94 | 0.314 0 | |
24 | 0 | 0 | 0 | 2 | 49.78 | 0.298 9 | |
25 | 0 | 0 | 0 | 0 | 24.61 | 0.304 7 |
来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
模型 Model | 1 461.900 0 | 14 | 104.420 0 | 27.710 0 | <0.000 1 |
A | 160.530 0 | 1 | 160.530 0 | 42.600 0 | <0.000 1 |
B | 18.890 0 | 1 | 18.890 0 | 5.010 0 | 0.049 1 |
C | 132.400 0 | 1 | 132.400 0 | 35.130 0 | 0.000 1 |
D | 994.470 0 | 1 | 994.470 0 | 263.900 0 | <0.000 1 |
AB | 0.023 3 | 1 | 0.023 3 | 0.006 2 | 0.938 9 |
AC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
AD | 1.540 0 | 1 | 1.540 0 | 0.409 7 | 0.536 5 |
BC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
BD | 3.110 0 | 1 | 3.110 0 | 0.824 3 | 0.385 3 |
CD | 8.250 0 | 1 | 8.250 0 | 2.190 0 | 0.169 7 |
A2 | 3.080 0 | 1 | 3.080 0 | 0.816 6 | 0.387 4 |
B2 | 0.038 0 | 1 | 0.038 0 | 0.010 1 | 0.922 0 |
C2 | 0.946 4 | 1 | 0.946 4 | 0.251 2 | 0.627 1 |
D2 | 50.970 0 | 1 | 50.970 0 | 13.520 0 | 0.004 3 |
残差Residual | 37.680 0 | 10 | 3.770 0 | — | — |
总和Cor total | 1 499.580 0 | 24 | — | — | — |
Table 4 Analysis of regression coefficient test of the effective ultraviolet radiation ratio
来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
模型 Model | 1 461.900 0 | 14 | 104.420 0 | 27.710 0 | <0.000 1 |
A | 160.530 0 | 1 | 160.530 0 | 42.600 0 | <0.000 1 |
B | 18.890 0 | 1 | 18.890 0 | 5.010 0 | 0.049 1 |
C | 132.400 0 | 1 | 132.400 0 | 35.130 0 | 0.000 1 |
D | 994.470 0 | 1 | 994.470 0 | 263.900 0 | <0.000 1 |
AB | 0.023 3 | 1 | 0.023 3 | 0.006 2 | 0.938 9 |
AC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
AD | 1.540 0 | 1 | 1.540 0 | 0.409 7 | 0.536 5 |
BC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
BD | 3.110 0 | 1 | 3.110 0 | 0.824 3 | 0.385 3 |
CD | 8.250 0 | 1 | 8.250 0 | 2.190 0 | 0.169 7 |
A2 | 3.080 0 | 1 | 3.080 0 | 0.816 6 | 0.387 4 |
B2 | 0.038 0 | 1 | 0.038 0 | 0.010 1 | 0.922 0 |
C2 | 0.946 4 | 1 | 0.946 4 | 0.251 2 | 0.627 1 |
D2 | 50.970 0 | 1 | 50.970 0 | 13.520 0 | 0.004 3 |
残差Residual | 37.680 0 | 10 | 3.770 0 | — | — |
总和Cor total | 1 499.580 0 | 24 | — | — | — |
来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
模型 Model | 0.037 6 | 14 | 0.002 7 | 45.42 | <0.000 1 |
A | 0.001 2 | 1 | 0.001 2 | 19.77 | 0.001 2 |
B | 0.014 8 | 1 | 0.014 8 | 250.84 | <0.000 1 |
C | 0.014 7 | 1 | 0.014 7 | 249.16 | <0.000 1 |
D | 0.001 3 | 1 | 0.001 3 | 21.95 | 0.000 9 |
AB | 8.6E-05 | 1 | 8.6E-05 | 1.45 | 0.255 6 |
AC | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 2 |
AD | 1.74E-05 | 1 | 1.74E-05 | 0.29 | 0.599 1 |
BC | 0.000 7 | 1 | 0.000 7 | 11.28 | 0.007 3 |
BD | 2.53E-05 | 1 | 2.53E-05 | 0.43 | 0.528 2 |
CD | 0.000 4 | 1 | 0.000 4 | 6.18 | 0.032 2 |
A2 | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 7 |
B2 | 1.16E-05 | 1 | 1.16E-05 | 0.20 | 0.667 9 |
C2 | 0.001 6 | 1 | 0.001 6 | 26.53 | 0.000 4 |
D2 | 1.23E-11 | 1 | 1.23E-11 | 2.07E-07 | 0.999 6 |
残差Residual | 0.000 6 | 10 | 5.91E-05 | — | — |
总和Cor total | 0.038 2 | 24 | — | — | — |
Table 5 Analysis of regression coefficient test of the irradiance dispersion
来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
模型 Model | 0.037 6 | 14 | 0.002 7 | 45.42 | <0.000 1 |
A | 0.001 2 | 1 | 0.001 2 | 19.77 | 0.001 2 |
B | 0.014 8 | 1 | 0.014 8 | 250.84 | <0.000 1 |
C | 0.014 7 | 1 | 0.014 7 | 249.16 | <0.000 1 |
D | 0.001 3 | 1 | 0.001 3 | 21.95 | 0.000 9 |
AB | 8.6E-05 | 1 | 8.6E-05 | 1.45 | 0.255 6 |
AC | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 2 |
AD | 1.74E-05 | 1 | 1.74E-05 | 0.29 | 0.599 1 |
BC | 0.000 7 | 1 | 0.000 7 | 11.28 | 0.007 3 |
BD | 2.53E-05 | 1 | 2.53E-05 | 0.43 | 0.528 2 |
CD | 0.000 4 | 1 | 0.000 4 | 6.18 | 0.032 2 |
A2 | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 7 |
B2 | 1.16E-05 | 1 | 1.16E-05 | 0.20 | 0.667 9 |
C2 | 0.001 6 | 1 | 0.001 6 | 26.53 | 0.000 4 |
D2 | 1.23E-11 | 1 | 1.23E-11 | 2.07E-07 | 0.999 6 |
残差Residual | 0.000 6 | 10 | 5.91E-05 | — | — |
总和Cor total | 0.038 2 | 24 | — | — | — |
拟合统计指标Fit statistic index | 有效紫外辐照比例EURR | 辐照离散度ID |
---|---|---|
标准差Standard deviation | 1.730 0 | 0.008 5 |
均值Mean | 25.930 0 | 0.313 6 |
变异系数Coefficient of variation/% | 6.680 0 | 2.710 0 |
决定系数R2 | 0.962 0 | 0.967 8 |
调整后决定系数Adjusted R2 | 0.952 0 | 0.954 5 |
预测拟合度Predicted R2 | 0.885 6 | 0.919 5 |
精度值Adequate precision | 37.878 5 | 31.003 3 |
Table 6 Fitting statistics of the quadratic regression equation of effective ultraviolet radiation ratio and irradiance dispersion after refitting
拟合统计指标Fit statistic index | 有效紫外辐照比例EURR | 辐照离散度ID |
---|---|---|
标准差Standard deviation | 1.730 0 | 0.008 5 |
均值Mean | 25.930 0 | 0.313 6 |
变异系数Coefficient of variation/% | 6.680 0 | 2.710 0 |
决定系数R2 | 0.962 0 | 0.967 8 |
调整后决定系数Adjusted R2 | 0.952 0 | 0.954 5 |
预测拟合度Predicted R2 | 0.885 6 | 0.919 5 |
精度值Adequate precision | 37.878 5 | 31.003 3 |
Fig. 11 Effect of single factors on effective ultraviolet radiation ratio and irradiance dispersionNote:A—Inner diameter of tube;B—Thickness of tube wall;C—Tube-lamp distance;D—Bidirectional reflectance distribution function.
序号 Number | 管道内径 Inner diameter of tube/mm | 管壁厚度Thickness of tube wall/mm | 管灯距离Tube-lamp distance/mm | 双向反射分布函数 BRDF | 有效紫外辐照比例 EURR/% | 辐照离散度ID | 复合合意度 Composite desirability |
---|---|---|---|---|---|---|---|
1 | 50.00 | 3.000 | 0.556 | 1 | 52.955 9 | 0.284 957 | 0.058 412 8 |
2 | 50.00 | 3.000 | 0.009 | 1 | 53.982 4 | 0.305 335 | 0.057 210 2 |
3 | 49.42 | 2.268 | 0.000 | 1 | 54.633 0 | 0.341 957 | 0.046 972 4 |
4 | 50.00 | 2.951 | 3.828 | 1 | 46.865 1 | 0.263 957 | 0.038 111 3 |
5 | 50.00 | 0.043 | 3.988 | 1 | 50.003 4 | 0.333 833 | 0.035 034 1 |
6 | 39.83 | 3.000 | 2.557 | 1 | 45.147 4 | 0.240 142 | 0.035 022 2 |
7 | 24.09 | 3.000 | 0.000 | 1 | 43.690 6 | 0.277 902 | 0.026 365 7 |
8 | 27.54 | 0.000 | 4.026 | 1 | 41.046 3 | 0.310 753 | 0.016 768 1 |
9 | 27.95 | 2.882 | 3.944 | 1 | 37.956 7 | 0.244 203 | 0.014 896 7 |
Table 7 Optimized parameter combinations and prediction results of response surface method
序号 Number | 管道内径 Inner diameter of tube/mm | 管壁厚度Thickness of tube wall/mm | 管灯距离Tube-lamp distance/mm | 双向反射分布函数 BRDF | 有效紫外辐照比例 EURR/% | 辐照离散度ID | 复合合意度 Composite desirability |
---|---|---|---|---|---|---|---|
1 | 50.00 | 3.000 | 0.556 | 1 | 52.955 9 | 0.284 957 | 0.058 412 8 |
2 | 50.00 | 3.000 | 0.009 | 1 | 53.982 4 | 0.305 335 | 0.057 210 2 |
3 | 49.42 | 2.268 | 0.000 | 1 | 54.633 0 | 0.341 957 | 0.046 972 4 |
4 | 50.00 | 2.951 | 3.828 | 1 | 46.865 1 | 0.263 957 | 0.038 111 3 |
5 | 50.00 | 0.043 | 3.988 | 1 | 50.003 4 | 0.333 833 | 0.035 034 1 |
6 | 39.83 | 3.000 | 2.557 | 1 | 45.147 4 | 0.240 142 | 0.035 022 2 |
7 | 24.09 | 3.000 | 0.000 | 1 | 43.690 6 | 0.277 902 | 0.026 365 7 |
8 | 27.54 | 0.000 | 4.026 | 1 | 41.046 3 | 0.310 753 | 0.016 768 1 |
9 | 27.95 | 2.882 | 3.944 | 1 | 37.956 7 | 0.244 203 | 0.014 896 7 |
1 | 杨其长.植物工厂系统与实践[M].北京:化学工业出版社,2012:2-3. |
2 | 刘家源,张玉彬,刘文科.采前红蓝光连续光照光强对水培生菜生长、品质及AsA代谢的影响[J].中国农业科技导报,2022,24(5):76-84. |
LIU J Y, ZHANG Y B, LIU W K. Effects of pre-harvest red and blue continuous light intensity on growth, quality and AsA metabolism of hydroponics lettuce [J]. J. Agric. Sci. Technol., 2022, 24(5):76-84. | |
3 | 张玉彬,刘文科,杨其长,等.采前不同比例LED红蓝光连续光照对生菜光合特性及产量和品质的影响[J].中国农业科技导报,2021,23(10):66-73. |
ZHANG Y B, LIU W K, YANG Q C, et al.. Effects of different ratios of LED red and blue continuous light on the photosynthetic characteristics, yield and quality of lettuce before harvest [J]. J. Agric. Sci. Technol., 2021, 23(10):66-73. | |
4 | ZHANG W L, LIU W K, YANG Q C. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes [J]. J. Plant Nutr., 2013, 36(3):481-490. |
5 | BIAN Z H, CHENG R F, WANG Y, et al.. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes [J]. Environ. Exp. Bot., 2018, 153:63-71. |
6 | LEI B, BIAN Z H, YANG Q C, et al.. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.) [J]. J. Integr. Agric., 2018, 17(4):837-846. |
7 | 刘文科,杨其长.现代设施园艺的最高形式——植物工厂[J].科技导报,2013,31(33):1. |
8 | STRAYER R F. Dynamics of microorganism populations in recirculating nutrient solutions [J]. Adv. Space Res., 1994, 14(11):357-366. |
9 | HONG C X, MOORMAN G W. Plant pathogens in irrigation water: challenges and opportunities [J]. Crit. Rev. Plant Sci., 2005, 24(3):189-208. |
10 | 李倩.番茄潮汐式育苗营养液细菌和真菌群落结构动态分析[D].北京:中国农业科学院,2019. |
LI Q. Analysis of bacterial and fungal community structure in the recirculating nutrient solution of tomato plug seedlings under ebb-and-flow irrigation [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
11 | ATMATJIDOU V P, FYNN R P, HOITINK H A J. Dissemination and transmission of Xanthomonas campestris pv. begoniae in an ebb and flow irrigation system [J]. Plant Dis., 1991, 75(12):1261-1265. |
12 | GRIESBACH E, LATTAUSCHKE E. Übertragung von Clavibacter michiganensis subsp. michiganensis in Tomaten-Hydroponikkulturen und Möglichkeiten zur Bekämpfung des Erregers [J]. Nachrichtenbl. Dtsch. Pflanzenschutzdienstes (Braunschweig, Ger.), 1991, 43(4):69-73. |
13 | KŮDELA V, KREJZAR V, PÁNKOVÁ I. Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture [J]. Plant Prot. Sci., 2011, 46(1):1-11. |
14 | FUJIWARA K, AOYAMA C, TAKANO M, et al.. Suppression of Ralstonia solanacearum bacterial wilt disease by an organic hydroponic system [J]. J. Gen. Plant Pathol., 2012, 78(3):217-220. |
15 | ACHER A, HEUER B, RUBINSKAYA E, et al.. Use of ultraviolet-disinfected nutrient solutions in greenhouses [J]. J. Hortic. Sci., 1997, 72(1):117-123. |
16 | ZHANG W, TU J C. Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria [J]. Eur. J. Plant Pathol., 2000, 106(5):415-421. |
17 | 宋卫堂,王成,侯文龙.紫外线-臭氧组合式营养液消毒机的设计及灭菌性能试验[J].农业工程学报,2011,27(2):360-365. |
SONG W T, WANG C, HOU W L. Development and test of nutrient solution disinfection machine by combining UV with ozone [J]. Trans. Chin. Soc. Agric. Eng., 2011, 27(2):360-365. | |
18 | 王伟琳,何芬,丁小明,等.营养液循环灌溉紫外线消毒机设计研究[J].农机化研究,2018,40(9):69-73, 80. |
WANG W L, HE F, DING X M, et al.. Design of ultraviolet disinfection machine for circulating irrigation of nutrient solution [J]. J. Agric. Mech. Res., 2018, 40(9):69-73, 80. | |
19 | 李东星,田真,王浚峰,等.植物工厂营养液循环再利用装备的研究应用[J].农业工程,2011,1(1):46-51. |
LI D X, TIAN Z, WANG J F, et al.. Research and application on a nutrient recycle equipment [J]. Agric. Eng., 2011, 1(1):46-51. | |
20 | WANG X, FANG W, ZHAO Z. Design of UVA ultraviolet disinfection system for nutrient solution residual liquid and development of microbial online monitoring system [J]. Sustainability, 2023, 15(1):173-182. |
21 | TSUNEDOMI A, MIYAWAKI K, MASAMURA A, et al.. UVA‐LED device to disinfect hydroponic nutrient solution [J]. Tokushima J. Exp. Med., 2018, 65(3.4):171-176. |
22 | 杜朋伟.高效紫外发光二极管的理论与实验研究[D].杭州:浙江大学,2022. |
DU P W. Theoretical and experimental research on high efficiency ultraviolet light emitting diodes [D]. Hangzhou: Zhejiang University, 2022. | |
23 | 王勇.AlGaN深紫外LED外量子效率提升方法研究[D].长春:中国科学院大学,2022. |
WANG Y. Research on improving external quantum efficiency of AlGaN-based deep ultraviolet light emitting diodes [D]. Changchun: University of Chinese Academy of Sciences, 2022. | |
24 | 李晋闽,闫建昌,郭亚楠,等.紫外LED研究进展[J].科技导报,2021,39(14):30-41. |
LI J M, YAN J C, GUO Y N, et al.. Recent progress of ultraviolet light-emitting diodes [J]. Sci. Technol. Rev., 2021, 39(14):30-41. | |
25 | KIM B S, YOUM S, KIM Y K. Sterilization of harmful microorganisms in hydroponic cultivation using an ultraviolet LED light source [J]. Sens. Mater., 2020, 32(11):3773-3785. |
26 | HESSLING M, GROSS A, HOENES K, et al.. Efficient disinfection of tap and surface water with single high power 285 nm LED and square quartz tube [C]//Photonics. Multidisciplinary Digital Publishing Institute, 2016, 3(1):7. |
27 | JENNY R M, JASPER M N, SIMMONS III O D, et al.. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics [J]. Water Res., 2015, 83(10):310-318. |
28 | OGUMA K, KITA R, TAKIZAWA S. Effects of arrangement of UV light-emitting diodes on the inactivation efficiency of microorganisms in water [J]. Photochem. Photobiol., 2016, 92(2):314-317. |
29 | 吴燕涛.鲜榨苹果汁管式液膜紫外杀菌的CFD模拟[D].海口:华南热带农业大学,2005. |
WU Y T. Computation fluid dynamics modeling the UV-sterilization of fresh apple juice in fluid film [D]. Haikou: South China University of Tropical Agriculture, 2005. | |
30 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 一般工业用铝及铝合金板、带材: [S].北京:中国标准出版社,2006. |
31 | 李聪,王咏梅,张仲谋.紫外光谱辐射定标中的漫反射板反射特性研究[J].光谱学与光谱分析,2008,28(4):865-869. |
LI C, WANG Y M, ZHANG Z M. The study of aluminium diffuser calibration in the UV [J]. Spectrosc. Spect. Anal., 2008, 28(4):865-869. | |
32 | 李炳强,曹佃生,林冠宇,等.真空远紫外波段铝基漫反射板BRDF特性研究[J].激光与红外,2020,50(9):1138-1144. |
LI B Q, CAO D S, LIN G Y, et al.. BRDF characteristics research on aluminum-based diffuser in vacuum and far ultraviolet waveband [J]. Laser Infrared, 2020, 50(9):1138-1144. |
[1] | Xiaohu YANG, Manyu ZHANG, Haichang YANG, Fenghua ZHANG, Yilin JIANG, Xiaolan YI. Inversion of Soil Salinity in Farmland of Manas River Basin Based on Combined Model [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 134-141. |
[2] | Wei WANG, Lijuan XIE, Dongya XIAO, Gensheng CHEN, Liang XIE, Ziming WU, Xugen SHI, Huijie LI. Research on the Green Control Technology Model of Diseases and Insects in Double-cropping Rice in Jiangxi Province [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 129-138. |
[3] | Long ZHENG. Research on Effects of Genotypes and Environments on Cd Contents in Pakchoi [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 58-65. |
[4] | Zhaoli AN, Dongqun YANG. Innovative Mechanism and Model of Cambodia-China Tropical Eco-agriculture Cooperation Demonstration Zone [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 1-8. |
[5] | Limin ZHAI, Wentong LI, Zheng FENG, Hua LI, Yangli PEI. Current Status of Gene-edited Pigs [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 25-34. |
[6] | Siqi BAI, Xiaorong ZOU, Peng DING, Ming LIN. Surplus Production Model for Chilean Jack Mackerel in the Southeast Pacific Ocean Based on the Environmental Factors [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 197-204. |
[7] | Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118. |
[8] | Zhen ZHAO, Aoran SUN, Chunling ZHANG, Guoping ZHU, Song HU. Relationship Between Fishing Grounds of Yellowfin Tuna (Thunnus albacares) and Dissolved Oxygen in the Western and Central Pacific [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 193-202. |
[9] | Huang HUANG, Yanyan CHEN, Pengyu CHEN, Rui LUO, Yadong LIU, Wei HU. Research Progress of Agricultural Machinery Scheduling Technology Based on Time Window [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 93-106. |
[10] | Jie SHANG, Haoran YU, Xu YANG. Spatial Temporal Differences and Influencing Factors of Agricultural Water Use Efficiency [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 11-19. |
[11] | Guanyue ZHAO, Qin LIU, Peihao PENG. Identification of Mango Planting Regions in Huaping County, Yunnan Province Based on Sentinel⁃2 Images and MaxEnt Model [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 111-119. |
[12] | Yangyang LIU, Yue PAN, Shiwei WANG, Haifang HU. Light Response Model Fitting and Comprehensive Evaluation for Vitisamurensis [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 104-114. |
[13] | Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. |
[14] | Xin JIA, Ni XIE, Xiaobing DING, Lianghao LIU, Yu LIU. Establishment and Verification of Steady-State Steering Model for Mountain Tracked Vehicle on Soft Slope Road [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 97-111. |
[15] | Yuli CHEN, Ping YANG, Huawei LI. Simulation Study on Effects of Planting Density and Sowing Date on Grain Quality of Winter Wheat [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 143-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||