Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (1): 155-164.DOI: 10.13304/j.nykjdb.2023.0544
• ANIMAL AND PLANT HEALTH • Previous Articles
Zhichao REN1(), Yaohui MU2, Xuyang YAO1, Shue LI2, Yongfeng ZHANG2, Tianbao REN1, Guoshun LIU1, Quanyu YIN1(
)
Received:
2023-07-15
Accepted:
2023-11-07
Online:
2025-01-15
Published:
2025-01-21
Contact:
Quanyu YIN
任志超1(), 穆耀辉2, 姚旭阳1, 李淑娥2, 张永峰2, 任天宝1, 刘国顺1, 殷全玉1(
)
通讯作者:
殷全玉
作者简介:
任志超 E-mail:1132007123@qq.com;
基金资助:
CLC Number:
Zhichao REN, Yaohui MU, Xuyang YAO, Shue LI, Yongfeng ZHANG, Tianbao REN, Guoshun LIU, Quanyu YIN. Physiological Response of Tobacco Infected by Phytophthora to Trichoderma harzianum Inoculation Sequence[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 155-164.
任志超, 穆耀辉, 姚旭阳, 李淑娥, 张永峰, 任天宝, 刘国顺, 殷全玉. 疫霉侵染下烟草对哈茨木霉接种顺序的生理响应[J]. 中国农业科技导报, 2025, 27(1): 155-164.
病级 Disease level | 分级标准 Distinguishing criteria |
---|---|
0 | 全株无病 No disease in the whole plant |
1 | 茎部病斑不超过茎围的1/3,或1/3以下叶片凋萎 Stem lesions do not exceed 1/3 of stem circumference, or less than 1/3 of leaf wilt |
3 | 茎部病斑环绕茎围1/3~1/2,或1/3~1/2叶片凋萎 Stem lesions around 1/3~1/2 stem circumference, or 1/3~1/2 of leaf wilt |
5 | 茎部病斑超过茎围的1/2,但未全部围绕茎围,或1/2~2/3叶片凋萎 Stem lesions exceed 1/2 of the stem circumference, but do not completely surround, or 1/2~2/3 of leaf wilt |
7 | 茎部病斑全部环绕茎围,或2/3以上叶片凋萎 Stem lesions are all around the stem circumference, or more than 2/3 of leaves wilt |
9 | 病株基本枯死 Infected plant basically died |
Table 1 Classification standard of tobacco black shank disease
病级 Disease level | 分级标准 Distinguishing criteria |
---|---|
0 | 全株无病 No disease in the whole plant |
1 | 茎部病斑不超过茎围的1/3,或1/3以下叶片凋萎 Stem lesions do not exceed 1/3 of stem circumference, or less than 1/3 of leaf wilt |
3 | 茎部病斑环绕茎围1/3~1/2,或1/3~1/2叶片凋萎 Stem lesions around 1/3~1/2 stem circumference, or 1/3~1/2 of leaf wilt |
5 | 茎部病斑超过茎围的1/2,但未全部围绕茎围,或1/2~2/3叶片凋萎 Stem lesions exceed 1/2 of the stem circumference, but do not completely surround, or 1/2~2/3 of leaf wilt |
7 | 茎部病斑全部环绕茎围,或2/3以上叶片凋萎 Stem lesions are all around the stem circumference, or more than 2/3 of leaves wilt |
9 | 病株基本枯死 Infected plant basically died |
处理 Treatment | 株高 Height/cm | 茎围 Girth/cm | 节距 Pitch/cm | 最大叶面积 Maximum leaf area/cm2 |
---|---|---|---|---|
CK | 33.20±0.30 b | 4.0±0.15 b | 4.13±0.21 b | 593.44±27.53 c |
T1 | 24.00±0.62 d | 3.4±0.20 c | 3.57±0.12 c | 466.02±19.67 e |
T2 | 36.60±0.56 a | 4.7±0.20 a | 4.70±0.20 a | 733.74±10.29 a |
T3 | 25.03±0.72 d | 3.5±0.06 c | 3.70±0.10 c | 513.40±20.82 d |
T4 | 35.53±1.77 a | 4.4±0.12 a | 4.43±0.21 a | 693.40±10.01 b |
T5 | 31.53±0.57 c | 3.8±0.12 b | 3.90±0.10 b | 579.45±17.47 d |
Table 2 Growth and development of tobacco plants under different treatments
处理 Treatment | 株高 Height/cm | 茎围 Girth/cm | 节距 Pitch/cm | 最大叶面积 Maximum leaf area/cm2 |
---|---|---|---|---|
CK | 33.20±0.30 b | 4.0±0.15 b | 4.13±0.21 b | 593.44±27.53 c |
T1 | 24.00±0.62 d | 3.4±0.20 c | 3.57±0.12 c | 466.02±19.67 e |
T2 | 36.60±0.56 a | 4.7±0.20 a | 4.70±0.20 a | 733.74±10.29 a |
T3 | 25.03±0.72 d | 3.5±0.06 c | 3.70±0.10 c | 513.40±20.82 d |
T4 | 35.53±1.77 a | 4.4±0.12 a | 4.43±0.21 a | 693.40±10.01 b |
T5 | 31.53±0.57 c | 3.8±0.12 b | 3.90±0.10 b | 579.45±17.47 d |
处理 Treatment | 地上部鲜质量 Aboveground fresh mass/g | 地下部鲜质量 Underground fresh mass/g | 地上部干质量 Aboveground dry mass/g | 地下部干质量 Underground dry mass/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|---|
CK | 80.67±1.96 c | 7.23±0.25 c | 13.40±0.46 c | 1.33±0.15 bc | 12.24±0.19 a |
T1 | 54.87±1.22 f | 6.90±0.40 c | 9.17±0.25 f | 1.03±0.15 c | 8.95±0.09 c |
T2 | 111.77±3.74 a | 14.73±1.36 a | 18.33±0.15 a | 2.67±0.42 a | 13.18±1.05 a |
T3 | 63.20±2.86 e | 7.13±0.25 b | 10.77±0.76 e | 1.27±0.06 bc | 8.98±0.53 c |
T4 | 87.57±2.55 b | 7.83±0.21 b | 14.73±0.78 b | 1.57±0.21 b | 12.57±0.58 a |
T5 | 72.90±2.65 d | 7.43±0.12 c | 12.10±0.50 d | 1.33±0.06 c | 10.20±0.27 b |
Table 3 Biomass accumulation of tobacco plants under different treatments
处理 Treatment | 地上部鲜质量 Aboveground fresh mass/g | 地下部鲜质量 Underground fresh mass/g | 地上部干质量 Aboveground dry mass/g | 地下部干质量 Underground dry mass/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|---|
CK | 80.67±1.96 c | 7.23±0.25 c | 13.40±0.46 c | 1.33±0.15 bc | 12.24±0.19 a |
T1 | 54.87±1.22 f | 6.90±0.40 c | 9.17±0.25 f | 1.03±0.15 c | 8.95±0.09 c |
T2 | 111.77±3.74 a | 14.73±1.36 a | 18.33±0.15 a | 2.67±0.42 a | 13.18±1.05 a |
T3 | 63.20±2.86 e | 7.13±0.25 b | 10.77±0.76 e | 1.27±0.06 bc | 8.98±0.53 c |
T4 | 87.57±2.55 b | 7.83±0.21 b | 14.73±0.78 b | 1.57±0.21 b | 12.57±0.58 a |
T5 | 72.90±2.65 d | 7.43±0.12 c | 12.10±0.50 d | 1.33±0.06 c | 10.20±0.27 b |
Fig. 2 Photosynthetic pigment content of tobacco plants under different treatmentsNote: Different lowercase letters in same index indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 发病率 Morbidity/% | 病情指数 Disease index/% | 防治效果 Effect of prevention/% |
---|---|---|---|
CK | 0.00±0.00 e | — | — |
T1 | 100.00 a | 57.74±2.03 a | — |
T2 | 0.00±0.00 e | — | — |
T3 | 84.85±2.35 b | 46.33±2.58 b | 15.15±2.06 c |
T4 | 39.39±1.69 d | 13.89±1.88 d | 60.61±1.34 a |
T5 | 57.58±1.24 c | 25.12±1.12 c | 42.42±2.02 b |
Table 4 Control of different treatments on black shank
处理 Treatment | 发病率 Morbidity/% | 病情指数 Disease index/% | 防治效果 Effect of prevention/% |
---|---|---|---|
CK | 0.00±0.00 e | — | — |
T1 | 100.00 a | 57.74±2.03 a | — |
T2 | 0.00±0.00 e | — | — |
T3 | 84.85±2.35 b | 46.33±2.58 b | 15.15±2.06 c |
T4 | 39.39±1.69 d | 13.89±1.88 d | 60.61±1.34 a |
T5 | 57.58±1.24 c | 25.12±1.12 c | 42.42±2.02 b |
处理 Treatment | 丙二醛 MDA/(nmol·g-1 FW) | 超氧化物歧化酶 SOD/ (U·g-1 FW) | 过氧化物酶 POD/(U·g-1 FW) | 过氧化氢酶 CAT/(nmol·min-1·g-1 FW) |
---|---|---|---|---|
CK | 5.35±0.23 e | 104.71±1.90 e | 278.20±14.80 c | 129.98±4.16 d |
T1 | 7.73±0.25 a | 85.16±2.59 d | 263.20±4.40 d | 118.47±3.86 e |
T2 | 5.59±0.03 d | 133.42±5.67 c | 363.00±9.70 b | 155.60±3.60 c |
T3 | 7.15±0.26 b | 138.31±2.43 c | 368.50±3.70 b | 162.35±3.07 b |
T4 | 5.78±0.14 d | 168.21±5.59 a | 421.73±8.61 a | 174.85±3.47 a |
T5 | 6.40±0.28 c | 158.08±2.51 b | 370.00±6.52 b | 167.10±2.91 b |
Table 5 MDA content and antioxidant enzyme activity of tobacco plants under different treatments
处理 Treatment | 丙二醛 MDA/(nmol·g-1 FW) | 超氧化物歧化酶 SOD/ (U·g-1 FW) | 过氧化物酶 POD/(U·g-1 FW) | 过氧化氢酶 CAT/(nmol·min-1·g-1 FW) |
---|---|---|---|---|
CK | 5.35±0.23 e | 104.71±1.90 e | 278.20±14.80 c | 129.98±4.16 d |
T1 | 7.73±0.25 a | 85.16±2.59 d | 263.20±4.40 d | 118.47±3.86 e |
T2 | 5.59±0.03 d | 133.42±5.67 c | 363.00±9.70 b | 155.60±3.60 c |
T3 | 7.15±0.26 b | 138.31±2.43 c | 368.50±3.70 b | 162.35±3.07 b |
T4 | 5.78±0.14 d | 168.21±5.59 a | 421.73±8.61 a | 174.85±3.47 a |
T5 | 6.40±0.28 c | 158.08±2.51 b | 370.00±6.52 b | 167.10±2.91 b |
1 | 申贵,王源超,郑小波.不同寄主来源寄生疫霉菌株的遗传变异分析[J].生物多样性,2003,11(6):486-490. |
SHEN G, WANG Y C, ZHENG X B. Genetic variation among Phytophthora parasitica strains isolated from different host plants [J]. Biodiversity Sci., 2003,11(6):486-490. | |
2 | REN X L, ZHANG N, CAO M H, et al.. Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5 [J]. Biol. Fert. Soils, 2012, 48(6):613-620. |
3 | BAO Y G, DING N, QIN Q L, et al.. Genetic mapping of the Ph gene conferring disease resistance to black shank in tobacco [J/OL]. Mol. Breed., 2019, 39:1036x [2023-06-15]. . |
4 | HAN T, YOU C, ZHANG L, et al.. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank [J]. Biol. Control, 2016, 61(2):195-205. |
5 | 贾孟媛,王越洋,唐培培,等.烟草黑胫病生防菌的筛选鉴定及其防效[J].湖南农业大学学报(自然科学版),2023,49(3):329-334. |
JIA M Y, WANG Y Y, TANG P P,et al... Screening and identification of biocontrol bacteria for tobacco black shank disease and evaluation of the control effect [J]. J. Hunan Agric. Univ., 2023, 49(3):329-334. | |
6 | 向立刚,汪汉成,罗飞,等.感染青枯病与黑胫病烟株的根际土壤、根及茎秆微生物代谢特征分析[J].烟草科技,2023, 56(3):17-24. |
XIANG L G, WANG H C, LUO F, et al.. Metabolic characteristics of microorganisms in rhizosphere soil, roots, andstalks of tobacco plants infected with bacterial wilt and black shank [J]. Tob. Sci. Tech., 2023, 56 (3):17-24. | |
7 | GAI X T, LU C H, XIA Z Y, et al.. Crop rotation suppresses tobacco black shank disease incited by Phytophthora nicotianae and influenced the structure of rhizosphere bacterial communities [J]. J. Plant Pathol., 2023, 16(2):1-10. |
8 | 任锡跃,刘涛,朱发亮,等.β-氨基丁酸对烟草黑胫病的抗性诱导[J].烟草科技,2023,56(1):47-51, 65. |
REN X Y, LIU T, ZHU F L, et al.. Resistance induction by β-aminobutyric acid against tobacco black shank disease [J]. Tob. Sci. Tech., 2023, 56(1):47-51, 65. | |
9 | SONG R F, TAN Y J, AHMED W, et al.. Unraveling the expression of differentially expressed proteins and enzymatic activity in response to Phytophthora nicotianae across different flue-cured tobacco cultivars [J]. BMC Microbiol., 2022, 22(1):1-13. |
10 | TIAN S F, CHEN Y P, ZI S H, et al.. Thiamine induces resistance in tobacco against black shank [J]. Aust. Plant Path., 2022, 51(2):231-243. |
11 | 匡志豪,王典,云菲,等.哈茨木霉施用方式对烟草生长、黑胫病防治及诱导抗性的影响[J].山东农业科学,2023, 55(2):119-126. |
KUANG Z H, WANG D, YUN F, et al.. Effects of Trichoderma harzianum application methods on tobacco growth, black shank control and induced resistance [J]. Shandong Agric. Sci., 2023, 55(2):119-126. | |
12 | 王全贞,夏贤仁,邓涛,等.3种生物制剂在宣威南部烟区的防病提质效果研究[J].湖南农业科学,2023,449(2):57-62. |
WANG Q Z, XIA X R, DENG T, et al.. Effect of three biological agents on disease control and quality improvement in the southern Xuanwei area [J]. Hunan Agric. Sci., 2023,449 (2):57-62. | |
13 | 王典,匡志豪,孙晓伟,等.哈茨木霉对烟草生长/产质量及黑胫病防效的影响[J].贵州农业科学,2023,51(3):27-35. |
WANG D, KUANG Z H, SUN X W, et al.. Effect of Trichoderma harzianum on growth, yield and quality of tobacco and control effect of black shank disease [J]. Guizhou Agric. Sci., 2023, 51(3):27-35. | |
14 | 李玥,罗丽芬,王烜东,等.三七根际耐皂苷木霉菌的分离鉴定及其拮抗促生活性评价[J].中国农业大学学报,2023,28(8):133-143. |
LI Y, LUO L F, WANG X D, et al.. Isolation and identification of ginsenosides-tolerant Trichoderma strains from rhizosphere of Panax notoginseng and evaluation of their effect on antagonistic and growth promotion activity [J]. J. China Agric. Univ., 2023, 28(8):133-143. | |
15 | GHISALBERTI E L.Anti-infective agents produced by the hyphomycetes genera Trichoderma and Gliocladium [J]. Curr. Med. Chem. Ant. Infective Agents, 2002, 1(4):343-374. |
16 | ILLESCAS M, PEDRERO-MÉNDEZ A, PITORINI-BOVOLINI M, et al.. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress [J/OL]. Pathogens, 2021, 10(8):991 [2023-06-15]. . |
17 | 付香,王贺新,王碟,等.棘孢木霉的分离鉴定及其对蓝莓生长发育的影响[J].中国果树,2023(6):46-53. |
FU X, WANG H X, WANG D, et al.. Isolation and identification of Trichoderma spinosum and its effect on the growth and development of blueberries [J]. Chin. Fruit. Tree, 2023(6):46-53. | |
18 | ANHAR A, PUTRI D H, ADVINDA L, et al.. Molecular characterization of Trichoderma strains from west sumatera, indonesia and their beneficial effects on rice seedling growth [J]. J. Crop Sci. Biol., 2021, 24:441-448. |
19 | 廉华,马光恕,李梅,等.棘孢木霉菌剂对黄瓜生理特性及产质量的影响[J].中国农业大学学报,2021,26(6):42-52. |
LIAN H, MA G S, LI M, et al.. Effects of Trichoderma asperellum agents on physiological characteristics, yield and quality of cucumber [J]. J. China Agric. Univ., 2021,26(6):42-52. | |
20 | 沈海斌,王前程,陈捷,等.三株木霉对番茄枯萎病的防治效果和机理研究[J].植物生理学报,2023,59(5):965-976. |
SHEN H B, WANG Q C, CHEN J, et al.. Efficacy and mechanism of three Trichoderma strains for control of tomato Fusarium wilt [J]. Plant Physiol. J., 2023, 59(5):965-976. | |
21 | CELAR F A, KOS K. Compatibility of the commercial biological control agents Trichoderma asperellum (ICC 012) and Trichoderma gamsii (ICC 080) with selected herbicides [J]. J. Plant Dis. Prot., 2022, 129(1):85-92. |
22 | GADERER R, LAMDAN N L, FRISCHMANN A, et al.. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize [J/OL]. BMC Microbiol., 2015, 15(1):2 [2023-06-15]. . |
23 | UMADEVI P, ANANDARAJ M. Proteomic analysis of the tripartite interaction between black pepper, Trichoderma harzianum and Phytophthora capsici provides insights into induced systemic resistance mediated by Trichoderma spp [J]. Eur. J. Plant Pathol., 2019, 154: 607-620. |
24 | 申国明,陈爱国,王程栋,等. 烟草农艺性状调查测量方法: [S].北京:中国标准出版社,2010. |
25 | 许大全.叶绿素含量的测定及其应用中的几个问题[J].植物生理学通讯,2009,45(9):896-898. |
XU D Q. Several problems in measurement and application of chlorophyll content [J]. Plant Physiol. Commun., 2009, 45(9):896-898. | |
26 | 高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000:1-287. |
27 | LI S H, YANG D Q, TIAN J, et al.. Physiological and transcriptional response of carbohydrate and nitrogen metabolism in tomato plant leaves to nickel ion and nitrogen levels [J/OL]. Sci. Hortic., 2022, 292:110620 [2023-06-15]. . |
28 | ARFAN M, ZHANG D W, ZOU L J, et al.. Hydrogen peroxide and nitric oxide crosstalk mediates brassinosteroids induced cold stress tolerance in Medicago truncatula [J/OL]. Int. J. Mol. Sci., 2019, 20(1):144 [2023-06-15]. . |
29 | 任广伟,孔凡玉,王凤龙,等. 烟草病虫害分级及调查方法: [S].北京:中国标准出版社,2008. |
30 | SHI R, HUBERT H, DEXTER-BOONE A, et al.. Identification and validation of SNP markers associated with Wz-mediated Phytophthora nicotianae resistance in Nicotiana tabacum L [J/OL]. Mol. Breeding., 2019, 39(7):2 [2023-06-15]. . |
31 | 尤佳琪,吴明德,李国庆,等.木霉在植物病害生物防治中的应用及作用机制[J].中国生物防治学报,2019,35(6):966-976. |
YOU J Q, WU M D, LI G Q, et al.. Application and mechanism of Trichoderma in biological control of plant disease [J]. Chin. J. Biol. Control, 2019, 35(6):966-976. | |
32 | MARTÍNEZ-MEDINA A, DEL MAR ALGUACIL M, PASCUAL J A, et al.. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants [J]. J. Chem. Ecol., 2014, 40:804-815. |
33 | SOFO A, TATARANNI G, XILOYANNIS C, et al.. Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus×Prunus canescens) rootstock [J]. Environ. Exp. Bot., 2012, 76:33-38. |
34 | 殷全玉,匡志豪,王景,等.黑胫病不同抗性烤烟品种对哈茨木霉的生理响应[J].河南农业科学,2022,51(9):88-98. |
YIN Q Y, KUANG Z H, WANG J, et al. Physiological responses of different black shank-resistance flue-cured tobacco varieties to Trichoderma harzianum [J]. Henan Agric. Sci., 2022, 51(9):88-98. | |
35 | GUZMÁN-GUZMÁN P, PORRAS-TRONCOSO M D, OLMEDO-MONFIL V, et al.. Trichoderma species: versatile plant symbionts [J]. Phytopathology, 2019, 109(1):6-16. |
36 | 董环宇,杨超群,郭笑维,等.不同抗性烟草品种(系)苗期接种PVY后生理生化指标变化[J].延边大学农学学报,2022,44(3):29-37. |
DONG H Y, YANG C Q, GUO X W, et al.. Changes of physiological and biochemical indexes of different resistant tobacco varieties (lines) after PVY inoculation at seedling stage [J]. J. Agron. Yanbian Univ., 2022, 44(3):29-37. | |
37 | JIANG Y, SUN Y F, ZHENG D F, et al.. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.) [J/OL]. Sci. Rep., 2021, 11:14476 [2023-06-15]. . |
38 | 王诗雅,郑殿峰,项洪涛,等. 初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J].中国农业科学,2021,54(2):271-285. |
WANG S Y, ZHENG D F, XIANG H T, et al.. Damage of AsA-GSH cycle of soybean leaves under waterlogging stress at initial flowing stage and the mitigation effect of uniconazole [J]. Sci. Agric. Sin., 2021, 54(2):71-285. | |
39 | ZARGAR S M, GUPTA N, NAZIR M, et al.. Impact of drought on photosynthesis: molecular perspective [J]. Plant Gene, 2017, 11:154-159. |
40 | 丁凯鑫,王立春,田国奎,等.干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应[J].中国生态农业学报,2023,31(7):1067-1080. |
DING K X, WANG L C, TIAN G K, et al.. Physiological responses of leaves of different potato varieties to uniconazole during tuber expansion stage under drought stress [J]. Chin. J. Eco-Agric., 2023, 31(7):1067-1080. | |
41 | 马光恕,张渟,李润哲,等.拟康氏木霉菌剂对黄瓜幼苗生长、抗氧化系统及枯萎病防效的影响[J].干旱地区农业研究,2022,40(6):72-81, 107. |
MA G S, ZHANG Z, LI R Z, et al.. Effects of Trichoderma pseudokoningiü agents on growth, antioxidant system and control effect against Fusarium wilt of cucumber seedlings [J]. Agric. Res. Arid Areas, 2022, 40(6):72-81, 107. | |
42 | ELKELISH A A, ALHAITHLOUL H A S, QARI S H, et al.. Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms [J/OL]. Environ. Exp. Bot., 2020, 171:103946 [2023-06-15]. . |
43 | 廉华,马光恕,靳亚忠,等.木霉分生孢子和厚垣孢子对黄瓜叶片抗氧化系统及枯萎病防效的影响[J].干旱地区农业研究,2021,39(4):71-79. |
LIAN H, MA G S, JIN Y Z, et al.. Effects of Trichoderma conidia and chlamydospore on cucumber leaf antioxidant system and control efficacy of Fusarium wilt in cucumber [J]. Agric. Res. Arid Areas, 2021, 39(4):71-79. |
[1] | Hongshuo ZHAO, Hongyu CAO, Guanglei GAO, Zhe SUN, Ying ZHANG, Guodong DING. Effects of Sand Fixation Using Microbially Induced Carbonate Precipitation on Leaf Traits and Physiological Characteristics of Typical Psammophytes [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 170-182. |
[2] | Junjia CHANG, Jiaxin GAI, Gang TAO, Zhuanlonghai MO. Evaluation of the Growth-promoting Effect of Trichoderma harzianum on Tobacco and Its Induced Resistance to Black Shank Disease [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 168-176. |
[3] | Shengmei LI, Bo PANG, Shiwei GENG, Wu SONG, Hongmei LI, Maosen MA, Ru ZHANG, Xinyan WANG, Wenwei GAO. Photosynthetic and Physiological Characteristics of Gossypium hirsutum L. × Gossypium barbadense L. Backross Populations in Full Boll Stage [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 40-51. |
[4] | Yongyan LIU, Zhengxiong SONG, Jiawei JIN, Jing WANG, Min XU, Junxue ZHOU, Zhanmin LI, Shimin ZHAO, Yunpeng FU, Xiaoyan DAI. Effects of Molybdenum and Zinc Nutrition on Physiological Characteristics and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 216-224. |
[5] | Qian YANG, Na WU, Cong ZHAO, Yu HAN, Zhonghua MA, Yongsen YANG, Jili LIU. Effects of Zinc Fertilizer Application on Physiological Characteristics and Grain Zn Content of Maize in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 166-176. |
[6] | Zhidan WANG, Jili LIU, Na WU. Effects of Fenlong Tillage on Photosynthetic Physiological Characteristics and Yield of Sweet Sorghum [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 148-156. |
[7] | SHI Lihong, TANG Haiming, XIAO Xiaoping, LI Chao, Liu Qu, CHENG Aiwu, CHENG Kaikai, LI Weiyan, WEN Li. Effects of Crop Residue and Mineral Fertilizer on Physiological Characteristics of Barley Leaves and Yield under Double-cropping Rice Field [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 143-152. |
[8] | GU Huimin1, CHEN Bolang1*, SUN Jin2. Influences of Mycorrhizal Seedling on Growth and Physiological Characteristics of Processing Tomato Under Salt Stress#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 166-177. |
[9] | WANG Zhiheng, YANG Xiuliu, ZOU Fang, HUANG Siqi, ZHOU Wuyan, XU Zhongwei, WEI Yuqing*. Effects of Salt and Drought Cross Stress on Germination and Physiological Characteristics of Sweet Sorghum Seeds [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 37-49. |
[10] | LI Yanmei1, ZHOU Yawen2, ZHANG Lin1, LIAO Shangqiang1*, SUN Yanxin1*. Coupling Effects of Stress-resistant Substances and Osmotic Regulators on Tomato Yield and Water Use Efficiency and Its Possible Mechanism [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 43-50. |
[11] | TANG Haiming, LI Chao, XIAO Xiaoping*, TANG Wenguang, CHENG Kaikai, PAN Xiaochen, WANG Ke, LI Weiyan. Impacts of Different Manure and Chemical Fertilizer N Input Ratios on Physiological Characteristics of Leaves and Yield of Rice under Doublecropping Rice Field [J]. Journal of Agricultural Science and Technology, 2020, 22(6): 149-160. |
[12] | ZHENG Miao, GUO Yi, WANG Limin. Effect of Drought Stress on Root Morphology and Physiological Characteristics of Malus micromalus cv. ‘Ruby’ [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 24-30. |
[13] | LI Jichao, ZHANG Jinyu, YANG Tianmei, YANG Meiquan, YANG Weize, XU Zongliang, ZUO Yingmei*. Comprehensive Evaluation and Physiological Mechanism of Drought Resistance of Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 49-59. |
[14] | LI Penghui1§, XIANG Jinyou2§, WANG Lin3, XU Jianqiang4, LI Changjun5, LEI Qiang6, YANG Yide2, ZHANG Xuewei7, LI Huaiqi8, ZHANG Qiming9, JING Yanqiu1*, XIONG Bin3*. Effects of Exogenous Melatonin on Physiological Characteristics of Tobacco Seedlings Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 41-48. |
[15] | ZHANG Xiao1, ZHANG Huanwei1, CHEN Biao1, WANG Kaiyue1, ZHOU Zifang2, SHAO Huifang1, XU Zicheng1, HUANG Wuxing1*. Effect of Exogenous Silicon and Salicylic Acid on the Growth and Physiological Characteristics of Tobacco Seedlings Under Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 133-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||